
Exploiting Dynamic Workload Variation in Low Energy
Preemptive Task Scheduling

Lap-Fai Leung, Chi-Ying Tsui1
Department of Electrical and Electronic Engineering

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong SAR, China

{eefai,eetsui}@ee.ust.hk

Xiaobo Sharon Hu2

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
shu@cse.nd.edu

Abstract

 A novel energy reduction strategy to maximally exploit the
dynamic workload variation is proposed for the offline voltage
scheduling of preemptive systems. The idea is to construct a
fully-preemptive schedule that leads to minimum energy
consumption when the tasks take on approximately the average
execution cycles yet still guarantees no deadline violation
during the worst-case scenario. End-time for each sub-instance
of the tasks obtained from the schedule is used for the on-line
dynamic voltage scaling (DVS) of the tasks. For the tasks that
normally require a small number of cycles but occasionally a
large number of cycles to complete, such a schedule provides
more opportunities for slack utilization and hence results in
larger energy saving. The concept is realized by formulating the
problem as a Non-Linear Programming (NLP) optimization
problem. Experimental results show that, by using the proposed
scheme, the total energy consumption at runtime is reduced by
as high as 60% for randomly generated task sets when
comparing with the static scheduling approach only using worst
case workload.

1. Introduction

 Energy consumption is one of the critical design issues in
real-time embedded systems (RTES), which are prevalent in
many applications such as automobiles, and consumer
electronics, etc. RTES are generally composed of a number of
tasks to be executed on one or more embedded processors.
Dynamic voltage scaling (DVS), i.e., varying the supply
voltage and the corresponding clock frequency of a processor at
runtime according to the specific performance constraints and
workload, is proven to be very effective for reducing energy
consumption [1,2]. Many modern embedded processors support
both variable supply voltage and the controlled shutdown mode
[3,4]. How to maximally exploit the benefit provided by such
hardware has been an active research topic during the last

several years. In this paper, we focus on real-time embedded
preemptive systems using variable voltage processors.
Having an effective voltage schedule, i.e., the voltage to be
used at any given time is critical to harvest the DVS benefit.
There are two main approaches to find a voltage schedule. One
category of approaches [5] determines the schedule during
runtime only. These results can work with either real-time or
non-real-time tasks. The basic principle is that only the runtime
workload information which is predicted during the online
phase is used to determine the voltage schedules. Although such
approaches have been shown to result in energy saving, they do
not exploit the fact that much information about tasks in an
RTES, such as task periods, deadlines, worst-case execution
cycles (WCEC) and average workload, is available offline. It is
not difficult to see that not using such information may lose
opportunities to further reduce the energy consumption.
 To complement the above runtime approaches, the other
category of voltage scheduling work finds the desired voltage
schedules offline based on the available task information, e.g.,
[1,2,6,7,8,9,10]. These techniques are generally applicable to
real-time tasks with hard deadlines. To ensure that the schedule
obtained in offline does not violate any timing constraint, the
worst-case execution cycles (WCEC) of each task is always
used in the offline analysis. Such offline voltage schedules can
be altered to some extent at runtime by using the slacks resulted
from the tasks not executing at the WCEC to lower the voltage
obtained in the offline phase [2,7]. The effectiveness of the
offline approach together with the runtime approach is very
much dependent on how the slacks are distributed, which in
turn depends on the end-time obtained in the static schedule.
Therefore, it is important to schedule the tasks in such a way
that the potential slack times can be maximally exploited. For
many real-time systems, most of the time the workload of the
tasks are much smaller than the worst case and on average the
execution cycles of the tasks are close to an average-case
execution cycle value (ACEC) instead of the WCEC. In general,
the schedules obtained from the WCEC values can greatly limit
the flexibility and effectiveness of utilizing the slacks generated
from the actual execution cycles during runtime.
 In this work, a novel offline scheduling approach, which
results in the best slack distribution in terms of energy saving
for the ACEC scenarios yet guarantees no deadline violation
when tasks assume WCEC, is introduced. We focus on
preemptive systems, which are more complicated, and it is

1This work was supported in part by the Hong Kong Research Grant
Council under Grant CERG HKUST 62149/03E and HKUST grant
HIA02/03.EG03.
2This work was supported in part by U.S. National Science Foundation
under grant number CCR02-08992 and CNS04-10771.

1530-1591/05 $20.00 © 2005 IEEE

easily to transform the formulation for non-preemptive systems.
To the best of our knowledge, this is the first work that
incorporates the ACEC and the WCEC together during the
offline variable voltage scheduling. Given that the workload
distribution of many real-times can be estimated offline (e.g.,
using profiling [11]), our approach can achieve much higher
energy saving. Experimental results show that significant
energy reduction is achieved when the ACEC is considered
during the offline scheduling phase.

2. Preliminaries and Motivation
2.1 System model

In this paper we assume a frame-based preemptive hard real
time system in which a frame of length L, which is the hyper-
period of the task-sets, is executed repeatedly. Rate monotonic
(RM) scheduling policy is used to schedule the periodic tasks
where the shorter the period of the task, the higher the priority.
The priorities of two tasks are the same if they have the same
period. A higher priority task will always preempt the current
task. We assume no blocking section is available for a task and
hence a higher priority task will preempt the lower priority
tasks immediately once it is released. The tasks are assumed to
be independent of each other. Our technique works for both
dependent and independent tasks as well as for multiple
processors. For simplicity, we only consider the single
processor case in this paper.

Without loss of generality, a set of N periodic tasks is
denoted as {T1,T2,…,TN} with Ti has a higher priority than Tj if
i<j. Each task Ti has its own period Pi, the Worst-Case-
Execution-Cycles (WCEC)

iŴ and the Average-Case-
Execution-Cycles (ACEC) Wi. The ACEC is defined as the
expected value of the execution cycle base on the workload
distribution and it can be obtained by profiling techniques [11].
The relative deadline is assumed to be equal to the period Pi.
Each task Ti releases its jth instance Ti,j periodically. The first
instance of all the tasks is assumed to be released at time t=0.
Also, each task instance Ti,j has its own absolute release time Ri,j
and absolute deadline Di,j. The Pi and the relative deadline of
each instance of the task are assumed to be the same. For a
lower priority task instance Ti,j, it may be preempted by others
during execution and hence it will be divided into several sub-
instances and each sub-instance is denoted as Ti,j,k where
k={1,..,K} if Ti,j is preempted into K sub-parts. When there is no
preemption for the task Ti,j, the task instance itself is denoted as
Ti,j,1 in order to have a consistent notation. Also, we denote the
number of the task instances of Ti be Nii and the upper bound of
the number of sub-instances be NSi,j..

2.2 Motivational example

 In this sub-section, we use a non-preemptive system as a
motivation example to illustrate the idea of exploiting the
workload variation for voltage scheduling. The main idea for
preemptive and non-preemptive system is the same except that

the formulation of the problem is different. The problem
formulation for the preemptive system will be discussed in
Section 3.
 Let Ci be the effective switching capacitance and vi be the
supply voltage of task Ti. The cycle time, CT, and the task Ti’s
execution time di can be computed as

α

λ
)(thi

i

Vv
v

CT
−
⋅

= (1) ,
α

λ
)(thi

i
iii Vv

vWCTWd
−
⋅

⋅=⋅= (2)

where Vth is the threshold voltage, λ is a device related
parameter and α is a process constant which is between 1 and 2.
The total energy consumption ei of executing task Ti is given by
 ei=CiWivi

2 (3)

Table 1. Task parameters
for the system in Fig. 1

Task WCE
C

ACE
C

Actual
executio
n cycles

Di
(ms)

T1 20 10 10 10
T2 20 10 10 15
T3 20 10 10 20

 We use a simple example to illustrate the effect of a static
schedule on energy saving when dynamic slack redistribution is
employed. Suppose an RTES contains three tasks with the
parameters of each task specified in Table 1 (assuming the
release time of each task is 0).
 Figure 1(a) shows the optimal static schedule if WCEC are
taken by all tasks. For simplicity, we assume the clock cycle
time is inversely proportional to the supply voltage and the
minimum and maximum supply voltages are 0.7V and 5V,
respectively. Figure 1(b) gives the actual dynamic run-time
schedule when greedy dynamic slack redistribution is carried
out. The supply voltage value at runtime depends on both the
WCEC and the end-time obtained in the static schedule and can
be computed by equation (2). During runtime, tasks finish
earlier since their actual execution cycles are smaller than the
WCEC. Greedy slack distribution distributes all the slack
obtained from the just-finished task to the next task. For
example, slack S1 obtained from task T1 is 3.3ms as shown in
Figure 1(b) and is utilized fully by the next task T2. The supply
voltage of T2 is re-calculated based on the WCEC of T2, that is,
v2=20/(13.3-3.3)=2. Similarly, slack S2 generated by task T2 is
5ms and T3 can adopt an even lower voltage. By using equation
(3), the overall energy consumption for executing the tasks
based on the schedule given in Figure 1(a) is 158.9µJ. It is clear
that the dynamic slack redistribution indeed leads to more
energy saving. However, if we know that the tasks most
probably take the ACEC values during actual execution, can we
do better?
 Let’s examine the static schedule in Figure 1 a little bit closer.
In this schedule, each task is associated with a predetermined
end time, te, e.g., T1’s end time is 6.7ms, T2’s is 13.3ms, etc.
These end times are then used in the dynamic slack distribution
process to compute a new voltage schedule. The static schedule
essentially determines the end time for each task. (Note that this

S1
S2

S3

Time (ms)

(b)

(a)

Time (ms)

T2 T3 T1

6.7 2013.3

Voltage (V)
3

0

T2 T3T1

3.3 14.1 20 8.3

Voltage (V)
3

0

2
1.7

Figure 1. A motivation example

predetermined end time can be different from the actual end
time when a task does not assume the WCEC. Since this
predetermined end time is used frequently in our discussion, we
simply call it the end time). Such end times are obtained so that
the tasks will complete by their deadlines and the overall energy
is minimum if tasks take on the WCEC. Now, consider a
different schedule where the end times of each task is given as
follows: the end times of T1, T2 and T3 are 10, 15 and 20 ms,
respectively. Using this schedule and the same greedy slack
distribution as above, we obtain the runtime schedule as shown
in Figure 2(a). The overall energy consumption of the schedule
is 120µJ, a 24% improvement comparing with that of the
schedule in Figure 1(b).
 Though the schedule used by Figure 2 leads to a bigger
energy saving, it is important that the schedule can still meet the
deadline requirement when tasks assume the WCEC. It is true
that the schedule dictates that the end time of task is no later
than its deadline. However, if the schedule is not carefully
chosen, the tasks may not be able to finish by their deadlines
during runtime. Figure 2(b) shows what happens under the
schedule used in Figure 2(a) if the tasks do take the WCEC
during runtime. At time zero, a 2V is adopted for T1. Since T1
takes the WCEC, it will not finish until 10ms. The voltages for
T2 and T3 can be computed accordingly. Note that 4V is needed
for both T2 and T3 in order to meet the timing constraints. If the
maximum voltage level for the processor is 3.3V, the schedule
would not be feasible. Therefore, simply using the task
deadlines as the desired end times does not always give a
feasible schedule.
 We would like to point out that the actual schedule in Figure
2(b), when tasks happen to take the WCEC, consumes 720µJ
energy, a 33% increase over the schedule in Figure 1(a).
However, in general, actual execution cycles of a task tend to
be close to an average case value and only rarely equal the
WCEC value. Based on this observation, we would like to find
a static schedule that result in better energy saving on average
but still satisfy the timing requirements for the worst case. Even
though the above example deals with the non-preemptive
schedule only, the basic idea is the same with preemptive
scheduling and we will discuss how to formulate the problem of
preemptive schedule in the next sections.
 In the preemptive system, a task will be preempted into
several sub-instances and how to assign the optimal workload
for each sub-instance to obtain overall minimum average
energy consumption is a challenging problem. With the optimal
workload assignment, we can find the corresponding end-time
in the static schedule. The static end-time as well as the WCEC
for each sub-instances will thus be used for the calculation of

the runtime supply voltage.

3. Our Approach

From the discussion above, we can see that the greedy slack
distribution (or any other slack distribution) relies heavily on
the tasks’ end time obtained in the static schedule. Existing
static voltage scheduling techniques employ the WCEC in order
to guarantee that no deadline violation occurs during runtime.
Because of the use of the WCEC, the end time of each task is
usually more conservative. If we could extend the end time of
each task to as long as that allowed by the worst-case execution
scenario, it will have more potential for the dynamic slack
distribution to achieve more energy saving for the average cases.
So our problem is that given the effective switching capacitance,
the workload distribution, WCEC, release time and deadline of
each task, find a desired schedule, i.e., the desired end time of
each task, which strive to maximize the potential energy saving
when the tasks are executing based on the workload distribution.
 In this section, we show that this scheduling problem can be
formulated as a mathematical programming problem. We ignore
the voltage transition overhead in our formulation. In most
RTES applications, the task execution time is much longer than
the voltage transition time. As stated in [12], the increase of
energy consumption is negligible when the transition time is
small comparing with the task execution time. In the rest of this
section, we adopt the following convention: x and

ix̂ indicate
the average and the worst case values of x, respectively. For
example, Wi,j,k and kjiW ,,

ˆ are the average execution cycles and

the worst case execution cycles of task sub-instance Ti,j,k ,
respectively.

3.1 Fully Preemptive Schedule

In our formulation, we want to find the static end-time for
each sub-instance by optimally assigning the workload so that
the average energy consumption is minimum while all the
worst-case requirements are satisfied. In variable voltage
scheduling, task’s execution time varies inversely with the
supply voltage by equation (2). With a longer execution time,
the number of preemption by the other higher priority tasks, and
hence the number of task sub-instances, is higher because the
overlapping region with the higher priority tasks is larger. In
order to ensure feasibility of the final schedule and to allow
maximum flexibility for the mathematical programming to find
the optimal assignment, we need to consider all the possible
preemption and the maximum number of task sub-instances.
Here we construct a fully preemptive schedule which reflects
all possible preemptions based on the periods and priorities of
the tasks. All the possible sub-instances of the task instances are
found in this schedule. Figures 3 and 4 show an example of
how to obtain the fully preemptive schedule. Suppose we have
three tasks with P1=3, P2=4 and P3=6. The initial task instances
for a hyper-period are shown in Figure 3. All possible
preemptions to a task instance are obtained and the original
schedule is expanded to a fully preemptive schedule as shown

T2 T3 T1

20 10

Voltage (V)

2
Time (ms)
 5 15

teWCEC.1 teWCEC.2 teWCEC.3

20 10 0

Time (ms)
5

T2

15

T3

4
2

T1

Voltage (V)

(a)

(b)

Figure 2. Another schedule for the system in Fig. 1.

in Figure 4. However, the actual run-time schedule may not be
the same with this schedule because the lower priority task may
finish execution before the higher priority released. Here, we
want to deal with a more general case that the optimal workload
required for each sub-instances are found during the
mathematical programming formulation.

6 3 0 Time 9

Task T1

Task T2

Task T3

T1,1,1

T2,1,1

T3,1,1

T1,2,1 T1,3,1 T1,4,1

T2,2,1 T2,3,1

T3,2,1

Figure 3. Task instances in the hyper-period of an

example system.

6 3 0 Time 9

Task T1

Task T2

Task T3

T1,1,1

T2,1,1

T3,1,1

T1,2,1 T1,3,1 T1,4,1

T2,2,1 T2,3,1 T2,1,2 T2,2,2 T2,3,2

T3,1,2 T3,1,3 T3,2,1 T3,2,2 T3,2,3

Figure 4. A fully preemptive schedule for the

system in Fig. 3.
From the fully preemptive schedule, we can obtain the order

of the execution of the tasks’ sub-instances which is based on
the priority and the release time of each sub-instance. E.g. T2,1,2
is preempted by T1,2,1 and so Order2,1,2 > Order1,2,1. Since T2,1,1
and T2,1,2 are originated from the same task instance, we have
Order2,1,2 > Order2,1,1. The total order in Figure 4 is given by:
(1,1,1) <(2,1,1) <(3,1,1)<(1,2,1)<(2,1,2)<(3,1,2)<(2,2,1)<(3,1,3)
<(2,2,2)< (3,2,1)< (2,3,1)< (3,2,2)< (1,4,1)< (2,3,2)< (3,2,3).

3.2 Problem Formulation

Determining the schedule that optimizes the energy
consumption for a preemptive task-set based on the tasks
workload distribution while satisfying the timing requirement in
the worst case can be formulated as a Non-Linear Programming
(NLP) problem. The model consists of an objective function
that minimizes the average energy consumption of the system
when the tasks take on some workload distribution while
subject to a set of resource and timing constraints. The
interesting part of this formulation is the way we relate the
average execution cycle based on the probability density
function of the workload and the worst case execution cycle. If
the probability density function is not known, we can use the
ACEC as an approximation. In [7], it is shown that this is a
good enough approximation of the average energy consumption.
We assume the processor can use any voltage value within a
specified range. In the following formulation, Ti,j,k denotes the
current task sub-instance and Ti’,j’,k’ is the previous task sub-
instance based on the order of the fully preemptive schedule.
Next, we define the variables that we are going to find:
tsi,j,k Average start-time of Ti,j,k
tei,j,k End-time of Ti,j,k
wi,j,k Average workload of Ti,j,k

kjiw ,,ˆ Worst-case workload of Ti,j,k

vi,j,k Supply voltage of Ti,j,k based on average workload

kjiv ,,ˆ Supply voltage of Ti,j,k based on worst-case workload

 Among these variables, only the end-time tei,j,k, and the
worst-case workload variables will be passed to the online DVS
phase to calculate the runtime supply voltage. In order to satisfy
the worst-case requirements during runtime, the value of tei,j,k
and

kjiw ,,ˆ will be determined suitably together with the other

variables when solving the NLP. It is important to note that the
average start-time depends only on the average workload of the
previous task but not the average workload of itself since the
start time depends on the slack available from the previous
tasks. However, the end-times are the same for both the
average-case and the worst-case workload conditions. The
complete NLP formulation is described as follows.
 The objective function of the NLP formulation is

∑∑ ∑
= = =

⋅⋅
N

1i 1 1k

2
kj,i,kj,i,i

,

vC Min.
i jiNi

j

Ns

w (4)

The probability weighted workload can be used in the
objective function if the probability density function is known.
Here, we use the average workload in the formulation.
To meet the release time and deadline requirements as well as
the voltage range requirement, the following constraints are
used:

kj,i,ji, stR ≤ (5)

ji,kj,i, Det ≤ (6)

maxˆ, VvvV kj,i,kj,i,min ≤≤ (7)

()α
λ

thkj,i,

kj,i,
kj,i,kj,i,kj,i, vv

v
wtste

−

⋅
+= ˆ (8)

Also, we need to make sure that there is enough allowable
working time between the end time of Ti’,j’,k’ and Ti,j,k for Ti,j,k
to finish if both tasks use WCEC. We express this by the
following constraint:

()α
λ

thkj,i,

kj,i,
kj,i,k',j',i'kj,i, vv

v
wtete

−

⋅
≥−

ˆ
ˆ

ˆ (9)

If we do not consider the dynamic slack distribution, we
would need

kjikji tste ,,',',' ≤ in order to ensure that no task

executions are overlapped. Allowing the slacks of finished tasks
to be utilized by the subsequent tasks can be thought of as the
average start time of Ti,j,k becomes earlier than the scheduled
end time of Ti’,j’,k’ if Ti’,j’,k’ uses ACEC instead of WCEC.
Assume that the greedy slack distribution is used, the difference
between tei’,j’,k’ and tsi,j,k is bounded by the difference of the
worst case execution time and the average case execution time,
i.e., the slack of Ti’,j’,k’. Therefore, we have the following
constraint:

 ()
()α

λ

thk',j',i'

k',j',i'k',j',i'k',j',i'
k',j',i'kj,i, ˆ

ˆˆ

vv

vww
tets

−

⋅−⋅
−≥ (10)

Now, we need to determine the workload assigned for each
task sub-instance. The sum of the workloads of the sub-
instances is equal to the workload of the task instance because
each sub-instance executes only part of the work of its parent
task instance. We assume the workload of every instance of the
task is the same and hence Wi,j=Wi and we have

∑
=

=
jiNs

k
kjii wW

,

1
,,

 (11)

∑
=

=
jiNs

k
kjii wW

,

1
,,ˆˆ (12)

The average workload is always less than or equal to the
worst-case workload, so we have:

kjikji ww ,,,, ˆ≤ (13)

From equations (11) and (12), we can see that there are many
combinations of wi,j,k and kjiw ,,ˆ with the sums are equal to Wi

and iŴ . To find an optimal value for each of them, we divide
the workload distribution of all the sub-instances into three
cases. Here, we need to explain the meaning of the average
workload of the sub-instances. It represents the amount of
workload that should be executed on that particular sub-
instance when the task instance takes the ACEC. For example,
the ACEC and WCEC of a task instance are equal to 15 and 30,
respectively. Also, it is preempted into three sub-instances and
all of them with WCEC equals to 10. This means that each of
them can execute up to 10 units of execution cycles. During the
average-case scenario, the first sub-instance will execute 10
units but not 5 units (15/3 units) because the next sub-instance
will start execution only if the previous sub-instance already
reaches the worst-case limit. With the same argument, the
ACEC of the second and third sub-instances are 5 and 0 units,
respectively. The ACEC of the third sub-instance is 0 unit
means that this sub-instance does not need to perform any
execution during the average-case while it is still reserved with
enough time slots when the actual execution needs the worst-
case cycles. In this case, all the sub-instances need to perform
10 units’ execution cycles.

Now we formulate the above idea in the form of
mathematical programming. For each sub-instance Ti,j,k, it falls

into one of the following cases: (case 1)
i

k

k
kji Ww <∑

=1'
',,ˆ ; (case 2)

otherwise. From the above discussion, we can see that to satisfy
the average workload distribution, we have ',,',,ˆ kjikji ww = for

all task sub-instances Ti,j,k’ that belong to case 1. For case 2
because the average workload will be automatically assigned a
suitable value according to the constraint (11) and the fact that
the average workload of some of the case 1 task sub-instances
have already been assigned. Considering the example shown in
Figure 5 where T1,1 has three sub-instances. The first sub-
instance T1,1,1 belongs to case 1 because 11,1,1ˆ Ww < and we

have 1,1,11,1,1ˆ ww = . The second and third sub-instances, T1,1,2

and T1,1,3, belong to case 2 because 12,1,11,1,1 ˆˆ Www >+ and

13,1,12,1,11,1,1 ˆˆˆ Wwww >++ . Since 1,1,1ŵ is already assigned

and so we have 1,1,112,1,1 ŵWw −= because T1,1,2 will execute

the remaining workload after T1,1,1 finish the execution. Now
T1,1,1 and T1,1,2 have already executed all the required average
workload, T1,1,3 does not need to carry out any computation on
average (i.e. w1,1,3=0). Note that all the worst-case workload
(3,1,12,1,11,1,1 ˆ,ˆ,ˆ www) are non-negative number and the sum of

them is equal to 1Ŵ .

T 1 , 1

T 1 , 1 , 1

T 1 , 1 , 2 T 1 , 1 , 3

w 1 , 1 , 3 = 0

3,1,1
ˆW

w 1 , 1 , 2 w 1 , 1 , 1

1,1,1
ˆW

W 1 1
ˆW

2,1,1
ˆW

=

Figure 5. An example of a task with three sub-

instances.
In the mathematical programming formulation, we deal with

a more general case that more than three sub-instances are
allowed. However each of the sub-instances still falls into either
one of the two cases. The NLP formulation of the above idea is
presented as follows.

A dependent linear variable, ∑
=

= −
k

k
kjiikji wWol

1'
',,,, is

introduced to determine whether the current task sub-instance
Ti,j,k belongs to case 1 or case 2. If it belongs to case 1, i.e.

i

k

k
kji Ww <∑

=1'
',,

 , oli,j,k is positive.
i

k

k
kji Ww >∑

=1'
',,

is impossible

because the sum of the average workload of the already
executed sub-instances (including the current sub-instance itself)
is at most Wi. We have oli,j,k =0 if the task sub-instance belongs
to case 2. In order to have

ikji Ww =,,
 for case 1, we have the

following additional constraint:
kjiikjikji olWolw ,,,,,, ⋅≥⋅ (14)

When
i

k

k
kji Ww <∑

=1'
',,

, i.e. oli,j,k>0, constraint (14) is

equivalent to
ikji Ww ≥,,
. Together with constraint (13), the only

feasible solution is ikji Ww =,, . Otherwise, constraint (14) is

trivially true when oli,j,k=0.
Finally we need to define the worst-case workload for each

of the task sub-instances to yield the best energy saving.
However, it is already done since its values are already
governed by equations (12) and (13). From the above
formulation, solving the NLP problem will results in the optimal
assignment of the workload to each sub-instance and the
corresponding end-time of each sub-instance will also be
obtained.

4. Experimental Results

To demonstrate the effectiveness of the proposed technique,
which we denote as ACS, a series of experiments, including
both randomly-generated task-sets and real-life applications,
were carried out. For a given number of tasks, one hundred
random task sets were constructed and each taskset results in
maximum one thousand of sub-instances. We repeatedly
simulated each taskset for one thousand hyper-period. Similar
to the experimental settings in [7], we consider the number of
execution cycles of each task varying between the best case
(BCEC) and worst case (WCEC) following a normal
distribution with mean, ACEC=µ , and standard deviation,

6
BCECWCEC −

=σ . The BCEC/WCEC ratio is ranging from

highly flexible execution (=0.1) to almost fixed (=0.9). The
deadline Dj,j of each task was chosen from a uniform
distribution between 10 and 100. The WCEC of a particular
task instance Tj,j was adjusted such that the processor utilization
is about 70% when all the tasks are running at the maximum
speed [7]. We compared the energy consumption using ACS
with the energy consumption of the static scheduling method
that only considers WCEC in obtaining the scheduling. We
denote the later as WCS. The runtime energy consumption is
the actual energy consumption after performing the Dynamic
Voltage Scaling (DVS) based on either the ACS or WCS static
schedules.

Figure 6 summarizes the experimental results. Figure 6(a)
shows the comparison between ACS and WCS for different
number of tasks when the BCEC/WCEC ratio varies between
0.1(highly flexible execution) and 0.9(almost fixed execution).
Y-axis is the percentage improvement in energy consumption of
ACS over WCS. It shows that as the number of tasks increases,
the energy efficiency of using ACS increases. This can be
explained by the fact that as the number of tasks increases,
more task sub-instances can use a lower supply voltage by
exploiting the workload variation and utilize the slack time
generated from the variation. It can be seen that comparing with
WCS, the improvement in energy reduction reaches the highest
value, about 60% when the BCEC/WCEC value is 0.1 and the
number of tasks is ten. This is because there are a lot of slacks
available when the BCEC/WCEC is low and ACS provides a
much better slack utilization in this scenario and minimizes the
overall average energy consumption. However, when there is
little slack available, i.e., when BCEC/WCEC ratio is high,
there is not much improvement as there is little room for both
methods to reduce the energy consumption.
 To further validate the proposed algorithm, we applied our
algorithm to two real-life applications, computer numerical
control CNC [13] and GAP [14]. The comparisons of the
energy reduction with WCS are shown in Figure 6(b). It can be
seen that the improvements over WCS are as high as 41% and
30% when the BCEC/WCEC ratio is 0.1 for CNC and GAP
respectively.

5. Conclusions

 A novel energy reduction strategy in the off-line static
voltage scheduling phase was introduced. The preemptive
nature of the scheduling is considered by using a fully

preemptive schedule. The potential slack generated by the later
tasks can be utilized by the early tasks by considering the
average execution workload during the static voltage
scheduling. The problem is formulated as a Non-Linear
Programming (NLP) and experimental results showed
significant improvement in energy reduction.

6. References

[1] I. Hong, D. Kirovski, G. Qu, M. Potkonjak and M. Srivastava,
“Power optimization of variable voltage core-based systems,”
DAC, pp. 176-181, 1998.

[2] T. Ishihara and H. Yasuura, “Voltage Scheduling Problem for
Dynamically Variable Voltage Processors,” ISLPED, pp. 197–
202, 1998.

[3] T. Burd, T. Pering, A. Stratakos and R. Brodersen, “A dynamic
voltage scaled microprocessor system,” IEEE Journal of Solid-
State Circuits, vol. 35, pp. 1571-1580, 2000.

[4] M.Weiser, B. Welch, A. Demers and S. Shenker, “Scheduling
for reduced CPU energy,” USENIX Sym. on Operating
Systems Design and Implementation, pp. 13-23, 1994.

[5] W. Kim and J. Kim and S. L. Min, “Dynamic Voltage Scaling
Algorithm for Fixed-Priority Real-Time Systems Using Work-
Demand Analysis,” ISLPED, pp. 396-401, 2003.

[6] F. Gruian, K. Kuchcinski, “LEneS: task scheduling for low-
energy systems using variable supply voltage processors,"
ASP-DAC, pp. 449-455, 2001.

[7] F. Gruian, “Hard Real-Time Scheduling for Low-Energy Using
Stochastic Data and DVS Processors,” ISLPED, pp. 46-51,
2001.

[8] A. Manzak and C. Chakrabarti, “Variable Voltage Task
Scheduling Algorithms for Minimizing Energy,” ISLPED, pp.
279-282, 2001

[9] S. Saewong and R. Rajkumar, “Practical voltage-scaling for
fixed-priority rt-systems,” RTAS, pp. 106-114, 2003.

[10] Y. L. A. K. Mok, “An integrated approach for applying
dynamic voltage scaling to hard real-time systems,” RTAS, pp.
116-123, 2003.

[11] D. Ziegenbein, F. Wolf, K. Richter, M. Jersak and R. Ernst,
“Interval-Based Analysis of Software Processes”, ACM
SIGPLAN Conference on Languages, Compilers, and Tools for
Embedded Systems, pp. 94-101, 2001.

[12] Bren Mochocki, Xiaobo Sharon Hu and Gang Quan, ”A
realistic variable voltage scheduling model for real-time
applications,” ICCAD, pp. 726-731, 2002.

[13] Kim, N., Ryu, M., Hong, S., Saksena, M., Choi, C.-H., and
Shin, H, “Visual assessment of a real-time system design: a
case study on a CNC controller,” RTSS, pp. 300-310, 1996.

[14] C. Douglass Locke, David R. Vogel and Thomas J. Mesler,
“Building a predictable avionics platform in Ada a case study,”
RTSS, pp. 181-189, 1991.

(a) (b)
Figure 6. Experimental results

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

0.1 0.5 0.9
BCEC/WCEC

Im
pr

ov
em

en
t CNC

GAP

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%

2 4 6 8 10
Number of Tasks

Im
pr

ov
em

en
t

0.1

0.5

0.9

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

