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Abstract. In this paper, we present an approach to hardware/software
codesign of real-time embedded systems. Two of the di�culties asso-
ciated with codesign are handling tradeo�s among multiple attributes
and exploring a large design space. We use a combination of techniques
from the evolutionary computation and utility theory �elds to address
these problem areas. A real-time microcontroller-based design example
is presented to illustrate our approach.

1 Introduction

The objective of Hardware/software codesign is to produce computer systems
that have a balance of hardware and software components which work together to
satisfy a requirements speci�cation. This balance between hardware and software
implementations is referred to as the partitioning problem. Developing e�cient
means of performing hardware/software partitioning is key to the automatic
design of complex computer systems.

A number of hardware/software partitioning approaches have been presented
(e.g., see [1, 2]). Most of these partitioning approaches start with a pure software
or hardware speci�cation at the behavioral level and then attempt to �nd a hard-
ware/software implementation which meets the overall constraints and optimize
certain attributes. Such �ne-grained approaches have di�culty in exploring a
large design space consisting of multiple choices of di�erent microprocessors or
microcontrollers. Additionally, these approaches have a limited means of han-
dling tradeo�s among multiple attributes such as cost, power consumption and
design time.

The exponential size of the search space for the hardware/software partition-
ing problem establishes the need for some type of heuristic search technique. This
paper describes the combination of an evolutionary algorithm (EA) with Impre-

cisely Speci�ed, Multiple Attribute Utility theory (ISMAUT) to develop real-time
embedded systems. Our use of imprecise value functions based upon a designer's
preferences for establishing a survival criteria is what di�erentiates our approach
from conventional Pareto optimal searches that use EAs. The goal in most other
approaches is to enumerate the entire Pareto optimal set [3]. While certainly
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laudable, this assumes that all Pareto optimal solutions are equally preferable
which is often not the case. Using preferences to in
uence the probability of
survival allows the designer to drive the search process of the EA. This helps
to prevent the EA from conducting a simple blind exploration of the tradeo�
space. A design example is presented to illustrate our approach.

2 De�nitions & Preliminaries

Optimization problems are essentially search problems. Each individual in the
population of an EA constitutes a potential solution or alternative within the
problem space of an optimization problem. Objectives de�ne desirable properties
of a good alternative and attributes are used to determine the degree to which
a speci�c objective is met. An objective is normally formulated as an objec-

tive function with the attributes as the function's arguments. The class of such
problems are called Multipleobjective Optimization Problems (MOPs).

The hardware/software partitioning problem is an instance of a MOP. All
system speci�cations can be modeled as a set of functions where each function
has one or more performance constraints (e.g., timing). Functions can be imple-
mented in either hardware or software. Software implemented functions acquire
attributes such as the number of instructions required for execution on a spe-
ci�c processor. Conversely, a function implemented in hardware a�ects the cost
and power consumption of the system. The objective is to have a designer select
components from a hardware library (containing microprocessors, application
speci�c integrated circuits (ASICs), etc.) and then assign the functions as hard-
ware or software implementations in some optimal way. The decision of whether
functions in a real-time embedded system should be implemented in hardware
or software forms a tradeo� between cost and performance.

In the terminology of EAs, attribute levels (dollar cost, computational power
in MIPs, etc.) are used to quantify the �tness of an alternative and the objective
function is equivalent to a �tness function. The goal of the EA is to �nd an
alternative which optimizes the �tness. More formally, suppose we are given
a MOP with X representing the set of all feasible alternatives. Further, let A
represent the set of n attributes. Each alternative x 2 X has an assigned level
for each ai 2 A. We let Ax denote the set of attribute levels associated with
the alternative x. We would like to represent the �tness of x by de�ning an
appropriate objective function f : Ax ! <+ where <+ 2 [0;1).

An intuitive metric for the optimality of MOPs would be a weighted sum of
attributes. Speci�cally,

f =
X

k

wk ak (1)

where ak is the k-th attribute and wk > 0 is its associated weight. (The weights
must satisfy

P
k wk = 1. Higher weight values re
ect greater importance.) Un-

fortunately, this format for a �tness function is a bit naive and has a number of
problems. For example, there often exists con
icting goals between optimizing



attributes; some attributes should be maximized while others should be mini-
mized. These factors make direct summation inappropriate. Also, there is the
di�culty in specifying a precise weight of each attribute. Intuitively, it will be
di�cult to assign meaningful weights for more than 3 or 4 attributes.

The �rst problem above can be handled by scaling the attribute levels which
maps the raw attribute levels to a convenient subset of <+ (normally 0 ! 1).
Mapping all attribute levels to the same scale also facilitates an attribute trade-
o� analysis. As before, let Ax = fa1; a2; � � � ; ang represent the set of n attributes
associated with the alternative x. Suppose there exists a set of real-valued func-
tions fv1; v2; :::; vng on A such that vi : ai ! [0; 1] where vi ! 1 as the attribute
level of ai improves3. The set of real-valued functions are referred to as attribute
value functions. These functions should (as the attribute value increases) mono-
tonically increase for a \more-is-better" attribute and monotonically decrease for
a \less-is-better" attribute. Let ~ai and âi denote the maximum and minimum
levels, respectively, of the attribute ai. Then for a \more-is-better" attribute

vi(ai) =
ai � âi

~ai � âi
(2)

and for a \less-is-better" attribute

vi(ai) =
ai � ~ai
âi � ~ai

(3)

Replacing each ak in equation (1) with the corresponding vk(ak) and assumingP
k
wk = 1 ; wk > 0, the �tness function is now well de�ned.
To handle the di�culty of assigning precise weights, we resort to techniques

from utility theory (which will be discussed shortly). Here we introduce the
important concepts of dominance and preference. Let x and x0 be two alternatives
from X with their associated attribute level sets Ax = fa1; :::; ang and Ax0 =
fa01; :::; a

0

ng, respectively. We say x dominates x0 if 8i ai is better than or equal
to a0i and, in addition, there exists at least one aj such that aj is strictly better
than a0j . The set of non-dominated alternatives lies on a surface in attribute

space known as the Pareto optimal frontier4. In each generation of an EA there
exists a set of non-dominated alternatives. We call this set of alternatives the
phenotypical Pareto front.

Given two non-dominated alternatives, a designer may still prefer one over
the other. This concept is expressed with the following two relationships:
R1: x � x0 (read as \x is preferred-to x'")
R2: x � x0 (read as \x is indi�erent-to x'")
x and x0 are indi�erent when x 6� x0 and x0 6� x indicating that there is no clear
preference between them. Relationships R1 and R2 together establish a partial

order on X . If relationship R2 does not exist (i.e., 8 x; x0 2 X ; either x � x0 or
x0 � x), then a total order on X is established. Preference is purely subjective and
thus is di�erent from dominance (which is purely objective). It is easily shown
that our preference relationship does not violate dominance relationships [4].

3 Some authors in this context will refer to vi as a \utility function".
4 Some authors refer to this as the Pareto optimal set.



3 Overview of the Design Approach

The level of abstraction that we have adopted for modeling hardware and soft-
ware components is called the con�guration level [2]. At the con�guration level,
hardware is modeled as resources with no detailed functionality and software
is modeled as tasks utilizing the resources. At this high level of abstraction,
we are able to evaluate various partitioning schemes up front, which, in turn,
guides lower level design e�orts. The goal of con�guration-level design is to de-
termine which functions should be implemented in dedicated hardware circuits
and which should be in software, what processors and ASICs should be used,
and which software components should be executed by which processor. Our
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Fig. 1. Hardware/Software Partitioning System

approach to performing hardware/software partitioning (shown in Figure 1) can
be summarized as follows. Initially, we obtain a small set of alternatives which
can be either extracted from the initial population of an EA or which can be
given by the designer. The designer then qualitatively ranks these alternatives.
ISMAUT can then be used to de�ne a set of designer's preferences which are
stored into a �le. (The reader is referred to [5] for details on ISMAUT.)

The EA works in a conventional manner of using genetic operators to gen-
erate new potential solutions. ISMAUT returns the dominant solutions (i.e., so-
lutions which are at least as good as any other solutions) which the EA uses to
determine which individuals survive. This process continues until a satisfactory
solution has been found or a �xed number of generations have been produced
and evaluated. We have implemented this approach as a software package called
EvoC (Evolutionary Codesign).



4 Evaluating Alternatives

To re
ect the designer's preferences in the tradeo� of di�erent attributes, we
make use of imprecise value functions which are taken from the �eld of util-
ity theory [6]. An imprecise multi-attribute value function corresponding to the
alternative x has the following form:

Vx =
X

k

wk vk(ak) (4)

where wk 2 <+ is the weight and vk(ak) is the attribute value function for
attribute ak. All weights must satisfy

P
kwk = 1 ; wk > 0.

Vx is imprecise in the sense that each wk does not have a speci�c assignment,
but is constrained by preferences among attributes. Such constraints can be
formulated based upon preferences between distinct alternatives (provided by the
designer or generated by an EA). For example, given two alternatives x; x0 2 X
with corresponding attribute level sets Ax and Ax0 for which the designer has
decided that x � x0. This preference relationship is captured as follows [4]:

x � x0 () Vx � Vx0 =
nX

k=1

wk[vk(ak)� vk(a
0

k)] > 0: (5)

Such an expression de�nes a constraint for the attribute weights. When several
alternative pairs are ranked by the designer, a series of such constraints are
de�ned. The set of possible wk values are con�ned to a subspace W � <n

+ where
<n
+ is the n-dimensional space of positive real numbers.
Using the attribute value functions and the constraint subspace W , other

con�gurations created by running the EA may be evaluated. More speci�cally,
alternatives x00 and x can be compared by solving the following linear program-
ming problem:

Minimize (w.r.t. wk):
P

kwk[vk(a00k)� vk(ak)]

Subject to: wk 2W

(6)

Then x00 is preferred to x if Equation (7) is true.

z = min
X

k

wk[vk(a
00

k) � vk(ak)] > 0 (7)

However, knowing that z � 0 is not su�cient to determine preference. We must
reverse the terms in Equation (7) as shown below.

z = min
X

k

wk[vk(ak) � vk(a
00

k)] > 0 (8)

Now, if Equation (7) is false and Equation (8) is true, then x � x00. If both equa-
tions are false, then x and x00 are pairwise indi�erent. More detailed information
on these concepts can be found in [4].



It is important to emphasize that the initial ranking of the selected alterna-
tives is done merely to obtain the constraint subspace W . W is then used in the
series of linear programming problems that must be solved to conduct pairwise
comparisons between alternatives.

5 Evolutionary Algorithms for Partitioning

For the partitioning problem, individuals in the search space are design alterna-
tives. The data structure for each individual consists of a binary vector with a
bit position allocated to each function. A logic 0 (1) in a bit position indicates
that the respective function is implemented in software (hardware). There is
also an integer which indicates the selected processor. In some cases there are
several choices for a hardware implementation (e.g., coprocessor or ASIC). The
binary vector is then appended with additional bits to account for these di�er-
ent choices. Of course appended bits are ignored if a software implementation is
selected.

The EA terminates after a �xed number of generations (� ) have been pro-
duced and evaluated or earlier if an acceptable assignment has been found. The
EA algorithm is implemented as follows:

1. Create an initial population of � design alternatives by randomly assigning
functions as either hardware or software implementations.

2. Conduct a tournament to select alternatives for reproduction. Each selected
alternative generates one o�spring by applyingmutation operators (described
below). This creates a population with a total of 2� alternatives.

3. Rank all alternatives according to their �tness.
4. Deterministically select the � alternatives with the highest �tness.
5. Proceed to step 2 unless an acceptable solution has been found or � gener-

ations have been evaluated.

O�spring are created by applying one of three mutation operators. M1 ran-
domly selects one bit in the binary vector and complements it. The associated
function is then reassigned from a hardware (software) implementation to a soft-
ware (hardware) implementation.M2 modi�es hardware assignments which are
identi�ed by bits appended onto the binary vector. A third mutation operator
M3 modi�es the integer �eld in the data structure to select a di�erent processor.
Operator Mi is applied to a parent with probability pi where

P
k pk = 1:0:

We use the preference relationship discussed in Section 2 to assign �tness to
each alternative. Alternative x is said to have a higher �tness over alternative
x0 if x � x0. However, this will typically establish only a partial order. A total
ranking of the alternatives (based upon a technique described by Goldberg [8])
can be done as follows. Using ISMAUT, identify all preferred alternatives, assign
them rank 1 and then remove them from further contention. A new set of pre-
ferred alternatives can then be found, ranked 2, and so on until all alternatives
have been ranked. Note that any alternatives which violate constraints (e.g.,
failure to meet a deadline) will not be preferred and thus ISMAUT will assign



these a high numerical rank. Note that �tness assignments based upon prefer-
ence relationships preserves existing dominance relationships [4]. Therefore, the
alternatives with rank 1 constitute the phenotypical Pareto optimal front. Tour-
nament selection is used to select alternatives for the reproduction in the next
generation [7]. Two distinct candidate alternatives are randomly selected from
the current population and three additional distinct alternatives are randomly
selected as a comparison set. If one candidate has a lower ranking than some al-
ternative in the comparison set, and the other candidate does not, then the latter
is selected for reproduction. If neither (or both) candidates have a lower rank-
ing than some alternative in the comparison set, then a candidate is randomly
chosen. (Equivalence class sharing [7] will be used in future EvoC versions.)

Name Number Activation Deadline Period

DigitalFilter1 (DF1) 1 0.00 46.00 104.17
DigitalFilter2 (DF2) 2 9895.83 10000.00 10000.00
DecodeSPUB (DSB) 3 0.00 83.00 208.33

DecodeSPUA (DSA) 4 83.00 138.00 208.33
ReadCAM (RC) 5 0.00 416.67 10000.00
ServiceRoutine (SR) 6 0.00 208.33 416.67

FuelCalc (FC) 7 833.33 1333.33 2500.00
SparkCalc (SC) 8 1666.67 2500.00 2500.00
ReadMAP (RM) 9 0.00 312.50 416.67

Table 1. Primary set of functions. Activation, deadline and period are in �s.

Name Function Instructions RAM ROM
Implemented Executed Required Required

DF1-S DF1 64 100 100
DF2-S DF2 32 100 100

DSB-S DSB 30 200 300
DSA-S DSA 30 200 300
RC-S RC 30 100 100

SR-S SR 20 200 200
FC-S FC 480 500 400
SC-S SC 100 400 300

RM-S RM 40 100 100

Table 2. Software modules to implement functions. RAM and ROM are measured in
bytes.



Name Functions Cost MIPS
Implemented Available

MC1-H CPU, RAM(2K), ROM(2K), 3.50 1.30
DF1,DF2,DSB,DSA

MC2-H CPU, RAM(2K), ROM(2K), 3.25 1.50
TC(32)

MC3a-H CPU, RAM(4K), TC(16) 5.25 2.50

MC3b-H CPU, RAM(4K), DF1,DF2, 6.25 2.50
DSB,DSA

MC4a-H CPU, RAM(2K), DF1, DF2, 3.75 1.70
DSB, DSA, TC(14)

MC4b-H CPU, RAM(2K), DF1, DF2, 3.25 1.35
DSB, DSA, TC(14)

MC4c-H CPU, RAM(2K),TC(16) 2.50 1.70
P1-H CPU, RAM(2K), ROM(2K) 2.00 1.43
P2-H CPU 13.00 13.50

ASIC1-H DF1,DF2,DSB,DSA 2.50 -
PIO1-H TC(16) 1.00 -
RAM1-H RAM(2K) 2.00 -

ROM1-H ROM(2K) 1.00 -

Table 3. Hardware modules to implement functions.

6 Design Example and Discussions

The example embedded system we used is similar to the one discussed in [2].
Table 1 gives the system speci�cation which has nine functions with real-time
constraints. Activation time indicates the earliest start time for the �rst execu-
tion while deadline is the time by which the function must be completed after
this �rst activation. Period indicates how often the function is required to ex-
ecute. The system's attributes are component cost, critical excess MIPS (4c),
and feasibility factor (�). Critical MIPs indicates the amount of computational
power yet available for future expansion [2]. Feasibility factor re
ects the ability
of an implementation to meet all temporal requirements. � is dependent on the
scheduling algorithm used and indicates the probability that the target proces-
sor has su�cient computational power to meet all of the timing requirements of
the tasks assigned to it. A methodology for calculating � can be found in [2].

Modules in the software library are listed in Table 2. For this example, we
assume the software characterization given are valid for every processor. The �rst
4 functions may be implemented in hardware. Table 3 lists some of the hardware
modules available for this system. The modules include: microcontrollers (MC),
processors (P), ASICs, standard peripherals (PIO), timing channels (TC), RAM,
and ROM.



Number Part Set Cost Feasibility Critical Excess
Factor (�) Req. Ratio (�c)

1 DF1toTC, DF2toTC, DSB-S, DSA-S, 3.00 0.013 0.011
P1-H, PIO1-H

2 DF1toTC, DF2toTC, DSB-S, DSA-S, 3.25 0.094 0.081
MC2-H

3 MC1-H 3.50 0.706 0.183

4 DF1toTC, DF2toTC, DSB-S, DSA-S, 3.50 0.325 0.281
MC4c-H, ROM1-H

5 MC4b-H, ROM1-H 4.25 0.899 0.233
6 P1-H, ASIC1-H 4.50 1.000 0.313
7 MC4a-H, ROM1-H 4.75 1.000 0.583

8 DF1toTC, DF2toTC, DSB-S, DSA-S, 6.25 1.000 1.081
MC3a-H, ROM1-H

9 MC3b-H ROM1-H 7.25 1.000 1.383
10 DF1-S, DF2-S, DSB-S, DSA-S, 16.00 1.000 11.460

P2-H, RAM1-H, ROM1-H
11 DF1toTC, DF2toTC, DSB-S, DSA-S, 17.00 1.000 12.080

P2-H, PIO1-H, RAM1-H, ROM1-H
12 P2-H, ASIC1-H, RAM1-H, ROM1-H 18.50 1.000 12.380

Table 4. Pareto-optimal set of alternatives found by exhaustive search. Note that all
alternatives also include: RM-S,SC-S, FC-S, SR-S, RC-S.

The only constraint used for this problem is that � must be greater than zero
which insures the design will meet real-time constraints. In most real-world prob-
lems additional constraints may be required to guarantee compatibility between
the hardware modules (e.g., coprocessors can only be interfaced to microproces-
sors from the same manufacturer). This size problem is small enough so that
exhaustive search can be used to enumerate the Pareto optimal set within a rea-
sonable amount of computational time. There are a total of 12 Pareto optimal
alternatives which are identi�ed in Table 4. Two tests were conducted using an
EA with a population size of �=20. (This example was small enough so that
� = 20 was su�cient. For more complex problems � should be several times
larger.) The EA was run for �=50 generations with mutation probabilities of
p1 = 0:8, p2 = 0:05, and p3 = 0:15. After � generations had been processed,
alternatives with rank 1 were output.

The �rst test ranked the three given alternatives according to cost (lower cost
implies higher ranking). EvoC correctly identi�ed alternatives 2 and 4 from Ta-
ble 4. The second test ranked the three given alternatives according to �c(higher
value implies higher ranking). The EA consistently identi�ed alternatives 10, 11,
and 12 from Table 4. The signi�cant aspect of these results is not simply that
the EA can �nd any Pareto optimal solution, but rather that speci�c Pareto
optimal solutions which correspond to a designer's preferences can be found.



7 Final Remarks

Complete enumeration of the Pareto optimal frontier P is rarely possible due
to the high dimensionality of the tradeo� surface. Such a level of enumeration
is often not even necessary as a designer's preferences really only demand enu-
meration of P0 � P. This means that the progression of the phenotypical Pareto
front should hopefully be towards P0 rather than to some arbitrary subset of P.

So how do we achieve this progression of the phenotypical Pareto front?
Recall that in each generation the alternatives are ranked according to the de-
signer's preferences. It can be shown that this preference relationship preserves
Pareto optimality. Then, if we choose the most preferred alternatives for repro-

duction, we are letting a designer's preferences drive the search process of the

EA. Our example has shown that we can achieve this goal with the combination
of EAs and ISMAUT.
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