
Con�guration-Level Hardware/Software Partitioning
for Real-Time Embedded Systems

Joseph G. D'Ambrosio Xiaobo (Sharon) Hu�

General Motors R&D Center Department of Electrical Engineering
Bldg 1-6, Dept. 40 Western Michigan University

Warren, MI 48090-9055 Kalamazoo, MI 49008-5066
jdambros@gmr.com sharon.hu@wmich.edu

Abstract

In this paper, we present an approach to hard-
ware/software partitioning for real-time embedded sys-
tems. The abstraction level we have adopted is referred
to as the con�guration level, where hardware is mod-
eled as resources with no detailed functionality and
software is modeled as tasks utilizing the resources.
Through con�guration-level analysis, cost and perfor-
mance tradeo�s can be studied early in the design pro-
cess and a large design space can be explored. Feasi-
bility factor is introduced to measure the possibility of
a real-time system being feasible, and is used as both
a constraint and an attribute during the optimization
process. Optimal partitioning is achieved through the
use of an existing computer-aided design tool.

1 Introduction

Hardware/software codesign is a rapidly growing
research area. A number of recent publications
have addressed many issues in hardware/software
codesign, such as co-speci�cation, co-simulation, and
co-synthesis. In this paper, we focus on hard-
ware/software partitioning. Speci�cally, we consider
the following problem: given a list of general-purpose
processors and application-speci�c hardware circuits,
and the speci�cation of a system, �nd an implemen-
tation that satis�es the overall system requirements
and is optimal in some sense. An implementation
is a combination of hardware components, software
components, and processors that execute the software
components.

There are many possible abstraction levels that can
be used to model hardware and software components

�Supported in part by the New Faculty Research Support
Program grant from Western Michigan University.

[5, 7]. Most of the hardware/software partitioning
approaches start at the behavioral level and proceed
downward [2, 3, 12]. There are a few papers that ex-
tend hardware/software codesign to higher levels. For
example, Kumar et al. [7] discuss higher abstraction
levels, such as system and algorithmic. The level of ab-
straction that we have adopted for modeling hardware
and software components is called con�guration level
[5], which is similar to the system level. At the con�gu-
ration level, hardware is modeled as resources with no
detailed functionality and software is modeled as tasks
utilizing the resources. The goal of con�guration-level
design is to determine the overall system architecture.
Typical decisions include which functions should be
implemented in dedicated hardware circuits and which
should be in software, how many processors should be
used, and which software components should be exe-
cuted by which processor.

We are particularly interested in hardware/software
partitioning for real-time embedded systems. Such
systems can be found in many applications, such
as powertrain control of automobiles, navigation and
landing control of aircraft, and networks and commu-
nications. The design of real-time embedded systems,
which are generally composed of both hardware and
software components, is quite challenging. In addi-
tion to the usual design criteria for embedded systems,
such as reliability, maintainability and cost e�ective-
ness, real-time embedded systems must provide timely
services. That is, the functional behavior of these sys-
tems must be not only logically correct but also tem-
porally correct. We will show that performing hard-
ware/software partitioning at the con�guration level
allows us to e�ciently analyze the timing behavior
of a large number of implementations with respect to
the system timing speci�cations, and thus to explore
a wide range of design options.

In this paper, we present our approach to hard-



ware/software partitioning for real-time embedded
systems. We �rst discuss general issues related to par-
titioning at the con�guration level and the tools we are
using. In Section 3, we consider speci�c issues related
to partitioning for real-time embedded systems. Then,
in Section 4, we give a speci�c example to illustrate
the partitioning process. Finally, we summarize our
approach and point out future work.

2 Hardware/software partitioning at
the con�guration level

To select an optimal system con�guration, a
large design space must be explored during hard-
ware/software partitioning. In this section, we discuss
how modeling hardware/software components at the
con�guration level can help us achieve this goal. We
also discuss briey the design tools we are using.

2.1 Con�guration-level partitioning

We propose to perform hardware/software parti-
tioning at the con�guration level. At the con�gu-
ration level, hardware is modeled as resources and
software as tasks utilizing the resources. In particu-
lar, software is partitioned into tasks and each task
is represented by the amount of memory and esti-
mated number of instructions required to execute it
(resource requirements). The corresponding processor
model speci�es the available memory and time needed
to execute a single instruction (available resources).
Since an application-speci�c hardware component im-
plements speci�c system functions, it is modeled as a
resource that is used exclusively by the corresponding
functions.

By performing partitioning at the con�guration
level, we can study system architectural tradeo�s up-
front. Our observations and previous design experi-
ence indicate that the decisions made at the con�gu-
ration level are the primary determinant of the over-
all cost and performance of the �nal system. Auto-
matic hardware/software partitioning at the behav-
ioral level or lower [2, 3] can only examine a limited
design space in order to produce any results in a rea-
sonable amount of time. Con�guration-level partition-
ing, however, makes tradeo� studies more e�cient and
hence allows signi�cantly more design options to be
examined.

Of course, because detailed implementations are
not considered at the con�guration level, the accu-
racy of results is an issue. However, the same problem
also exists for lower-level partitioning; modeling at a

lower level depends heavily on the detailed speci�ca-
tion of the system to be designed, which may not be
available at the time of devising system con�gurations,
as pointed out in [5]. Many real-life design problems
are based on previous implementations. As a result,
reasonable modeling accuracy can be achieved by us-
ing past design data to develop software and hard-
ware models. Furthermore, by applying a hierarchi-
cal re�nement design methodology, we can treat the
con�guration-level partitioning results as an initial de-
sign, which will be re�ned by the behavioral and other
lower-level designs.

We approach the hardware/software partitioning
problem as follows. A system is speci�ed by a set of
time-critical functions and constraints associated with
each function, such as timing. These function evalua-
tions can be carried out either by executing software
tasks on processors or by dedicated hardware circuits.
There is a library of di�erent processors and hardware
components that can be used for such a purpose. Us-
ing available data or previous design knowledge, each
processor and hardware component is characterized by
several attributes, such as cost and power. Then, the
partitioning problem becomes that of selecting hard-
ware components and processors and assigning soft-
ware tasks to processors such that the resultant sys-
tem is optimized in terms of cost/performance, while
satisfying all the given constraints.

The number of possible solutions for a given sys-
tem can be enormous. To �nd a global optimal so-
lution, we need e�cient algorithms/tools to explore
the design space. We have made some modi�cations
to an existing tool, GOPS [4], to accomplish global
optimization.

2.2 Global Optimal Part Selection
(GOPS)

GOPS [4] is a con�guration-design tool for synthe-
sizing electronic systems. Given a set of functions to
implement, a library of parts that implement the func-
tions, a set of constraints that must be satis�ed, and a
set of attributes for evaluating solutions, GOPS �nds
the Pareto-optimal set of part-set solutions. Each part
set in the Pareto-optimal set implements all functions
and satis�es all constraints. For a part set S to be
included in the Pareto-optimal set, no other part set
may exist with all attribute values better than or equal
to that of S. Hence, the optimal design is guaranteed
to be in the Pareto-optimal set.

GOPS enumerates the Pareto-optimal set by per-
forming a multi-attribute branch-and-bound search of
possible function/part assignments. Constraints are
encoded in a constraint network [11], and after each



assignment in the search, the constraint network is
checked for violations. If a violation is identi�ed, the
search algorithm removes the most recent assignment
and tries another. Additional search-path pruning is
possible by identifying other yet-to-be-made assign-
ments that are either required or inferior [4].

A con�guration-design tool must support both one-
to-many mappings andmany-to-one mappings. A one-
to-many mapping describes how a function is imple-
mented by a set of parts or subfunctions. A GOPS
part may contain required functions, which are addi-
tional functions that must be implemented if the part
is chosen. By de�ning parts with required functions,
GOPS implements one-to-many mappings, which pro-
vides the means to hierarchically construct a design. A
many-to-one mapping, which is necessary when a sin-
gle component implements multiple functions, is also
supported by GOPS.

Using the function-part concept, hardware/soft-
ware partitioning becomes a problem of implementing
system functions with hardware and software \parts."
Several modi�cations to GOPS were required in or-
der to correctly model and e�ciently solve the hard-
ware/software partitioning problem. In Section 4, we
present an application example and discuss in detail
the use of GOPS for partitioning.

3 Hardware/software partitioning in
real-time embedded systems

The decision of whether functions of a real-time em-
bedded system should be implemented in hardware or
software is a typical tradeo� between cost and perfor-
mance. There are many performance measurements
associated with a real-time embedded system, such as
meeting timing requirements, satisfying communica-
tion constraints, and being reliable. In our initial at-
tempt, we have focused on timing requirements, since
timely service is an integral part of the functionality
of a real-time embedded system.

In a real-time system, the timing characteristics of
each time-critical function is generally speci�ed by a
triplet: (a; d; p), where a is the activation time (when
the function is ready to be evaluated), d is the deadline
(when the evaluation of the function should be com-
pleted), and p is the period (the time interval at which
the evaluation of the function should be repeated). If
a function is to be implemented in hardware, satis-
fying timing constraints does not present a problem
provided that the hardware circuit is designed accord-
ing to the timing speci�cation. On the other hand, a
function may also be implemented as a software task

executing on a processor. Since a processor gener-
ally needs to execute several tasks competing for its
resource, it is not always guaranteed that the tasks
will all �nish on time. Therefore, one major e�ort in
hardware/software partitioning for real-time systems
is to guarantee that the resultant partition satis�es
the timing requirements of every function.

To manage the execution of the tasks assigned to a
processor, a schedule is needed to prioritize tasks that
request execution simultaneously. A schedule is said
to be feasible if the timing requirements of all tasks
can be satis�ed. Feasibility of real-time systems has
been studied extensively (e.g., [9, 10]). However, most
of the previous research makes certain assumptions
regarding the values of a, d, or p in order to derive
closed-form formulas to predict feasibility. Adopting
these assumptions can be quite costly for certain ap-
plications [5]. To better predict the feasibility of a
general system, one may have to use an event-driven
simulator, such as TASSIM [5]. However, the event-
driven simulation approach can be rather time con-
suming, so directly incorporating TASSIM (or some
other simulator) into the partitioning process is im-
practical.

To address the feasibility problem in the con�gura-
tion-level design, we introduce a metric called feasibil-
ity factor, which indicates the possibility of a system
being feasible. It can be used as both a constraint and
an attribute. In this section, we describe the feasibility
factor and how it is used in GOPS. We also introduce
several other timing related attributes speci�cally for
evaluating real-time embedded systems.

3.1 Feasibility factor of a real-time sys-
tem

We �rst de�ne some notation. Let TRP be the
throughput rate of processor P measured in millions of
instructions per second (MIPS). For each time-critical
function Fi, there is a corresponding software task Ti.
Assume that Ti requires ci instructions when executed
on processor P . In addition, Ti has an activation time
ai, deadline di, and period pi (all in microseconds).
We de�ne TRT as the minimum throughput require-
ment in order for processor P to feasibly schedule all
the tasks assigned to it. Clearly, if TRP � TRT , the
tasks on processor P can all be feasibly scheduled.
Note that the value of TRT may vary depending on
the particular scheduling algorithm used [10].

As pointed out earlier, determining the precise
value of TRT for a general real-time system requires
simulation, which can be very time consuming. We
introduce two bounds for TRT : an upper bound TRU ,
and a lower bound TRL. The bounds are de�ned such



that if TRU � TRP , all the tasks on processor P are
de�nitely schedulable, and if TRL > TRP , the tasks
are de�nitely not schedulable. The actual throughput
requirement TRT , thus, satis�es TRL � TRT � TRU .

We de�ne the feasibility factor for processor P as

�P �

(
TRP�TRL

TRU�TRL
if TRP � TRL < TRU � TRL

1 otherwise.

It then follows that the task set on processor P is
feasible if �P = 1, and it is not feasible if �P < 0. For
0 � �P < 1, the larger the value of �P , the greater
the chance for the task set to be feasible. Hence, �P
indicates the possibility of processor P being able to
meet all the timing requirements of the tasks assigned
to it. It will become clear in the next subsection how
to use �P in hardware/software partitioning.

In the rest of this subsection, equations for TRU and
TRL are found based on the following assumptions: all
overhead for context swapping, task scheduling, etc.,
is zero; tasks do not need to synchronize with one
another; �nally, a task can be instantly preempted.
Let the total number of tasks on processor P be N .
The value of TRU can be derived based on the result
in [10]. Assuming that the rate-monotonic scheduling
algorithm is used [10], then

TRU = [N (2
1

N � 1)]�1
NX
i=1

ci
di � ai

: (1)

Alternatively, if the earliest deadline scheduling algo-
rithm is used [10], then

TRU =
NX
i=1

ci
di � ai

: (2)

Since the average throughput requirement of task
Ti is ci=pi, a straightforward lower bound can be de-
rived as

TRLs =
NX
i=1

ci
pi
: (3)

However, this bound is quite loose for task sets with
either ai 6= 0 or di 6= pi. In the following, we give
two lemmas that will be used to obtain a tighter lower
bound. In the two lemmas, ki and hi are the min-
imum number of times task Ti needs to execute be-
tween [ai; dn] and [an; dn], respectively. (The proofs
are omitted due to the page limit.)

Lemma 1 For n tasks that are arranged in the as-
cending order of their deadlines, processor P cannot
feasibly schedule them if

nX
i=1

ki � ci
dn � ai

> TRP ;

where

ki �

�
d(dn � ai)=pie if b(dn � ai)=pic � pi + di � dn
b(dn � ai)=pic otherwise.

Lemma 2 For n tasks that are arranged in the as-
cending order of their deadlines, processor P cannot
feasibly schedule them if

nX
i=1

hi � ci
dn � an

> TRP ;

where ki is the same as that de�ned in Lemma 1, and

hi �

�
ki � dan�ai

pi
e if ai < an

ki otherwise.

The following theorem which de�nes the lower
bound of a general real-time system can be proven
based on the above two lemmas.

Theorem 1 Let the N tasks on processor P be ar-
ranged in the ascending order of their deadlines.
Then, TRL can be calculated as follows:

TRL =
N

max
n=1

(
nX
i=1

ki � ci
dn � ai

;

nX
i=1

hi � ci
dn � an

)

where ki and hi are as de�ned in Lemma 1 and 2.

Given the throughput rate of a processor and the set of
tasks to be executed, the feasibility factor can be easily
calculated. It can then be used as both a constraint
and an attribute in GOPS to control the optimization
process. We will discuss this in the next subsection.

3.2 Real-time system attributes for de-
sign evaluation

The most important timing requirement of a real-
time system is to make sure that all time-critical func-
tions can be completed on or before their deadlines.
To verify whether a con�guration satis�es such timing
constraints, GOPS can compare the upper bound of
the total throughput requirement, TRU , imposed by
the tasks assigned to a processor with the throughput
rate of the processor, TRP . However, since TRU can
be signi�cantly larger than what is actually needed
(TRT ), this approach tends to choose more costly
hardware/software partitions.

We propose to use feasibility factor as both a con-
straint and an attribute in GOPS for handling the fea-
sibility problem. In the constraint case, GOPS elim-
inates those solutions that result in a negative fea-
sibility factor, since only solutions with �P � 0 are



possibly feasible. Furthermore, GOPS uses feasibil-
ity factor as one of several attributes to generate the
Pareto-optimal set of hardware/software partitions. It
has been pointed out earlier that a larger feasibility
factor indicates a higher probability of the implemen-
tation being feasible. Hence, for a partition to be in-
cluded in the Pareto-optimal set, one of its attributes,
e.g., cost or feasibility factor, must be superior. Once
GOPS completes, the solutions with �P < 1 in the
Pareto-optimal set need to be checked by TASSIM to
verify their schedulability. The optimal feasible design
can then be identi�ed.

Other timing-related attributes may also be in-
cluded for evaluating the performance of real-time em-
bedded systems. An important property of an embed-
ded system is its expandability. To limit costs, much
of the hardware and software of an embedded system
must be reusable through several design cycles and ac-
commodate increasingly demanding functionality over
the life of the design. Therefore, a designer may be
willing to tradeo� cost for expandability in a particu-
lar design. To model the expandability of a real-time
system, we introduce an attribute called critical excess
MIPS, �c. It is de�ned as �c � TRP � TRL. Clearly,
the value of �c is an estimate of the amount of peak
execution power that a processor has after meeting the
timing constraints of the current task speci�cations. A
larger �c will allow the current tasks to be expanded,
i.e., to increase their execution requirements, and still
be feasible. It may also allow the system to handle
new time-critical tasks.

In addition to processing time-critical functions, a
real-time embedded system may also need to han-
dle certain non-time-critical functions. Compared to
time-critical functions, these functions do not have
hard deadlines, but may require a fast average re-
sponse time. When executing both time-critical and
non-time-critical software tasks, a scheduling algo-
rithm such as the one in [8] can be used. From the
view of hardware/software partitioning, the existence
of non-time-critical tasks can be treated as extra de-
mand on a processor's average throughput. Hence,
we introduce another attribute, called average excess
MIPS, �a. It is de�ned as �a � TRP �

PN

i=1 ci=pi,
where ci and pi are parameters of time-critical tasks.
The average excess MIPS tells the designer the ex-
act amount of execution power that the processor has
for processing non-time-critical tasks. Depending on
the particular system, the designer may be willing to
tradeo� cost with average excess MIPS in order to be
able to e�ectively handle more non-time-critical tasks.

In a single processor system, the above three at-
tributes can simply be calculated based on the pro-

Name i di pi ai

DigitalFilter1 (DF1) 1 46.00 104.17 0.00
DigitalFilter2 (DF2) 2 10000.00 10000.00 9895.83
DecodeSPUB (DSB) 3 83.00 208.33 0.00
DecodeSPUA (DSA) 4 138.00 208.33 83.00
ReadCAM (RC) 5 416.67 10000.00 0.00
ServiceRoutine (SR) 6 208.33 416.67 0.00
FuelCalc (FC) 7 1333.33 2500.00 833.33
SparkCalc (SC) 8 2500.00 2500.00 1666.67
ReadMAP (RM) 9 312.50 416.67 0.00
CPU - - - -

Table 1: Primary set of functions to be implemented.
Deadline (di), period (pi), and activation time (ai) are
all in units of microseconds.

cessor selected and tasks assigned to it. The process
becomes more complicated for multiple-processor sys-
tems, since each processor has its own feasibility fac-
tor, critical excess MIPS, and average excess MIPS.
For feasibility factors, the minimum one among all
processors indicates the possibility of the overall sys-
tem being feasible. Thus, we only need to use the
minimum feasibility factor as the system feasibility
attribute (denoted by �) in the optimization process.
For both excess-MIPS attributes, the summation of
the excess MIPS of each processor is of particular in-
terest since it is an indication of the overall system's
capability.

4 Application example

In this section we provide an application example:
nine time-critical functions must be implemented in a
single processor system, and the system will be evalu-
ated based on component cost, feasibility factor, and
critical excess MIPS. For simplicity, we have assumed
that communication between hardware components in
the resultant system is carried out through a zero-
delay shared memory area. We will discuss this sim-
pli�cation in the next section.

4.1 Problem formulation

Function and part speci�cations for GOPS are sum-
marized in Table 1-3. Table 1 describes the functions
to be implemented, where the data for the time-critical
functions are speci�ed by control-systems engineers
[5]. Note that in addition to the time-critical func-
tions, function CPU is also included, which indicates
that only implementations containing a single proces-
sor need to be examined.



Name Function Instructions RAM ROM

Implemented Executed Req'd Req'd

DF1-S DF1 64 100 100
DF2-S DF2 32 100 100
DSB-S DSB 30 200 300
DSA-S DSA 30 200 300
RC-S RC 30 100 100
SR-S SR 20 200 200
FC-S FC 480 500 400
SC-S SC 100 400 300
RM-S RM 40 100 100

Table 2: Software parts to implement functions. The
required RAM and ROM are measured in bytes.

All the time-critical functions have associated soft-
ware parts, which are described in Table 2. Each soft-
ware part is characterized by the number of instruc-
tions executed and the amount of RAM and ROM re-
quired to implement the part. Since the total amount
of RAM and ROM needed for the system depends
on the hardware/software partition, RAM and ROM
are required functions (see Section 2.2) of the soft-
ware parts: only after a software part is chosen for a
part set do the amounts of RAM and ROM needed by
the part become functions to implement. For this ex-
ample, we assume the software characterization given
in Table 2 is valid for every processor. A task's re-
quired memory and instructions generally vary from
one instruction set to the next, and in such cases this
assumption is not valid. The general case can be sup-
ported by de�ning software parts for each instruction
set, and de�ning constraints so that parts can only be
assigned to appropriate processors.

Although all functions may be implemented in
software, functions one through four may also be
implemented in hardware. Table 3 lists some of
the hardware parts available for this system. The
parts include: microcontrollers (MC), processors (P),
application-speci�c components (ASIC), standard pe-
ripherals (PIO), RAM, and ROM. For example, three
derivatives of microcontroller four (MC4a-H, MC4b-
H, MC4c-H) are available, and MC4a-H has 2K bytes
of RAM, fourteen timing channels (TC), and cus-
tom circuits to implement functions one through four.
Note that most of the parts in the table are multifunc-
tion parts. In addition to the parts given in Table 3,
�fteen other parts were available, but were not con-
tained in any of the Pareto-optimal solutions.

In addition to software and hardware parts, trans-
formation parts, which describe how a function can
be implemented by another function, are also required.
For instance, a timing channel, which is a standard in-

Name Functions Cost MIPS

Implemented

MC1-H CPU, RAM(2K), ROM(2K), 3.50 1.30
DF1,DF2,DSB,DSA

MC2-H CPU, RAM(2K), ROM(2K), 3.25 1.50
TC(32)

MC3a-H CPU, RAM(4K), TC(16) 5.25 2.50
MC3b-H CPU, RAM(4K), DF1,DF2, 6.25 2.50

DSB,DSA
MC4a-H CPU, RAM(2K), DF1, DF2, 3.75 1.70

DSB, DSA, TC(14)
MC4b-H CPU, RAM(2K), DF1, DF2, 3.25 1.35

DSB, DSA, TC(14)
MC4c-H CPU, RAM(2K),TC(16) 2.50 1.70
P1-H CPU, RAM(2K), ROM(2K) 2.00 1.43
P2-H CPU 13.00 13.50
ASIC1-H DF1,DF2,DSB,DSA 2.50 -
PIO1-H TC(16) 1.00 -
RAM1-H RAM(2K) 2.00 -
ROM1-H ROM(2K) 1.00 -

Table 3: Hardware parts to implement functions.

put/output device provided by most microcontrollers,
is a function that can be used to implement functions
one or two (DF1 or DF2). In order for GOPS to
implement DF1 or DF2 with a timing channel, two
transformation parts, DF1toTC and DF2toTC, were
included in the part library. The two parts have TC
as a required function and incur zero cost.

As stated above, functions one through four can
be directly implemented in hardware. This is accom-
plished using application-speci�c VLSI designs. If a
hardware design for a function does not exist yet, but
implementation of such a design may be desirable,
then an estimate of the design's cost and performance
is used to de�ne a proposed hardware part, which is
considered by GOPS during the con�guration-design
process.

The only constraint used for this problem is that
the feasibility factor of a part set must be greater than
or equal to zero. For most real problems, additional
constraints would be required to guarantee interoper-
ability of the hardware parts chosen to implement the
design. For example, connection of an Intel processor
to a Motorola peripheral device may not be possible,
because of di�erent bus interface models. However,
additional constraints will reduce the di�culty of solv-
ing the example problem using GOPS, since there will
be fewer feasible solutions.

4.2 Solving the problem

As GOPS executes, it enumerates all Pareto-
optimal solutions. First GOPS �nds an initial imple-



mentation for the functions given in Table 1. We have
modi�ed GOPS so that once the initial implementa-
tion is found, it implements any required functions
before investigating other solutions for the functions
in Table 1. This allows the modi�ed GOPS to imme-
diately identify a complete solution, and as a result, to
quickly enable branch-and-bound checks to minimize
the amount of search required. In this application,
the required functions may include various amounts
of RAM, ROM, and timing channels.

Table 4 gives the twelve Pareto-optimal solutions
for this problem. As an example, consider solution
one. The �rst two parts in the part set are transfor-
mation parts, indicating that both DF1 and DF2 are
implemented as timing channels. The next two parts,
DSB-S and DSA-S, are software parts, indicating that
DSB and DSA are implemented as software. Note that
all part set solutions implement RM, SC, FC, SR, and
RC as software. The next part, P1-H, is a processor
providing enough RAM, ROM, and MIPS to support
the software parts. The last part is PIO1-H, a periph-
eral I/O device that contains sixteen timing channels.
Therefore, DF1 and DF2 are implemented as timing
channels on PIO1-H.

The �rst �ve solutions in Table 4 have feasibility
factors less than one, and thus, may or may not be
feasible. Checking these �ve solutions with TASSIM
indicates that all but solution one are feasible. Af-
ter removing solution one from consideration, it may
be possible to directly identify the best design using
only the attribute information in the table, since the
Pareto-optimal set is small and the attribute values
of the solutions are well distributed. In other situa-
tions, to obtain the most promising solutions for cer-
tain given criteria, detailed analysis is required.

5 Summary and discussion

In this paper, we motivated the need for hard-
ware/software partitioning at the con�guration level.
Investigation of speci�c issues related to the design
of real-time embedded systems identi�ed several at-
tributes for evaluating such systems, including feasi-
bility factor and critical excess MIPS. The feasibility
factor provides an e�ective means to identify infeasi-
ble, potentially feasible, and feasible designs without
having to perform time-consuming simulations. The
feasibility factor can be used as a constraint for elimi-
nating infeasible partitions and as an attribute for ef-
�ciently evaluating real-time systems modeled at the
con�guration level. Finally, we presented the formu-
lation and solution of an example problem.

One limitation of our work to date is the assump-
tion that all communication is performed through a
zero-delay shared memory area. Although our ap-
proach is suitable for creating single-processor, tightly-
coupled dual-processor, and loosely-coupled dual-
processor systems, the communication delays between
functions can be signi�cant in determining the per-
formance and feasibility of these systems. However,
extending our communication model does not present
any major di�culties, and we are currently working
on this.

Another limitation relates to design complexity.
For example, in dual-processor systems, partition-
ing functions between processors must be considered
in addition to hardware/software partitioning and
hardware-component selection. Our experience with
such systems indicates that generating the Pareto-
optimal set of solutions is not practical in a signi�cant
number of cases. Furthermore, the Pareto-optimal
set also grows as more and more attributes are in-
troduced to evaluate system performance (e.g., aver-
age excess MIPS, excess memory, power and area). In
these cases, straightforward enumeration of all solu-
tions in the Pareto-optimal set is prohibitive.

Our approach to solving this problem is to view
the design process as a decision problem [1, 6, 13]. De-
signer preferences are speci�ed by evaluating a random
sample of design alternatives. In specifying the prefer-
ences, the designer is forced to make tradeo�s among
the attributes used to evaluate the designs. The pref-
erences e�ectively create an objective function that is
used during the design process. Instead of generating
the entire Pareto-optimal set of solutions, a small sub-
set, which contains preferred solutions, is produced.

For instance, a designer can tradeo� his/her will-
ingness to spend time evaluating solutions against the
cost/performance of the design. The feasibility factor
can be used as an indicator of the amount of eval-
uation and iteration required by the design process.
If cost/performance is valued over design time, then
GOPS tends to select those designs with low feasibil-
ity factors (� < 1). Such designs must be evaluated
using TASSIM to identify the feasible ones. It is also
possible that none of the designs found will be feasible,
and GOPS iterations will be required. In contrast, if
design time is valued over cost/performance, THEN
the set of designs identi�ed by GOPS will most likely
all be feasible, thus minimizing TASSIM evaluations
and GOPS iterations.

We have tested this approach for a few cases, and
the results are quite encouraging. We plan to continue
investigating this decision theoretic approach in the
future.



Number Part Set Cost Feasibility Critical Excess
Factor (�) MIPS (�c)

1 DF1toTC, DF2toTC, DSB-S, DSA-S, 3.00 0.013 0.011
P1-H, PIO1-H

2 DF1toTC, DF2toTC, DSB-S, DSA-S, 3.25 0.094 0.081
MC2-H

3 MC1-H 3.50 0.706 0.183
4 DF1toTC, DF2toTC, DSB-S, DSA-S, 3.50 0.325 0.281

MC4c-H, ROM1-H
5 MC4b-H, ROM1-H 4.25 0.899 0.233
6 P1-H, ASIC1-H 4.50 1.000 0.313
7 MC4a-H, ROM1-H 4.75 1.000 0.583
8 DF1toTC, DF2toTC, DSB-S, DSA-S, 6.25 1.000 1.081

MC3a-H, ROM1-H
9 MC3b-H, ROM1-H 7.25 1.000 1.383
10 DF1-S, DF2-S, DSB-S, DSA-S, 16.00 1.000 11.460

P2-H, RAM1-H, ROM1-H
11 DF1toTC, DF2toTC, DSB-S, DSA-S, 17.00 1.000 12.080

P2-H, PIO1-H, RAM1-H, ROM1-H
12 P2-H, ASIC1-H, RAM1-H, ROM1-H 18.50 1.000 12.380

Table 4: Pareto-optimal set of solution. Note that all parts sets also include: RM-S,SC-S, FC-S, SR-S, RC-S.

References

[1] W.P Birmingham, J.G. D'Ambrosio, T. Darr, and
E. Durfee, \Coordinating Decision Making in Large
Organizations," University of Michigan Technical Re-
port, CSE-TR-208-94, April 1994.

[2] R. Ernst, J. Henkel, and Th. Benner, \Hardware-
software cosynthesis for microcontrollers," IEEE De-
sign & Test of Computers, vol.10, no.4, December
1993, pp.64{75.

[3] G.K. Gupta and G. De Micheli, \Hardware-software
cosynthesis for digital systems," IEEE Design & Test
of Computers, vol.10, no.3, September 1993, pp.29{
40.

[4] M.S. Haworth and W.P. Birmingham, \Towards opti-
mal system-level design," Proceedings of 30th Design
Automation Conference, June 1993, pp.434{438.

[5] X. Hu, J.G. D'Ambrosio, B.T. Murray, and D-L.
Tang, \Analysis in hardware/software codesign: an
automotive case study," Accepted for publication in
IEEE MICRO, August 1994.

[6] R.L. Keeney and H. Rai�a, Decisions with Multiple
Objectives: Preferences and Value Tradeo�s, John
Wiley & Sons, New York, 1976.

[7] S. Kumar, J.H. Aylor, B.W. Johnson, and W.A. Wulf,
\Exploring hardware/software abstractions & alter-

natives for codesign," The 2nd International Work-
shop on Hardware/Software Codesign, Cambridge,
Massachusetts, October 1993.

[8] J. P. Lehoczky and S. Ramos-Thuel, \An optimal al-
gorithm for scheduling soft-aperiodic tasks in �xed-
priority preemptive systems," Proceedings of Read-
Time Systems Symposium, December 1992, pp.110{
123.

[9] J. Y-T Leung and J. Whitehead, \On the complex-
ity of �xed-priority scheduling of periodic, real-time
tasks," Performance Evaluation, vol.2, 1982, pp.237{
250.

[10] C. L. Liu and J. W. Layland, \Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment," Journal of the Association for Computing Ma-
chinery, vol.20, no.1, 1973, pp.46{61.

[11] A.K. Mackworth, \Constraint satisfaction," In S.C.
Shapiro, editor, Encyclopedia of Arti�cial Intelli-
gence, John Wiley & Sons, New York, 1987.

[12] D.E. Thomas, J.K. Adams, and H.Schmitt, \A model
and methodology for hardware-software codesign,"
IEEE Design & Test of Computers, vol.10, no.3,
September 1993, pp.6{15.

[13] D.L. Thurston, \A Formal method for subjective de-
sign evaluation with multiple attributes," Research in
Engineering Design, vol.3, 1991, pp.105{122.


