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Abstract 

 
 A novel energy reduction strategy to maximally exploit the 
dynamic workload variation is proposed for the offline voltage 
scheduling of preemptive systems. The idea is to construct a 
fully-preemptive schedule that leads to minimum energy 
consumption when the tasks take on approximately the average 
execution cycles yet still guarantees no deadline violation 
during the worst-case scenario. End-time for each sub-instance 
of the tasks obtained from the schedule is used for the on-line 
dynamic voltage scaling (DVS) of the tasks. For the tasks that 
normally require a small number of cycles but occasionally a 
large number of cycles to complete, such a schedule provides 
more opportunities for slack utilization and hence results in 
larger energy saving. The concept is realized by formulating the 
problem as a Non-Linear Programming (NLP) optimization 
problem. Experimental results show that, by using the proposed 
scheme, the total energy consumption at runtime is reduced by 
as high as 60% for randomly generated task sets when 
comparing with the static scheduling approach only using worst 
case workload.  
 
 

1. Introduction 
 
 Energy consumption is one of the critical design issues in 
real-time embedded systems (RTES), which are prevalent in 
many applications such as automobiles, and consumer 
electronics, etc. RTES are generally composed of a number of 
tasks to be executed on one or more embedded processors. 
Dynamic voltage scaling (DVS), i.e., varying the supply 
voltage and the corresponding clock frequency of a processor at 
runtime according to the specific performance constraints and 
workload, is proven to be very effective for reducing energy 
consumption [1,2]. Many modern embedded processors support 
both variable supply voltage and the controlled shutdown mode 
[3,4]. How to maximally exploit the benefit provided by such 
hardware has been an active research topic during the last 

several years. In this paper, we focus on real-time embedded 
preemptive systems using variable voltage processors. 
Having an effective voltage schedule, i.e., the voltage to be 
used at any given time is critical to harvest the DVS benefit. 
There are two main approaches to find a voltage schedule. One 
category of approaches [ 5 ] determines the schedule during 
runtime only. These results can work with either real-time or 
non-real-time tasks. The basic principle is that only the runtime 
workload information which is predicted during the online 
phase is used to determine the voltage schedules. Although such 
approaches have been shown to result in energy saving, they do 
not exploit the fact that much information about tasks in an 
RTES, such as task periods, deadlines, worst-case execution 
cycles (WCEC) and average workload, is available offline. It is 
not difficult to see that not using such information may lose 
opportunities to further reduce the energy consumption. 
 To complement the above runtime approaches, the other 
category of voltage scheduling work finds the desired voltage 
schedules offline based on the available task information, e.g., 
[1,2,6,7,8,9,10]. These techniques are generally applicable to 
real-time tasks with hard deadlines. To ensure that the schedule 
obtained in offline does not violate any timing constraint, the 
worst-case execution cycles (WCEC) of each task is always 
used in the offline analysis. Such offline voltage schedules can 
be altered to some extent at runtime by using the slacks resulted 
from the tasks not executing at the WCEC to lower the voltage 
obtained in the offline phase [2,7]. The effectiveness of the 
offline approach together with the runtime approach is very 
much dependent on how the slacks are distributed, which in 
turn depends on the end-time obtained in the static schedule. 
Therefore, it is important to schedule the tasks in such a way 
that the potential slack times can be maximally exploited. For 
many real-time systems, most of the time the workload of the 
tasks are much smaller than the worst case and on average the 
execution cycles of the tasks are close to an average-case 
execution cycle value (ACEC) instead of the WCEC. In general, 
the schedules obtained from the WCEC values can greatly limit 
the flexibility and effectiveness of utilizing the slacks generated 
from the actual execution cycles during runtime.  
 In this work, a novel offline scheduling approach, which 
results in the best slack distribution in terms of energy saving 
for the ACEC scenarios yet guarantees no deadline violation 
when tasks assume WCEC, is introduced. We focus on 
preemptive systems, which are more complicated, and it is 
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easily to transform the formulation for non-preemptive systems.  
To the best of our knowledge, this is the first work that 
incorporates the ACEC and the WCEC together during the 
offline variable voltage scheduling. Given that the workload 
distribution of many real-times can be estimated offline (e.g., 
using profiling [11]), our approach can achieve much higher 
energy saving. Experimental results show that significant 
energy reduction is achieved when the ACEC is considered 
during the offline scheduling phase. 
 

2. Preliminaries and Motivation 
2.1  System model 
 

In this paper we assume a frame-based preemptive hard real 
time system in which a frame of length L, which is the hyper-
period of the task-sets, is executed repeatedly. Rate monotonic 
(RM) scheduling policy is used to schedule the periodic tasks 
where the shorter the period of the task, the higher the priority. 
The priorities of two tasks are the same if they have the same 
period. A higher priority task will always preempt the current 
task. We assume no blocking section is available for a task and 
hence a higher priority task will preempt the lower priority 
tasks immediately once it is released. The tasks are assumed to 
be independent of each other. Our technique works for both 
dependent and independent tasks as well as for multiple 
processors. For simplicity, we only consider the single 
processor case in this paper. 

Without loss of generality, a set of N periodic tasks is 
denoted as {T1,T2,…,TN} with Ti has a higher priority than Tj if 
i<j. Each task Ti has its own period Pi, the Worst-Case-
Execution-Cycles (WCEC) 

iŴ and the Average-Case-
Execution-Cycles (ACEC) Wi. The ACEC is defined as the 
expected value of the execution cycle base on the workload 
distribution and it can be obtained by profiling techniques [11]. 
The relative deadline is assumed to be equal to the period Pi. 
Each task Ti releases its jth instance Ti,j periodically. The first 
instance of all the tasks is assumed to be released at time t=0. 
Also, each task instance Ti,j has its own absolute release time Ri,j 
and absolute deadline Di,j. The Pi and the relative deadline of 
each instance of the task are assumed to be the same. For a 
lower priority task instance Ti,j, it may be preempted by others 
during execution and hence it will be divided into several sub-
instances and each sub-instance is denoted as Ti,j,k where 
k={1,..,K} if Ti,j is preempted into K sub-parts. When there is no 
preemption for the task Ti,j, the task instance itself is denoted as 
Ti,j,1 in order to have a consistent notation. Also, we denote the 
number of the task instances of Ti be Nii and the upper bound of 
the number of sub-instances be NSi,j.. 

 

2.2  Motivational example 
 
 In this sub-section, we use a non-preemptive system as a 
motivation example to illustrate the idea of exploiting the 
workload variation for voltage scheduling. The main idea for 
preemptive and non-preemptive system is the same except that 

the formulation of the problem is different. The problem 
formulation for the preemptive system will be discussed in 
Section 3.  
 Let Ci be the effective switching capacitance and vi be the 
supply voltage of task Ti. The cycle time, CT, and the task Ti’s 
execution time di can be computed as 
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where Vth is the threshold voltage, λ is a device related 
parameter and α is a process constant which is between 1 and 2. 
The total energy consumption ei of executing task Ti is given by
     ei=CiWivi

2               (3) 
  

Table 1. Task parameters 
for the system in Fig. 1 

Task WCE
C 

ACE
C

Actual 
executio
n cycles

Di 
(ms)

T1 20 10 10 10
T2 20 10 10 15
T3 20 10 10 20

 
 
 We use a simple example to illustrate the effect of a static 
schedule on energy saving when dynamic slack redistribution is 
employed. Suppose an RTES contains three tasks with the 
parameters of each task specified in Table 1 (assuming the 
release time of each task is 0).  
 Figure 1(a) shows the optimal static schedule if WCEC are 
taken by all tasks. For simplicity, we assume the clock cycle 
time is inversely proportional to the supply voltage and the 
minimum and maximum supply voltages are 0.7V and 5V, 
respectively. Figure 1(b) gives the actual dynamic run-time 
schedule when greedy dynamic slack redistribution is carried 
out. The supply voltage value at runtime depends on both the 
WCEC and the end-time obtained in the static schedule and can 
be computed by equation (2). During runtime, tasks finish 
earlier since their actual execution cycles are smaller than the 
WCEC. Greedy slack distribution distributes all the slack 
obtained from the just-finished task to the next task. For 
example, slack S1 obtained from task T1 is 3.3ms as shown in 
Figure 1(b) and is utilized fully by the next task T2. The supply 
voltage of T2 is re-calculated based on the WCEC of T2, that is, 
v2=20/(13.3-3.3)=2. Similarly, slack S2 generated by task T2 is 
5ms and T3 can adopt an even lower voltage. By using equation 
(3), the overall energy consumption for executing the tasks 
based on the schedule given in Figure 1(a) is 158.9µJ. It is clear 
that the dynamic slack redistribution indeed leads to more 
energy saving. However, if we know that the tasks most 
probably take the ACEC values during actual execution, can we 
do better? 
 Let’s examine the static schedule in Figure 1 a little bit closer. 
In this schedule, each task is associated with a predetermined 
end time, te, e.g., T1’s end time is 6.7ms, T2’s is 13.3ms, etc. 
These end times are then used in the dynamic slack distribution 
process to compute a new voltage schedule. The static schedule 
essentially determines the end time for each task. (Note that this 
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(b)

(a) 
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T2 T3 T1
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0 
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Figure 1. A motivation example 



predetermined end time can be different from the actual end 
time when a task does not assume the WCEC. Since this 
predetermined end time is used frequently in our discussion, we 
simply call it the end time). Such end times are obtained so that 
the tasks will complete by their deadlines and the overall energy 
is minimum if tasks take on the WCEC. Now, consider a 
different schedule where the end times of each task is given as 
follows: the end times of T1, T2 and T3 are 10, 15 and 20 ms, 
respectively. Using this schedule and the same greedy slack 
distribution as above, we obtain the runtime schedule as shown 
in Figure 2(a). The overall energy consumption of the schedule 
is 120µJ, a 24% improvement comparing with that of the 
schedule in Figure 1(b). 
 Though the schedule used by Figure 2 leads to a bigger 
energy saving, it is important that the schedule can still meet the 
deadline requirement when tasks assume the WCEC. It is true 
that the schedule dictates that the end time of task is no later 
than its deadline. However, if the schedule is not carefully 
chosen, the tasks may not be able to finish by their deadlines 
during runtime. Figure 2(b) shows what happens under the 
schedule used in Figure 2(a) if the tasks do take the WCEC 
during runtime. At time zero, a 2V is adopted for T1. Since T1 
takes the WCEC, it will not finish until 10ms. The voltages for 
T2 and T3 can be computed accordingly. Note that 4V is needed 
for both T2 and T3 in order to meet the timing constraints. If the 
maximum voltage level for the processor is 3.3V, the schedule 
would not be feasible. Therefore, simply using the task 
deadlines as the desired end times does not always give a 
feasible schedule.  
 We would like to point out that the actual schedule in Figure 
2(b), when tasks happen to take the WCEC, consumes 720µJ 
energy, a 33% increase over the schedule in Figure 1(a). 
However, in general, actual execution cycles of a task tend to 
be close to an average case value and only rarely equal the 
WCEC value. Based on this observation, we would like to find 
a static schedule that result in better energy saving on average 
but still satisfy the timing requirements for the worst case. Even 
though the above example deals with the non-preemptive 
schedule only, the basic idea is the same with preemptive 
scheduling and we will discuss how to formulate the problem of 
preemptive schedule in the next sections. 
 In the preemptive system, a task will be preempted into 
several sub-instances and how to assign the optimal workload 
for each sub-instance to obtain overall minimum average 
energy consumption is a challenging problem. With the optimal 
workload assignment, we can find the corresponding end-time 
in the static schedule. The static end-time as well as the WCEC 
for each sub-instances will thus be used for the calculation of 

the runtime supply voltage. 

3. Our Approach 
 

From the discussion above, we can see that the greedy slack 
distribution (or any other slack distribution) relies heavily on 
the tasks’ end time obtained in the static schedule. Existing 
static voltage scheduling techniques employ the WCEC in order 
to guarantee that no deadline violation occurs during runtime. 
Because of the use of the WCEC, the end time of each task is 
usually more conservative. If we could extend the end time of 
each task to as long as that allowed by the worst-case execution 
scenario, it will have more potential for the dynamic slack 
distribution to achieve more energy saving for the average cases. 
So our problem is that given the effective switching capacitance, 
the workload distribution, WCEC, release time and deadline of 
each task, find a desired schedule, i.e., the desired end time of 
each task, which strive to maximize the potential energy saving 
when the tasks are executing based on the workload distribution.  
 In this section, we show that this scheduling problem can be 
formulated as a mathematical programming problem. We ignore 
the voltage transition overhead in our formulation. In most 
RTES applications, the task execution time is much longer than 
the voltage transition time. As stated in [12], the increase of 
energy consumption is negligible when the transition time is 
small comparing with the task execution time. In the rest of this 
section, we adopt the following convention: x and 

ix̂ indicate 
the average and the worst case values of x, respectively. For 
example, Wi,j,k and kjiW ,,

ˆ are the average execution cycles and 

the worst case execution cycles of task sub-instance Ti,j,k , 
respectively.  
 

3.1  Fully Preemptive Schedule  
 

In our formulation, we want to find the static end-time for 
each sub-instance by optimally assigning the workload so that 
the average energy consumption is minimum while all the 
worst-case requirements are satisfied. In variable voltage 
scheduling, task’s execution time varies inversely with the 
supply voltage by equation (2). With a longer execution time, 
the number of preemption by the other higher priority tasks, and 
hence the number of task sub-instances, is higher because the 
overlapping region with the higher priority tasks is larger. In 
order to ensure feasibility of the final schedule and to allow 
maximum flexibility for the mathematical programming to find 
the optimal assignment, we need to consider all the possible 
preemption and the maximum number of task sub-instances. 
Here we construct a fully preemptive schedule which reflects 
all possible preemptions based on the periods and priorities of 
the tasks. All the possible sub-instances of the task instances are 
found in this schedule. Figures 3 and 4 show an example of 
how to obtain the fully preemptive schedule. Suppose we have 
three tasks with P1=3, P2=4 and P3=6. The initial task instances 
for a hyper-period are shown in Figure 3. All possible 
preemptions to a task instance are obtained and the original 
schedule is expanded to a fully preemptive schedule as shown 
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Figure 2. Another schedule for the system in Fig. 1. 



in Figure 4. However, the actual run-time schedule may not be 
the same with this schedule because the lower priority task may 
finish execution before the higher priority released. Here, we 
want to deal with a more general case that the optimal workload 
required for each sub-instances are found during the 
mathematical programming formulation.  

6 3 0 Time 9 

Task T1 

Task T2 

Task T3 

T1,1,1 

T2,1,1 

T3,1,1 

T1,2,1 T1,3,1 T1,4,1

T2,2,1 T2,3,1 

T3,2,1 

 
Figure 3. Task instances in the hyper-period of an 

example system. 

6 3 0 Time 9 

Task T1 

Task T2 

Task T3 

T1,1,1 

T2,1,1 

T3,1,1 

T1,2,1 T1,3,1 T1,4,1

T2,2,1 T2,3,1 T2,1,2 T2,2,2 T2,3,2

T3,1,2 T3,1,3 T3,2,1 T3,2,2 T3,2,3

 
Figure 4. A fully preemptive schedule for the 

system in Fig. 3. 
From the fully preemptive schedule, we can obtain the  order 

of the execution of the tasks’ sub-instances which is based on 
the priority and the release time of each sub-instance. E.g. T2,1,2 
is preempted by T1,2,1 and so Order2,1,2 > Order1,2,1. Since T2,1,1 
and T2,1,2 are originated from the same task instance, we have 
Order2,1,2 > Order2,1,1. The total order in Figure 4 is given by:  
(1,1,1) <(2,1,1) <(3,1,1)<(1,2,1)<(2,1,2)<(3,1,2)<(2,2,1)<(3,1,3)
<(2,2,2)< (3,2,1)< (2,3,1)< (3,2,2)< (1,4,1)< (2,3,2)< (3,2,3).  
 

3.2  Problem Formulation  
 

Determining the schedule that optimizes the energy 
consumption for a preemptive task-set based on the tasks 
workload distribution while satisfying the timing requirement in 
the worst case can be formulated as a Non-Linear Programming 
(NLP) problem. The model consists of an objective function 
that minimizes the average energy consumption of the system 
when the tasks take on some workload distribution while 
subject to a set of resource and timing constraints. The 
interesting part of this formulation is the way we relate the 
average execution cycle based on the probability density 
function of the workload and the worst case execution cycle. If 
the probability density function is not known, we can use the 
ACEC as an approximation. In [7], it is shown that this is a 
good enough approximation of the average energy consumption. 
We assume the processor can use any voltage value within a 
specified range. In the following formulation, Ti,j,k denotes the 
current task sub-instance and Ti’,j’,k’ is the previous task sub-
instance based on the order of the fully preemptive schedule. 
Next, we define the variables that we are going to find: 
tsi,j,k  Average start-time of  Ti,j,k 
tei,j,k   End-time of Ti,j,k 
wi,j,k  Average workload of Ti,j,k 

kjiw ,,ˆ   Worst-case workload of Ti,j,k 

vi,j,k  Supply voltage of Ti,j,k based on average workload 

kjiv ,,ˆ   Supply voltage of Ti,j,k based on worst-case workload 

 Among these variables, only the end-time tei,j,k, and the 
worst-case workload variables will be passed to the online DVS 
phase to calculate the runtime supply voltage. In order to satisfy 
the worst-case requirements during runtime, the value of tei,j,k 
and 

kjiw ,,ˆ will be determined suitably together with the other 

variables when solving the NLP. It is important to note that the 
average start-time depends only on the average workload of the 
previous task but not the average workload of itself since the 
start time depends on the slack available from the previous 
tasks. However, the end-times are the same for both the 
average-case and the worst-case workload conditions. The 
complete NLP formulation is described as follows.  
 The objective function of the NLP formulation is  

∑∑ ∑
= = =

⋅⋅
N

1i 1 1k

2
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i jiNi

j
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The probability weighted workload can be used in the 
objective function if the probability density function is known. 
Here, we use the average workload in the formulation.  
To meet the release time and deadline requirements as well as 
the voltage range requirement, the following constraints are 
used:         

kj,i,ji, stR ≤           (5) 

ji,kj,i, Det ≤          (6) 

maxˆ, VvvV kj,i,kj,i,min ≤≤       (7) 
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Also, we need to make sure that there is enough allowable 
working time between the end time of  Ti’,j’,k’  and Ti,j,k  for Ti,j,k  
to finish if both tasks use WCEC. We express this by the 
following constraint:  

( )α
λ

thkj,i,

kj,i,
kj,i,k',j',i'kj,i, vv

v
wtete

−

⋅
≥−

ˆ
ˆ

ˆ   (9) 

If we do not consider the dynamic slack distribution, we 
would need 

kjikji tste ,,',',' ≤  in order to ensure that no task 

executions are overlapped. Allowing the slacks of finished tasks 
to be utilized by the subsequent tasks can be thought of as the 
average start time of Ti,j,k becomes earlier than the scheduled 
end time of Ti’,j’,k’  if Ti’,j’,k’ uses ACEC instead of WCEC. 
Assume that the greedy slack distribution is used, the difference 
between tei’,j’,k’ and tsi,j,k is bounded by the difference of the 
worst case execution time and the average case execution time, 
i.e., the slack of Ti’,j’,k’. Therefore, we have the following 
constraint: 

    ( )
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Now, we need to determine the workload assigned for each 
task sub-instance. The sum of the workloads of the sub-
instances is equal to the workload of the task instance because 
each sub-instance executes only part of the work of its parent 
task instance. We assume the workload of every instance of the 
task is the same and hence Wi,j=Wi and we have 

∑
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=
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The average workload is always less than or equal to the 
worst-case workload, so we have: 

kjikji ww ,,,, ˆ≤            (13) 

From equations (11) and (12), we can see that there are many 
combinations of wi,j,k and kjiw ,,ˆ  with the sums are equal to Wi 

and iŴ . To find an optimal value for each of them, we divide 
the workload distribution of all the sub-instances into three 
cases. Here, we need to explain the meaning of the average 
workload of the sub-instances. It represents the amount of 
workload that should be executed on that particular sub-
instance when the task instance takes the ACEC. For example, 
the ACEC and WCEC of a task instance are equal to 15 and 30, 
respectively. Also, it is preempted into three sub-instances and 
all of them with WCEC equals to 10. This means that each of 
them can execute up to 10 units of execution cycles. During the 
average-case scenario, the first sub-instance will execute 10 
units but not 5 units (15/3 units) because the next sub-instance 
will start execution only if the previous sub-instance already 
reaches the worst-case limit. With the same argument, the 
ACEC of the second and third sub-instances are 5 and 0 units, 
respectively. The ACEC of the third sub-instance is 0 unit 
means that this sub-instance does not need to perform any 
execution during the average-case while it is still reserved with 
enough time slots when the actual execution needs the worst-
case cycles. In this case, all the sub-instances need to perform 
10 units’ execution cycles. 

Now we formulate the above idea in the form of 
mathematical programming. For each sub-instance Ti,j,k, it falls 

into one of the following cases: (case 1) 
i

k

k
kji Ww <∑

=1'
',,ˆ ; (case 2) 

otherwise. From the above discussion, we can see that to satisfy 
the average workload distribution, we have ',,',,ˆ kjikji ww = for 

all task sub-instances Ti,j,k’ that belong to case 1. For case 2 
because the average workload will be automatically assigned a 
suitable value according to the constraint (11) and the fact that 
the average workload of some of the case 1 task sub-instances 
have already been assigned. Considering the example shown in 
Figure 5 where T1,1 has  three sub-instances.  The first sub-
instance T1,1,1 belongs to case 1 because 11,1,1ˆ Ww <  and we 

have 1,1,11,1,1ˆ ww = . The second and third sub-instances, T1,1,2 

and T1,1,3, belong to case 2 because 12,1,11,1,1 ˆˆ Www >+  and 

13,1,12,1,11,1,1 ˆˆˆ Wwww >++ . Since 1,1,1ŵ  is already assigned 

and so we have 1,1,112,1,1 ŵWw −= because T1,1,2 will execute 

the remaining workload after T1,1,1 finish the execution. Now 
T1,1,1 and T1,1,2 have already executed all the required average 
workload, T1,1,3 does not need to carry out any computation on 
average (i.e. w1,1,3=0). Note that all the worst-case workload 
( 3,1,12,1,11,1,1 ˆ,ˆ,ˆ www ) are non-negative number and the sum of 

them is equal to 1Ŵ . 

T 1 , 1  

T 1 , 1 , 1

 

T 1 , 1 , 2  T 1 , 1 , 3

w 1 , 1 , 3 = 0  
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W 1  1
ˆW

2,1,1
ˆW  
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Figure 5. An example of a task with three sub-

instances. 
In the mathematical programming formulation, we deal with 

a more general case that more than three sub-instances are 
allowed. However each of the sub-instances still falls into either 
one of the two cases. The NLP formulation of the above idea is 
presented as follows. 

A dependent linear variable, ∑
=

= −
k

k
kjiikji wWol

1'
',,,,  is 

introduced to determine whether the current task sub-instance 
Ti,j,k belongs to case 1 or case 2. If it belongs to case 1, i.e. 

i

k

k
kji Ww <∑

=1'
',,

 , oli,j,k is positive. 
i

k

k
kji Ww >∑

=1'
',,

is impossible 

because the sum of the average workload of the already 
executed sub-instances (including the current sub-instance itself) 
is at most Wi. We have oli,j,k =0 if the task sub-instance belongs 
to case 2. In order to have 

ikji Ww =,,
 for case 1, we have the 

following additional constraint:   
kjiikjikji olWolw ,,,,,, ⋅≥⋅         (14) 

When 
i

k

k
kji Ww <∑

=1'
',,

, i.e. oli,j,k>0, constraint (14) is 

equivalent to 
ikji Ww ≥,,
. Together with constraint (13), the only 

feasible solution is ikji Ww =,, . Otherwise, constraint (14) is 

trivially true when oli,j,k=0.  
Finally we need to define the worst-case workload for each 

of the task sub-instances to yield the best energy saving. 
However, it is already done since its values are already 
governed by equations (12) and (13). From the above 
formulation, solving the NLP problem will results in the optimal 
assignment of the workload to each sub-instance and the 
corresponding end-time of each sub-instance will also be 
obtained.  

 

4. Experimental Results 
 

To demonstrate the effectiveness of the proposed technique, 
which we denote as ACS, a series of experiments, including 
both randomly-generated task-sets and real-life applications, 
were carried out. For a given number of tasks, one hundred 
random task sets were constructed and each taskset results in 
maximum one thousand of sub-instances. We repeatedly 
simulated each taskset for one thousand hyper-period. Similar 
to the experimental settings in [7], we consider the number of 
execution cycles of each task varying between the best case 
(BCEC) and worst case (WCEC) following a normal 
distribution with mean, ACEC=µ , and standard deviation, 
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=σ .  The BCEC/WCEC ratio is ranging from 

highly flexible execution (=0.1) to almost fixed (=0.9). The 
deadline Dj,j of each task was chosen from a uniform 
distribution between 10 and 100. The WCEC of a particular 
task instance Tj,j was adjusted such that the processor utilization 
is about 70% when all the tasks are running at the maximum 
speed [7]. We compared the energy consumption using ACS 
with the energy consumption of the static scheduling method 
that only considers WCEC in obtaining the scheduling. We 
denote the later as WCS. The runtime energy consumption is 
the actual energy consumption after performing the Dynamic 
Voltage Scaling (DVS) based on either the ACS or WCS static 
schedules.  

Figure 6 summarizes the experimental results. Figure 6(a) 
shows the comparison between ACS and WCS for different 
number of tasks when the BCEC/WCEC ratio varies between 
0.1(highly flexible execution) and 0.9(almost fixed execution). 
Y-axis is the percentage improvement in energy consumption of 
ACS over WCS. It shows that as the number of tasks increases, 
the energy efficiency of using ACS increases. This can be 
explained by the fact that as the number of tasks increases, 
more task sub-instances can use a lower supply voltage by 
exploiting the workload variation and utilize the slack time 
generated from the variation. It can be seen that comparing with 
WCS, the improvement in energy reduction reaches the highest 
value, about 60% when the BCEC/WCEC value is 0.1 and the 
number of tasks is ten. This is because there are a lot of slacks 
available when the BCEC/WCEC is low and ACS provides a 
much better slack utilization in this scenario and minimizes the 
overall average energy consumption. However, when there is 
little slack available, i.e., when BCEC/WCEC ratio is high, 
there is not much improvement as there is little room for both 
methods to reduce the energy consumption.  
 To further validate the proposed algorithm, we applied our 
algorithm to two real-life applications, computer numerical 
control CNC [ 13] and GAP [ 14]. The comparisons of the 
energy reduction with WCS are shown in Figure 6(b). It can be 
seen that the improvements over WCS are as high as 41% and 
30% when the BCEC/WCEC ratio is 0.1 for CNC and GAP 
respectively.  

 

5. Conclusions 
 
 A novel energy reduction strategy in the off-line static 
voltage scheduling phase was introduced. The preemptive 
nature of the scheduling is considered by using a fully 

preemptive schedule. The potential slack generated by the later 
tasks can be utilized by the early tasks by considering the 
average execution workload during the static voltage 
scheduling. The problem is formulated as a Non-Linear 
Programming (NLP) and experimental results showed 
significant improvement in energy reduction. 
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Figure 6. Experimental results 
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