
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is
given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. DAC 97, Anaheim, California ©1997 ACM 0-89791-920-3/97/06..$3.50.

PREDICTING TIMING BEHAVIOR IN ARCHITECTURAL DESIGN
EXPLORATION OF REAL-TIME EMBEDDED SYSTEMS

Rajeshkumar S. Sambandam* Xiaobo (Sharon) Hu†

* Currently with Level One Communications, Inc., Sacramento, CA 95827, USA. Work done at Department of Electrical and Computer Engineering, Western
Michigan University, Kalamazoo, MI 49008, USA.
† Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. Research supported in part by Hewlett Packard Labora-
tories, Bristol, England and by NSF grant number MIP-9612298.

Abstract

The degree of flexibility of a real-time system architec-
ture indicates the capability of the system to tolerate perturba-
tions in timing related specifications. Flexibility is also an im-
portant factor in the trade-off studies between cost and perform-
ance. In this paper, we identify the need for a flexibility metric
and show that the existing real-time analysis results cannot be
directly used as such a metric. We formulate new metrics and
illustrate their effectiveness in comparing the flexibility of dif-
ferent system architectures.

1 Introduction

Embedded systems encompass a variety of hardware
and software components which perform specific functions in
host systems. Many embedded systems must respond to external
events under certain timing constraints. Failure to respond to
certain events on time may either seriously degrade system per-
formance or even result in a catastrophe. Such systems are re-
ferred to as real-time embedded systems (RTES) and can be
found in many applications, such as engine and transmission
control of automobiles, navigation and landing control of air-
craft, and communication networks.

 In the design of a RTES, decisions made at the archi-
tectural design phase greatly affect the final implementation and
performance of the system [1,4,6]. A system designer has to
overcome a number of challenges at this phase. For instance, the
details of a system specification are not fully specified. Even if it
is fully specified, it is often the case that the specification will be
altered from the time of the first formulation of the system re-
quirements to the time of the final implementation of the system.
Furthermore, information on software tasks (e.g., execution time
and memory requirement) and hardware components (e.g.,
power consumption and chip area) is quite often based on some
kind of estimates. Many of these uncertainty factors have an
impact on the timing behavior of the RTES.

We introduce flexibility to indicate how well a particu-
lar system architecture can tolerate such perturbations with re-
spect to (w.r.t.) satisfying real-time requirements. Given degrees
of flexibility, one may compare and rank different implementa-
tions. A system with a higher degree of flexibility is more desir-
able. Flexibility measure can also facilitate trade-off studies
between cost and timing behavior.

Study of flexibility is closely related to timing analysis
or feasibility analysis of RTES. At the system architectural level,
each software task (τi) is associated with the following parame-
ters: computation time (ci), deadline (di), period (pi), activation
or initial request time (ai) [4,12]. The goal of timing analysis is
to check if every request of each task meets its deadline. The
timing behavior of a RTES depends on the task allocation
scheme, scheduling scheme and scheduling algorithm. In our
following discussion, we assume static task allocation, pre-

emptive scheme and rate monotonic (RM) algorithm due to their
respective advantages [2,3,8,9,11] and wide usage. Given the
above, one approach to predict feasibility is to simulate the sys-
tem execution for a given schedule. However, the simulation
approach can be computationally expensive [7]. It has been
shown that predicting the timing performance of a general task
system is an NP-complete problem [10].

Another approach to feasibility analysis is based on the
widely used rate-monotonic analysis (RMA) techniques
[9,11,12]. A recent result by Yen and Wolf [12] extends the
fixed priority scheduling theory to include data dependencies in
the worst-case analysis. Their algorithms are based on heuristic
techniques. All these techniques are based on pessimistic as-
sumptions and intend to provide a yes or no answer to the ques-
tion of if a system meets its timing requirements. No study has
been done to evaluate if they can be employed to predict the
flexibility of a system.

In this paper, we explore various potential metrics for
flexibility. We will show that some intuitive measures may not
be effective and will present more effective measures.

2 Experimental Set-up for Comparing Potential Metrics

In order to perform a fair study on potential metrics for
measuring flexibility w.r.t. timing requirements, we used both
real-world systems and systems composed of randomly gener-
ated tasks (RGT) instead of hand-crafted toy systems.

The real-world systems we used is based on the ex-
ample presented in [5] which is a RTES implementing a subset
of an engine control module. Since our concern is only on the
timing details, we directly use the workload specifications given
in [5] for our study. There are a total of nine tasks, all independ-
ent of each other, to be implemented either in hardware or soft-
ware. In order to construct a reasonable set of data points we
assume that there are various architectural designs (up to 29) that
contain different combinations of the nine tasks. For this pur-
pose, we also consider a processor which can offer a varying
MIPS rate for the execution of the software tasks.

An example embedded computer system such as the
one described in [5] may not capture all timing characteristics of
real time systems. For instance, in that system, the period and
deadline of some of the tasks are integral multiples of each other
[5]. Clearly, the timing behavior could be much different if the
numbers are relatively prime. Hence, the results we obtain for
this system could be a biased one.

In order to ensure a fair comparison, it is imperative to
perform timing studies on RGT systems. To compose an RGT
system, we need to generate the parameters such as period (pi),
deadline (di) , activation (ai) and computation time (ci) for each
task (τi). The ranges for period and computation time were cho-
sen so as to obtain a reasonably good number of fairly uniformly
distributed values for the various metrics to be introduced in the

next section. In our study the ranges were [10,8500] and [2,950]
respectively. Another limitation on the upper limit of periods is
the fact that having a higher value would lead to unnecessarily
long validation time. Clearly, the deadline for any meaningful
system should be greater than their corresponding sum of com-
putation time and activation. Also, since we do not consider
systems with deadline greater than the period, the range of the
deadline is determined for each task individually. That is, for
task τi, di is a random number within [ci, pi]. By fixing the above
ranges, we can form a valid range for activation as [0, di-ci].

The analytical methods we describe in the next section
estimates the feasibility of a real-time system. In order to com-
pare the effectiveness of each method, we developed an
SES/Workbench1 model to perform event-driven simulation of
the engine control system and RGT systems. The simulation
time for a task set containing n tasks is amax + 2P, where P =
LCM(p1,p2,...pn) and amax = MAX(a1,a2,...an). As already pointed
out, the analysis we are interested in are primarily used during
the initial system design evaluation stage and hence details on
overhead due to context switching, task scheduling and pre-
emption may not be available. We thus neglect these overhead in
our model as well as in our analysis. Note that ignoring these
overheads should not greatly affect the relative effectiveness of
potential flexibility metrics.

3 Study of Potential Flexibility Metrics

If we knew the precise amount of processing power
(such as in terms of average clocks per instruction or MIPS)
required to feasibly schedule all tasks and the actual processing
power of the given processor, we would be able to deduce its
flexibility with respect to the timing requirements. We define ρ
as the ratio of the required processing power to the processing
power of processor P. Then, ρ can be considered as a flexibility
metric. However, as we have pointed out previously, finding the
exact required processing power is a computationally inhibiting
job. Hence, we need to investigate other possibilities of estimat-
ing the flexibility of a system.

3.1 Upper Bound Based Approach

One of the frequently used methods to determine fea-
sibility is via an upper bound on the processor utilization. We
would like to investigate if this is an appropriate metric for
measuring flexibility. Liu and Layland [11] proved that for di =
pi and under the worst case phasing (i.e., ai = 0 for all i), feasi-
bility is guaranteed if (1) is true. In some practical systems such

U=
ci

pi
i

n
n n

=
∑ ≤ −

1
2

1

1() (1)

as the one mentioned in Section 2, where di ≠ pi, or ai ≠ 0 for
some τi's, (1) is no longer a valid upper bound. A simple modifi-
cation gives the following worst case feasibility prediction for-
mula.

 U

c
i

d
i

a
ii

n
n n=

−=
∑ ≤ −

1

2

1

1() (2)

The inequality given in (2) suggests that an upper bound on ρ

1Product of Scientific and Engineering Software, Inc., Texas, Austin.

can be obtained as

ρ
u

n n ci

di ai
i

n
= −

−

−=
∑





















2

1

1

1

1
(3)

Now, ρu may be considered as a flexibility metric
provided that a smaller value of ρu indicates a higher possibility
of a system being feasible. Clearly, a system is feasible if ρu ≤
1. Careful study is needed when ρu > 1. We examine the timing
behavior for systems with ρu > 1 as follows. Given the example
task systems and more than a thousand RGT systems, we com-
pute ρu for each system and then simulate to determine its fea-
sibility. Figure 1 depicts the results of such an approach. The
percentage feasible systems over a given range indicate the ratio
of the actual number of systems feasible to the total number of
systems whose ρu values fell in that range.

0

20

40

60

80

100

1

1.
2

1.
4

1.
6

1.
8 2

2.
2

2.
4

2.
6

2.
8 3

Upper Bound

%
 F

ea
si

bl
e

S
ys

te
m

s

Eng ine Con trol

S ys tem

RGT S ys tems

Figure 1. Graph showing the likely-hood of systems being fea-
sible when ρu is used as a predictor.

From Figure 1, it is not difficult to note that even for
an upper bound value of around 2, close to 80% of the systems
are actually feasible. This shows the over-estimation of the
schedulability of the tasks when we use the pessimistic predic-
tion approach for determining the feasibility. Another interesting
yet somewhat counter-intuitive fact is that there are ample num-
ber of cases where systems with higher values of ρu are more
likely to be feasible than systems with lower values of ρu. This
indicates that ρu as defined in (3) is not an appropriate measure
for flexibility. That is, by simply computing ρu's of two systems,
one cannot decide if one system is more flexible (or more likely
to be feasible) than the other.

3.2 A Loose Lower Bound Based Approach

The inferences on the results based on the upper bound
based techniques suggest that we may investigate its counter-
part, the lower bound based approach. It is well known that a
task set is definitely infeasible if the average processor utiliza-
tion is greater than 1. This can be used to impose a lower bound
on ρ. That is,

ρ
l ci

pi
i

n1

1
=

=
∑ (4)

Consequently, if ρl
1> 1, the system is infeasible. We would like

to see whether the value of ρl
1 in the range [0,1] can indicate the

flexibility of a system. The same analysis as for ρu was carried

out and the results are summarized in Figure 2 (loose bound).
An immediate observation is that this graph shows better mono-
tonicity than that of ρu given in (3) though a peak is noticed for
the RGT systems. Hence one may consider ρl

1 defined in (4) as a
potential candidate for predicting flexibility.

A significant drawback of using ρl
1 as a metric is that

the percentage feasible systems drops quickly as the value of ρl
1

increases. This means that when we have a system with rela-
tively low ρl

1 (say 0.5), it is not clear whether it is worthwhile to
investigate such system configuration further. In addition, using
ρl

1 as the only timing analysis parameter may fail to detect cer-
tain obviously infeasible systems. For example consider the
three task system shown in Table 1. The value of ρl

1 for this
system is 46.7% which suggests that this system could be feasi-
ble. However, it is easy to find from the timing parameters that
the third task would never meet its deadline since the minimum
time it has to wait for higher priority tasks is 7 and hence the
system is infeasible.

 Table 1. A sample system.

 3.3 A Tight Lower Bound Based Approach

We have seen that in (4) ρl
1 is close to being an appro-

priate candidate. In [4], a tighter lower bound on ρ was given,
but no sufficient data were provided to illustrate the effective-
ness of this bound. We will give a slightly modified lower bound
calculation and study its behavior with respect to timing predic-
tion. Consider a task set of n tasks. For the first execution re-
quest of τi, any task requests that have deadlines preceding di

must be completed before di. Thus the total computation re-
quirement between [0, di] includes at least satisfying all these
task requests. We state the following lemmas that can be used to
calculate the number of task requests in intervals [aj,di] for dj ≤
di and [ai,di].

Lemma 1 For i tasks that are arranged in the ascending order of
their deadlines, define

   
 

k j

di a j p j if di a j p j p j d j di

di a j p j otherwise

≡

− − + ≤

−







() / () / .

() /

then the i tasks cannot be feasibly scheduled if

k j c j

di aj

i .

min−
>

=
∑ 1

1
 where a

j i
a jmin min=

≤ ≤1

Lemma 2 For i tasks that are arranged in the ascending order of
their deadlines, let kj be the same as that defined in Lemma 1.
Define

h j

k j

ai a j

p j

if a j ai

k j o therw ise

=
−

−
<



















.

Then, the i tasks cannot be feasibly scheduled if
hj c j

di ai
j

i .

−
>

=
∑ 1

1

The above lemmas can be readily proved by noting that kj and hj

are the minimum number of times τj needs to execute between
[aj,di] and [ai,di] respectively. Based on these lemmas, we can
now define a tighter lower bound as given below.

ρ
l

i

n k j c j

di a j
j

i h j c j

di ai
j

i
2

1 1 1
=

= −=
∑

−=
∑









max
.

,
.

(5)

To investigate the effect of ρl
2, as given in (5), similar

analysis as those in sub-section 3.1 was performed. Figure 2
(tight bound) depicts the results. Clearly, the graph is monotonic

Figure 2. Graph showing the likely-hood of systems being fea-
sible when ρl

1 and ρl
2 are used as a predictor.

and hence (5) can be used as a flexibility metric. It is interesting
to note that the percentage feasible systems is quite high even
when ρl

2 is relatively large (e.g. 0.5). Thus, ρl
2 is a quite reliable

predictor for feasibility.

Though using ρl
2 can be an effective means to study

potential design candidates in the architectural design explora-
tion of real time systems, this analytical technique may become
computationally intensive when the number of tasks grow larger.
It would be desirable to have a metric that is less computation-
ally involved.

3.4 A Feasibility-Factor Based Approach

In [4], the authors introduced a feasibility measure
called feasibility factor based on the upper and lower bounds of
throughput requirements. We would like to generalize the defi-
nition of feasibility factor and study its behavior. We define the
feasibility factor as

λ
ρ

ρ ρ
≡

−

−

1
l

u l if ρu ≠ ρl (6)

Notice if ρu = ρl, we have a precise prediction of ρ. A set of
tasks allocated on a processor are feasible if λ ≥ 1 and they are

ai pi ci di

0 10 4 6
0 30 3 10
0 120 8 14

0

10

20

30

40

50

60

70

80

90

100

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Lower Bound

%
 F

ea
si

bl
e

S
ys

te
m

s
Engine Control
System (loose bound)
RGT Systems (loose
bound)
Engine Control
System (tight bound)
RGT Systems (tight
bound)

not feasible if λ < 0. For 0 ≤ λ < 1, the feasibility of the system
cannot be predicted solely based on λ and needs to be carefully
analyzed.

To examine the behavior of λ, we performed a similar
analysis that was done for previous metrics. Since λ can be com-
puted based on any given formula for ρl and ρu, we obtained
different λ values by using ρl

1 and ρl
2. They are summarized in

Figure 3. Notice that this metric is monotonic for both ρl
1 and ρl

2

based calculations. Using our previous reasoning, λ is a reliable
predictor for feasibility. Furthermore, it can be considered as an
estimate of critical excess requirement ratio. Instead of using 1−
ρl directly, the value of 1−ρl is scaled by (ρu − ρl). Such a scal-
ing gives better estimation since it includes the effect of ρu.
Therefore, we can use λ directly to measure the flexibility of a
system architecture. A larger value of λ indicates that the system
is relatively more feasible. Note that when ρl

2 is used, the likely-
hood of the system being feasible is higher, compared with the
case based on ρl

2. Of course, the computational needs for the one
based on ρl

2 is larger. Nevertheless, it is up to the discretion of
the system designer to choose either of these methods, since both
of them exhibit suitable characteristics.

0

10

20

30

40

50

60

70

80

90

100

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Feasibility Factor

%
 F

ea
si

bl
e

S
ys

te
m

s

RGT S ys tems (tigh t lowe r bound)

RGT S ys tems (loo s e lowe r bound)

Eng ine Con trol S ys tem (tigh t lowe r

bound)

Eng ine Con trol S ys tem (loos e lowe r

bound)

Figure 3. Graph showing the likely-hood of systems being fea-
sible when λ is used as a predictor.

4 Summary and Discussion

In this paper, we motivated the need for a flexibility
metric for the efficient analysis of potential design candidates in
the architectural design exploration of real time embedded sys-
tems. We identified the shortcomings of certain metrics for
measuring the flexibility of a real time system. We proposed two
modified approaches to overcome these shortcomings. Our
analysis can be used both as a constraint as well as an attribute
in hardware/software partitioning of real time systems [4]. In the
constraint case, we eliminate the infeasible solutions. In the at-
tribute case, we can efficiently evaluate systems modeled and
study trade-offs between flexibility and other attributes (e.g.,
cost and power consumption).

We have seen that ρl
2 and λ are quite reliable predic-

tors for feasibility. Let us define critical excess requirement ratio
as ρc=1-ρl

2. The value of ρc provides an estimate of the addi-
tional load the processor could handle after meeting the current

task specifications. In the case of λ, the value of 1- ρl is scaled
by ρu- ρl. Such a scaling gives better estimation since it in-
cludes the effect of ρu. The critical excess requirement ratio is
useful in comparing systems which are guaranteed to be feasible
since it reflects the amount of processing power yet available
after meeting the current requirements. We are currently study-
ing the capability of these potential metrics in reflecting the
changes in the event of a processor overload.

The limitation of this work is that we have considered
only uni-processor systems and assumed that the software tasks
running on the processor do not have any dependency. We in-
tend to expand our work to include these cases. In addition, it is
worthwhile to carry out more statistical analysis to obtain confi-
dence-interval related figures.

References
[1] K. Buchenrieder and C. Veith, "CODES: a practical concur-
rent design environment'', Handouts from International Work-
shop on Hardware-Software Codesign, October 1992.
[2] S. K. Dhall, and C. L. Liu, "On a real-time scheduling prob-
lem'', Operations Research, Vol. 26, No. 1, January, 1978, pp.
127-140.
[3] M. R. Garey, and D. S. Johnson, "Complexity results for
multiprocessor scheduling under resource constraints'', Society
for Industrial and Applied Mathematics Journal of Computing,
4, 1975.
[4] X. Hu and J.G. D'Ambrosio, "Configuration-level hard-
ware/software partitioning for real-time embedded systems'', to
appear in Journal of Design Automation for Embedded Systems.
[5] X. Hu, J.G. D'Ambrosio, B.T. Murray, and D. Tang,
"Codesign of Architectures for Automotive Powertrain Mod-
ules'', IEEE Micro, August 1994, pp. 17-25.
[6] S. Kumar, J.H. Aylor, B.W. Johnson and W.A. Wulf,
"Object-oriented techniques in hardware design'', Computer, vol.
27, no. 6, 1994, pp. 64-70.
[7] E. L. Lawler, and C. U. Martel, "Scheduling periodically
occurring tasks on multiple processors'', Information Processing
Letters, Vol. 12, No. 1, 1981, pp. 9-12.
[8] J. P. Lehoczky and S. Ramos-Thuel, "An optimal algorithm
for scheduling soft-aperiodic tasks in fixed-priority preemptive
systems'', Proceedings of Real-Time Systems Symposium, De-
cember 1992, pp. 110-123.
[9] J. Lehoczky, L. Sha, and Y. Ding, "The rate monotonic
scheduling algorithm: exact characterization and average case
behavior'', Proceedings of the 1989 IEEE Real-time System
Symposium, December 1989, pp. 166-171.
[10] J. Y-T Leung and J. Whitehead, "On the complexity of
fixed-priority scheduling of periodic, real-time tasks'', Perform-
ance Evaluation, vol.2, 1982, pp.237-250.
[11] C. L. Liu and J. W. Layland, "Scheduling algorithms for
multiprogramming in a hard real-time environment'', Journal of
the Association for Computing Machinery, vol. 20, no. 1, 1973,
pp. 46-61.
[12] T.-Y. Yen and W. Wolf, "Performance estimation for real-
time distributed embedded systems'', Proceedings of the Interna-
tional Conference on Computer Design (ICCD'95), October
1995, pp. 64-69.

