
Enhanced Fixed-Priority Scheduling with (m,k)-Firm Guarantee

Gang Quan Xiaobo (Sharon) Hu
Department of Computer Science & Engineering

University of Notre Dame
Notre Dame, IN 46556
fgquan,shug@cse.nd.edu

Abstract

In this paper, we study the problem of scheduling task
sets with (m,k) constraints. In our approach, jobs of each
task are partitioned into two sets: mandatory and op-
tional. Mandatory jobs are scheduled according to their
pre-defined priorities, while optional jobs are assigned to
the lowest priority. We show that finding the optimal par-
tition as well as determining the schedulability of the re-
sultant task set are both NP-hard problems. A new tech-
nique, based on theGeneral Chinese Remainder Theorem,
is proposed to quantify the interference among tasks, which
is then used to derive two partitioning approaches. Further-
more, a sufficient condition is presented to predict in poly-
nomial time the schedulability of mandatory jobs. We prove
that our partitions are never worse than those obtained in
previous work. Experimental results also show significant
improvement achieved by our approaches.

1. Introduction

Much work has been conducted in scheduling analysis
of hard real-time systems, where violating task deadlines
must be avoided at all cost. However, in many real-time
embedded systems, e.g., a video decoder, it is acceptable
to miss task deadlines occasionally. Several models have
been proposed to study such systems, e.g., the imprecise
computation model [4], the “skip-over” model [11], and the
(m,k) model [9]. In the (m,k) model, a dynamic failure oc-
curs if fewer thanm out of anyk consecutive jobs of some
task meet their deadlines. Ifm = k, the system becomes a
hard-deadline system. For the special case ofm = k � 1,
the (m,k) model reduces to the “skip-over” model [11]. The
(m,k) model can be readily incorporated into system Quality
of Service (QoS) requirements, and is applicable to many
real-time systems such as those in multimedia and automo-
tive control. In this paper, we use the (m,k) model to study
the scheduling problem of overloaded systems.

Some approaches [1, 2, 3, 5, 7, 9, 11, 19] apply dy-
namic scheduling techniques to handle overloaded real-
time systems. However, in many applications, a fixed-
priority scheduling algorithm is usually more attractive than
a dynamic-priority one because (i) it incurs lower overhead;
(ii) the implementation is relatively simple; (iii) it gives a
designer control over task priorities. Hence, we focus on
fixed-priority scheduling for the (m,k) model. A few pa-
pers have been published that study the (m,k) model under
fixed-priority scheduling. In [1], jobs are “promoted” to
higher priorities according to some off-line patterns in or-
der to meet the (m,k) constraints and reduce the response
time of soft deadline tasks. However, further work needs
to be done to search for theeffectivepatterns. In [11], the
“skip-over” model is used and the task set schedulability is
analyzed in that context, but the results cannot be readily
applied to the (m,k) model. In [16], a scheduling technique
is proposed for the general (m,k) model. The beauty of the
technique is that it uses a very simple algorithm to parti-
tion the jobs of each task into two sets: mandatory and op-
tional. All mandatory jobs are scheduled according to their
fixed priorities, while all optional jobs are assigned the low-
est priority. It follows that if all mandatory jobs meet their
deadlines, no dynamic failure will happen.

Though the technique proposed in [16] is simple and el-
egant, it does have some potential problems. First, thefirst
job of every task is always designated as mandatory, which
forces the worst case response time of every task to be that
of the first job. Secondly, the job partition algorithm im-
plicitly distributes the mandatory jobs evenly amongk con-
secutive jobs of a task. Such even distribution may not be
advantageous in certain situations. Furthermore, the parti-
tion algorithm depends solely on the ratio ofm overk of
each task. That is, regardless of task periods and execution
times, the mandatory jobs of two tasks having the samem
overk ratio are always distributed in the same way among
thek consecutive jobs. In Section 2, we provide some ex-
amples to illustrate the consequence of the above problems.
In summary, all the above problems can significantly im-

pact task set schedulability, which may then lead to overly
pessimistic designs.

We believe that judicious selection of mandatoryv.s.op-
tional jobs plays a critical role in scheduling systems with
(m,k) constraints. In this paper, we first prove that find-
ing theoptimal partition between mandatory and optional
jobs for each task is NP-hard in the strong sense. Then, we
present a heuristic algorithm to modify the partitions given
in [16]. Through analyzing the effects of preemption and
blocking on a mandatory jobs by higher priority ones, we
design an algorithm to carefully select mandatory jobs and
reduce such effects. Our experimental results show that our
algorithm produces significantly better partitions than that
in [16] in terms of system schedulability. We also prove
that our solutions form a super set of that obtained by [16],
i.e., any task set with (m,k) constraints schedulable by [16]
is always schedulable with our algorithm.

The schedulability of (m,k) systems can be further im-
proved if one can tolerate spending some more time on find-
ing better mandatory/optional partitions off-line. A proba-
bilistic optimization algorithm (e.g., a genetic or simulated
annealing algorithm) can be very effective in this regards.
One challenge in applying such algorithms is to formulate
an appropriate objective function. We propose a metric used
as the objective function, and demonstrate its effectiveness
by implementing a genetic algorithm based on this metric.
The experimental results are extremely encouraging.

Another difficulty is to determine the schedulability of
tasks with (m,k) constraints for a mandatory/optional job
partition, which we prove to be NP-hard. One way to solve
this problem is to perform the exact analysis for a large
number of possible cases as suggested in [1, 18], which is
computationally intractable for large task sets. We present a
sufficient condition which can be used to determine in poly-
nomial time if a given set of mandatory jobs is schedulable.
The condition was derived based on an extension to the al-
gorithm presented in [10].

The paper is organized as follows. In Section 2, we de-
fine our problem and analyze some related work. In Section
3, we prove several theorems to demonstrate some char-
acteristics of the problem and then introduce an important
concept,execution interference, to capture the preemption
and blocking effects among tasks. Section 4 contains a de-
tailed discussion of our approaches on partitioning the jobs
and checking the schedulability for task sets with (m,k) con-
straints. Experimental results are given in Section 5 and our
work is summarized in Section 6.

2. Preliminaries and Related Work

Consider a system withn independent periodic tasks,
T = f�1; �2; � � � ; �ng, arranged in the decreasing order of
their priorities. Each instance of a task is called ajob. The

jth job of�i is denoted as�ij . The following timing param-
eters are defined for task�i:

� initial time (Oi): the release time of the first job of�i,

� period(Ti): the interval between two consecutive job
release times of�i,

� deadline(Di): the maximum time allowed from the re-
lease to the completion of a�i 's job,

� execution time(Ci): the maximum time needed to com-
plete�i without any interruption,

� mi andki: the (m,k) constraint for�i, which mandates
that at leastm out of anyk consecutive jobs of�i must
meet their deadlines to avoid any dynamic failure.

When scheduling a task set with (m,k) constraints ac-
cording to a fixed-priority assignment, one critical step is to
determine for each task whether its execution is mandatory
or optional. This may be envisioned as each job being asso-
ciated with a binary variable�. If � = 1, the corresponding
job is mandatory. Otherwise, it is optional. The collection
of all these binary variables forms a binary string, which
we refer to as themandatory job pattern. Apparently, the
selection of such mandatory job pattern for each task may
greatly impact the schedulability of the task set. To ease
our effort in searching for the mandatory job patterns which
can satisfy the (m,k) constraints while making the task set
as schedulable as possible, we first introduce the following
definition.

Definition 1 The (m,k)-patternof task�i, denoted by�i,
is a binary string�i = f�i1�i2:::�ikig which satisfies the
following: (i) �ij is a mandatory job if�ij = 1 and optional
if �ij = 0, and (ii)

Pki
j=1 �ij = mi.

By repeating the (m,k)-pattern�i, we get a mandatory job
pattern for�i. It is not difficult to see that the (m,k) con-
straints for�i can be satisfied if the mandatory jobs of�i are
selected accordingly.

Note that the length of the (m,k)-pattern for task�i is
ki. Although we may increase the length of the pattern to
2ki; 3ki; :::, to improve the flexibility of selecting manda-
tory job patterns, this may greatly increase the complexity
of scheduling analysis and complicate system implementa-
tion at the same time. For example, if the length of a pat-
tern is chosen to be2ki, then

P2ki
j=1 �ij = 2mi does not

necessarily guarantee the (m,k) constraint. In this case,2ki
windows with sizeki each need to be checked (wrap around
the pattern if necessary) in order to guarantee that the (m,k)
constraint is never violated.

With the definition of the (m,k)-pattern, we formulate the
fixed-priority (m,k) scheduling problem as follows.

�
�
�
�

�
�
�
��������� ��������

���������� ����������

��������

����

��������

������������ ��������

Task 1

Task 2

0

Task 1

Task 2

0

miss miss

(a) Using 10 as the (m,k)-patterns for both
Task 1 and Task 2 results in an infeasible
schedule

(b) Using 10 as the (m,k)-pattern
for Task 1 and 01 for Task 2 results
in a feasible schedule

3T1T1

2T2

3T12T1

T2 3T2

2T1 4T1

3T2T2 2T2 4T2

T1

Figure 1. Different (m,k)-patterns for the same task set lead to different scheduling results.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������ ������ ������������ ����������

�����������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

������ ������ ������

������ ������ ������
��
��
��
��

������

������

���� Task 1

Task 2

0

Task 1

Task 2

0

miss

T1 3T1

T2 2T2

5T1 7T1 T1 3T1

T2 2T2

5T1 7T1

(a) Using 101010 as the (m,k)-pattern for

schedule
Task 1 and 10 for Task 2 results in an infeasible

(b) Using 111000 as the (m,k)-pattern for
Task 1 and 01 for Task 2 results in a feasible
schedule

Figure 2. Evenly distributed mandatory jobs may not always improve the schedulability.

Definition 2 Given a task setT , let the mandatory jobs de-
fined by a set of (m,k)-patterns be assigned fixed priorities
and the optional jobs have the lowest priority. Find the op-
timal (m,k)-pattern�i for each�i 2 T such that no other
(m,k)-patterns can satisfy the (m,k) constraints if the opti-
mal pattern cannot satisfy the (m,k) constraints.

Solving the above problem consists of two challenges: (i)
given a task set with (m,k) constraints, how to determine
if one set of (m,k)-patterns is better or easier to be sched-
uled than another; (ii) given a set of (m,k)-patterns, how to
predict if the mandatory jobs are all schedulable.

In [11], the authors consider the “skip-over” model, a
special case of the above fixed-priority (m,k) scheduling
problem wherem = k � 1. They prove that determining
whether a set of periodic, occasionally skippable tasks is
schedulable is NP-hard in the weak sense. We will extend
their proof and show that the problem of finding the optimal
(m,k)-patterns is NP-hard in the strong sense. When ap-
plying the fixed-priority scheduling algorithm in the “skip-
over” model, the authors in [11] implicitly adopt the so-
calleddeeply-redtask set to be the mandatory job set. This
corresponds to the following (m,k)-pattern:

�ij =

�
1 1 � j < ki � 1
0 j = ki

(1)

For the above (m,k)-pattern, a sufficient and necessary con-
dition is presented in [11] to determine the schedulability. It
is claimed in [11] that the worst case occurs in the deeply-
red task set in the ”skip-over” model. However, no further

work is done on choosing different (m,k)-patterns to im-
prove the schedulability of a task set.

In [16], the general (m,k) model is used and an algorithm
is proposed for determining the (m,k)-patterns for a given
task set, which leads to the following (m,k)-pattern,

�ij =

�
1 if j = bd (j�1)�mi

ki
e � ki

mi
c+ 1

0 otherwise
(2)

wherej = 1; 2; � � � ; ki. For the (m,k)-patterns above, one
can see that the (m,k)-pattern for a task is fixed once its
(m,k) constraint is defined, and the first job of every task
is always labeled to be mandatory. Moreover, it is proved
in [16] that the algorithm gives the most mandatory jobs
from [0; t] compared with those in any other interval of the
same lengtht. One attractive consequence of the approach
in [16] is that the schedulability analysis can be conducted
by simply extending that proposed in [12], since the first
job of each task always has the worst case response time.
However, this advantage becomes less desirable in terms of
meeting (m,k) constraints.

Consider the example in Figure 1. Here, the task set con-
tains two tasks with the same periods and the same (m,k)-
firm constraint, i.e., (1,2). It is shown in Figure 1(a) that the
mandatory jobs cannot be scheduled if the (m,k)-patterns
are assigned according to (2), while some different (m,k)-
patterns can satisfy the (m,k) constraints (see Figure 1(b)).

In addition to forcing the worst case response time of
every task to be that of the first job, the technique in [16]
implicitly distributes the mandatory jobs evenly amongki
consecutive jobs of�i. Such even distribution may not be

desirable in certain situations as seen in the example given
in Figure 2, where the (m,k) constraint of�1 is (3; 6) and
that of�2 is (1; 2).

In the following, we present our contributions on solving
the (m,k) scheduling problem.

3. Several Observations

In this section, we first present several observations re-
lated to the complexity issues of the (m,k) scheduling prob-
lem. Then, we discuss an important concept for estimat-
ing preemption and blocking effects among tasks with (m,k)
constraints.

3.1. Complexity issues

We first show that selecting the “optimal” (m,k)-pattern
for each task can be “very difficult”.

Theorem 1 Given a task setT the problem of deciding if
there exists an (m,k)-pattern for each task inT such thatT
is schedulable is NP-hard in the strong sense.

Proof: We prove the theorem by reducing the3-Partition
problem to our problem. The3-Partition problemis de-
fined as follows: Given a setA = fa1; a2; � � � ; a3mg of
3m positive integers and a positive integerB such that
1
4B < ai < 1

2B and
P3m

i=1 ai = mB, canA be par-
titioned intom disjointed sets,A1; A2; :::; Am, such thatP

ai2Aj
ai = B for each1 � j � m? The3-Partition

problemis proved to be NP-hard in the strong sense [6].
Given a3-Partition problem, we construct a task setT =

f�1; �2; � � � ; �3mg such thatOi = 0; Ci = ai; Di = Ti =
B;mi = 1; ki = m. Assume we have found an (m,k)-
pattern for each�i such thatT is schedulable. Then, after
clustering tasks with the same (m,k)-pattern to formT 0i and
let the correspondingaj formAi, we have

T 0i is schedulable()
X
aj2Ai

aj = B; i = 1; � � � ;m

Since the above reduction is linear, we prove the theorem.
2

Another challenge in solving the (m,k) scheduling prob-
lem is to decide if the mandatory jobs given by a set of
(m,k)-patterns are schedulable. Unfortunately, the problem
is also NP-hard. Refer to [15] for the proof.

Theorem 2 Given a task setT and an (m,k)-pattern for
each task inT , the problem of determining whetherT is
schedulable is NP-hard.

In Section 2, we reviewed the deeply-red task set used by
the “skip-over” model in [11] and showed its (m,k)-pattern
in (1). Here, we extend the deeply-red task set definition to
the general (m,k)-firm guarantee model.

Definition 3 Given a task setT with (m,k) constraints, the
deeply-red (m,k)-patternfor task�i, �r

i = f�ri1�
r
i2:::�

r
iki
g,

satisfies

�rij =

�
1 1 � j � mi

0 mi < j � ki

For the deeply-red (m,k)-pattern, we make the following ob-
servation, (see [15] for the proof).

Theorem 3 For task setT with Oi = 0; 1 � i � n, if
the mandatory jobs defined by the deeply-red (m,k)-patterns
are schedulable, the mandatory jobs derived from any other
(m,k)-patterns are also schedulable.

The proof of the theorem can be easily obtained by rec-
ognizing that the first job of every task in the deeply-red
(m,k)-pattern leads to the worst case response time among
all possible (m,k)-patterns (since it occurs at the critical in-
stant and overlaps with the most mandatory jobs from other
higher-priority tasks). The theorem plays an important role
in comparing the performance of different (m,k)-patterns,
and is used in the presentation of our experimental results.

3.2. Execution interference among tasks

As discussed in the previous sections, determining the
schedulability of a task set with (m,k) constraints is a chal-
lenging problem, since exact timing analysis [1, 18] for a
large number of possible cases is very time consuming and
is in fact intractable for large task sets. To reduce the com-
putational cost, we propose an effective way to help charac-
terize and quantify the preemption and blocking effects on
lower priority mandatory jobs by higher priority ones.

Given two tasks�h and�i (h < i), we say that a�h 's job
interferesa�i 's job if the execution time interval of the�h's
job either partially or entirely overlaps with the period of the
�i 's job. We use the termexecution interferenceof �h with

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�������������� ����

e e
Task h

Task i

s t

rhtr h(s +1)r

r ri(j-1) ij

hs

Figure 3. Execution interference of �h with �ij ,
where rpq is the release time of job �pq .

job �ij to capture the amount ofpotentialpreemption and/or
blocking effect caused by�h during[(j � 1)Ti +Oi; jTi +
Oi]. In Figure 3,�hs,�h(s+1), and�ht all interfere with�ij ,

and the execution interference of�h with �ij is shown by the
shaded regions. Formally, we define execution interference
as follows.

Definition 4 Given two tasks�h and �i (h < i) and the
(m,k)-pattern for each task, theexecution interferenceof
�h with job �ij , denoted byF h

ij , equals total portions of the
execution times of all�h's mandatory jobs that fall inside
[(j � 1)Ti +Oi; jTi +Oi].

(Note that in Figure 3,es andet become zero if the corre-
sponding jobs are not mandatory). Mathematically,F h

ij can
be calculated as follows,

F h
ij = es + lhij � Ci + et; (3)

wherelhij is the number of mandatory jobs of�h that fall
entirely in the interval [(j�1)Ti+Oi; jTi+Oi], es = �hs �
minfCh + rhs � ri(j�1); 0g, andet = �ht �minfCh; rij �
rhtg.

Each mandatory job of�i may suffer different amount of
interference by�h, and the job of�i that suffers the most
execution interference from higher priority tasks tends to
dominate the schedulability of�i. We refer to this maximum
execution interference as the execution interference of task
�h with task�i, and denote it byFh

i , i.e.,

Fh
i = max

j
fF h

ijg; j = 1; 2; � � � : (4)

Since there exists an infinite number of mandatory jobs for
task�i, it might seem daunting to determineFh

i . To tackle
this problem, we borrow an existing theorem,Generalized
Chinese Remainder Theorem(GCRT)[14], which is re-
stated below.

Theorem 4 (GCRT) Let v1; v2; � � � ; vr be positive inte-
gers,v be the least common multiple ofv1; v2; � � � ; vr, and
a; u1; � � � ; ur be any integers. There exists exactly one in-
teger u which satisfiesa � u < a + v and u = uj
(mod vj) for all 1 � j � r if and only if ui = uj
(mod gcd(vi; vj)) for all 1 � i < j � r, wheregcd(x; y)
denotes the greatest common divisor (GCD) ofx andy.

(Note thata = b (mod c) is equivalent toa mod c =
b mod c.) Based on GCRT, we proof two lemmas to be
used for analyzing the execution interference between tasks.
For generality, we use “events” rather than “tasks” in the
lemmas.

Lemma 1 Given two periodic eventsE1 andE2 with pe-
riod T1 andT2, respectively, let the initial times of the two
events be the same, i.e.,O1 = O2. Denote the release time
of any instance ofE1 (resp.,E2) by r1 (resp.,r2). Then,
r1 � r2 = q � gcd(T1; T2), q 2 Z (Z is the set of integers).

Lemma 1 states that the interval between the release times
of any two instances of two periodic events always equals
the integer multiple of the GCD of their periods, if these
two periodic events have the same initial time. Similarly,
for periodic events having different initial times, we have
the following lemma.

Lemma 2 Suppose that two periodic eventsE1 and E2

have periodsT1 andT2, and different initial timesO1 and
O2, respectively. Denote the release time of any instance
of E1 (resp., E2) by r1 (resp., r2). Then, r1 � r2 =
p � g + (O1 � O2) mod g, whereg = gcd(T1; T2), p 2 Z.
Furthermore, letmin jr1�r2j be theminimum distancebe-
tween the release times of anyE1's instance and anyE2 's
instance, thenmin jr1 � r2j �

g
2 .

(The proof of these two lemmas are omitted due to page
limit. Interested readers can refer to [15] for the details.)

Observe that�i 's mandatory jobs corresponding to bit
�ij = 1 can be viewed as a periodic eventEi with period
kiTi and initial timeOi+(j�1)Ti, and the mandatory jobs
of �h can also be viewed as a periodic eventEh with period
khTh and initial timeOh. Let the release time of an instance
of Ei (resp.,Eh) by ri (resp.,rh). According to Lemma 2,
ri � rh = fp � g + ((j � 1)Ti +Oi �Oh) mod gg, where
g = gcd(khTh; kiTi), p 2 Z. Note that each unique value
of 0 � (ri�rh) < khTh may result in a different execution
interference of�h for the corresponding�i 's job. However,
for (ri � rh) < 0 or (ri � rh) � khTh, the interferences
simply repeat the cases for0 � ri� rh < khTh. Therefore,
the computation of the execution interference between two
tasks can be greatly simplified. Algorithm 1 describes a
procedure to conduct this computation. The termexecution

Algorithm 1 Calculate the execution interference between
two tasks

1: Input: �i = fOi; Ti; Di; Ci;mi; kig, �h =
fOh; Th; Dh; Ch;mh; khg, �i;�h; h < i

2: Output: Fh
i //execution interference of�h with �i

3: Fh
i = 0;

4: g = gcd(kiTi; khTh);
5: for j from 1 toki do
6: if �ij = 1 then
7: x = (Oi + (j � 1)Ti �Oh)mod g;
8: while x < khTh do
9: F h

ij is calculated according to (3);
10: if Fh

i < F h
ij then

11: Fh
i = F h

ij ;
12: end if
13: x = x+ g;
14: end while
15: end if
16: end for

interferencebetween tasks forms the basis of our proposed
approaches to be discussed in the next section.

4. Our Approaches

In this section, we first present a heuristic technique to
improve the (m,k)-patterns obtained by [16]. We then pro-
pose a metric that can be used as an objective function in
any probabilistic optimization algorithm. Finally, we derive
a sufficient condition to predict the schedulability of a task
set with given (m,k)-patterns.

4.1. Improving evenly distributed (m,k)-patterns

In Section 2, we point out that the algorithm in [16] re-
sults in (m,k)-patterns that are not always desirable. We
hereby present a heuristic technique to obtain better (m,k)-
patterns by judiciously “rotating” the (m,k)-patterns com-
puted by (2). The key idea is to reduce the execution inter-
ference between tasks.

As mentioned before, execution interference between
tasks can have a significant impact on the schedulability of
a task set. It would be very helpful if we know at what in-
stants the maximum execution interference for a given set
of (m,k)-patterns may occur. We introduce the termworst-
case interference pointto capture this concept.

Definition 5 A worst-case interference point(WCIP) of
task�i is the beginning instant of a time interval such that
the number of mandatory jobs of�i is the largest among all
time intervals of the same length.

Based on the above definition, for the (m,k)-patterns de-
fined in (2), time 0 is aworst-case interference pointsince
it is proved in [16] that interval[0; t] contains the largest
number of mandatory jobs compared with any other interval
with the same length. Note that any task,�i, has an infinite
number of WCIPs for a given (m,k)-pattern and they occur
periodically with periodkiTi. If a mandatory job from a
lower priority task is released at the same time as one of the
WCIPs of some higher priority tasks, the job will apparently
suffer the largest execution interference from the higher pri-
ority tasks. Intuitively, given a set of (m,k)-patterns, if a
WCIP of a lower priority task and those of higher priority
tasks concur, it will be more difficult to meet the (m,k) con-
straints, which is the case for the (m,k)-patterns by [16].

If (m,k)-patterns can be defined such that the WCIPs be-
tween tasks are as far apart as possible, the schedulability
of the task set would be improved. One way to achieve this
is to modify (2) as follows.

�ij =

�
1 if j = bd ((j�1)+si)�mi

ki
e � ki

mi
c+ 1

0 otherwise
(5)

wheresi � 0 andsi 2 Z. Note that the new (m,k)-pattern
can be viewed as rotating the (m,k)-pattern in (2) right by
si bits. The new (m,k)-pattern certainly satisfies the (m,k)
constraints. Furthermore, we have the following lemma.

Lemma 3 For �i with the (m,k)-pattern defined in (5), the
number of mandatory jobs of�i is the largest in[si�Ti; si�
Ti+ t] compared with those within any other interval of the
same lengtht.

The proof can be readily obtained by applying Lemma 4
in [16] and is thus omitted. According to Lemma 3, by
rotating the original (m,k)-pattern defined in (2), we essen-
tially move the first WCIP of task�i from 0 tosiTi. Hence,
through careful selection ofsi (0 � si < ki) values, we can
alter the separation between WCIPs of different tasks.

Our problem now becomes determining the value forsi
to separate WCIPs among tasks as far as possible. Since the
WCIPs of a task occur periodically, we resort to Lemma 2 in
our search for bettersi values. Given task�i and the (m,k)-
pattern defined in (5), the WCIPs for�i is a periodic event
with periodkiTi and initial timeOi + siTi. According

Algorithm 2 Algorithm for finding rotation values for
(m,k)-patterns

1: Input: Task setT = f�1; �2; :::; �ng, where�i =
fOi; Ti; Di; Ci;mi; kig

2: Output: s1; � � � ; sn //rotation values for each tasks
3: 	 = ;; // 	 contains the tasks whosesi values have

been determined
4: while T is not emptydo
5: �i = task inT with the smallestki;
6: if 	 6= ; then
7:
 = 	;
8: while
 6= ; do
9: �j = task in
 such thatFj

i is maximum, where
Fj
i is defined in (4);

10: g = gcd(ki � Ti; kj � Tj);
11: if g = 1 then
12: remove�j from
;
13: else
14: break;
15: end if
16: end while
17: O0j = Oj + sj � Tj ;
18: si = l such that0 � l < ki andj l�Ti+Oi�O0j j

is nearest to one of(2q + 1)� g=2; q 2 Z;
19: else
20: si = 0;
21: end if
22: Add �i to	;
23: Remove�i from T ;
24: end while

to Lemma 2, the distance between the closest WCIPs of
two tasks,�i and�j , is never bigger thangcd(kiTi; kjTj)=2.
Hence, we can selectsi andsj such that the distance is as
close togcd(kiTi; kjTj)=2 as possible to reduce the execu-
tion interference between the two tasks. For task sets con-
taining three or more tasks, we design a greedy algorithm
shown in Algorithm 2.

The basic idea of Algorithm 2 is to reduce the worst case
response time of mandatory jobs by reducing the execution
interference between tasks. Observe that the larger the value
ki is, the more choices task�i has for the position of its first
WCIP. Hence, among the remaining tasks whosesi values
need to be determined, the algorithm always pick the one
having the smallestki in its (m,k) constraint. Then, the
algorithm selects task�j from the tasks whosesj values
have been determined such that the execution interference
between�i and�j is the largest. Thesi value is then set so
that the distance between the WCIPs are maximized. Note
that in the case whengcd(kiTi; kjTj) = 1, no matter what
the initial positions of WCIPs are, they will eventually meet
at some time instant in the future. If this happens, we simply
go on to the next task.

Algorithm 2 is quite effective in improving the schedu-
lability of task sets with (m,k) constraints. We will give
experimental results later to illustrate this. Furthermore, we
have the following theorem. Refer to [15] for the proof.

Theorem 5 If a task set can be scheduled with the (m,k)-
patterns defined by (2), it can always be scheduled with the
(m,k)-patterns defined in (5) withsi determined by Algo-
rithm 2.

4.2. A metric for evaluating (m,k)-patterns

Though the algorithm proposed in the previous section
is capable of improving the schedulability of task sets em-
ploying the (m,k)-patterns derived in [16], there exist cases
where no rotating (m,k)-patterns can improve the schedula-
bility. This was demonstrated by the example in Figure 2 in
Section 2. In such cases, evenly distributed (m,k)-patterns
are not appropriate. We need to find other (m,k)-patterns.
Since determining the optimal (m,k)-patterns is NP-hard, a
natural contender for solving the problem is a probabilis-
tic optimization approach based on such as genetic algo-
rithms (GA) or simulated annealing (SA), both of which
have been shown to be effective in solving many NP-hard
problems [8, 17]. GA and SA differ in their mechanisms
for escaping local minima, but both need an effective ob-
jective function to help direct the search process. A major
factor to the success of such an approach is the choice of the
objective function. We borrow the termfitnessfrom GA to
refer to the objective function, where a higher fitness value
indicates a better solution. In this subsection, we present a

fitness function which is quite effective for finding superior
(m,k)-patterns.

An ideal fitness function should be able to reflect the
fact that using one set of (m,k)-patterns may make the sys-
tem “easier” to be scheduled than another set. The chal-
lenge is how to describe this “easiness”. Intuitively, a set of
(m,k)-patterns leading to shorter worst case response times
for tasks is better. Yet, we have shown in Section 3 that,
given arbitrary (m,k)-patterns, finding the worst case re-
sponse time of a task is NP-hard. As discussed before, the
execution interference suffered by a task directly impacts
the schedulability of the task. We hereby propose to use
the execution interferencebetween tasks to formulate the
fitness function. Specifically, let the fitness of�i bef(�i).
Then, we have

f(�i) =
Ti

Ci +
Pi�1

h=1F
h
i

; (6)

whereFh
i is defined in (4). The denominator in (6) is an

estimated worst case work load for�i and all the higher pri-
ority tasks during any time interval of lengthTi. To de-
fine the overall fitness value for a task set with some known
(m,k)-patterns, we notice that a task set is considered to be
unschedulable if any one of its tasks misses the deadline.
Hence, the task-set fitness, denoted byf(T), is the mini-
mum among the fitness values of all tasks, i.e.,

f(T) = min
1�i�n

f(�i); (7)

Given a task set with known (m,k)-patterns, evaluating
f(�i) hinges on computing the execution interferences be-
tween pairs of tasks, which can be obtained by Algorithm 1.
We should point out that the fitness function defined above
is only an estimated metric for the task set schedulability.
That is, we cannot guarantee that for any given task setsT1
andT2, T2 must be schedulable iff(T1) < f(T2) andT1
is schedulable. Though more accurate execution interfer-
ence may be obtained by exact schedulability analysis, the
computational cost would be too large since fitness function
needs to be evaluated many times.

After the fitness function is obtained, we can apply either
a GA or SA approach to search for better (m,k)-patterns.
Figure 4 illustrates the flowchart of a GA implementa-
tion. In our GA implementation, the population consists
of � individuals, each of which containsn tuples, i.e., (�i,
�i),i = 1; :::; n. Individuals with higher fitness values are
selected as survivors. During reproduction, either muta-
tion or crossover is used according to a predefined proba-
bility. The mutation operation randomly chooses a task and
changes one bit in its (m,k)-pattern from 1 to 0 and another
bit from 0 to 1. The crossover operation randomly chooses
a cut point for two individuals and swaps their contents to
construct two new individuals. More detailed discussion on

x = x + 1

Y

N

x = 0

x > # of generations?

Output the result

Reproduce new generation

Evaluate fitness

Select survivors

Initialize population

Figure 4. A genetic algorithm procedure

GA can be found in [8]. Our experimental results are ex-
tremely encouraging as shown later. While the effectiveness
of our approach is demonstrated in the experiments, how to
construct a better fitness function remains an open problem.

4.3. Determining the schedulability

We have proposed two methods to find better (m,k)-
patterns for the (m,k) scheduling problem. Yet, we still
face the challenge of determining if a task set is schedula-
ble for some given (m,k)-patterns. Answering this question
becomes critical when the first job of every task no longer
has the worst case response time. In section 3, we know that
this is an NP-hard problem. Note that a task�i with certain
(m,k)-patterns can be viewed asmi periodic tasks with pe-
riod kiTi, deadlineDi, and initial times(ai � 1)Ti + Oi

(ai is the index of the mandatory job in�i 's (m,k)-pattern).
One way to deal with this problem is to apply an exact tim-
ing analysis technique[1, 18] for all the jobs possibly having
the worst case response time, which is computationally pro-
hibitive for large task sets. In the following, we construct a
sufficient condition to test if a task set with known (m,k)-
patterns is schedulable. Our goal is to be able to efficiently
evaluate such a condition, and hence quickly decide if a task
set with some (m,k)-patterns can meet the (m,k) constraints.
To simplify the problem, we assume that the deadline of a
task equals its period.

Our sufficient condition is an extension to the work by
Han and Tyan [10]. In [10], a polynomial-time algorithm is
proposed to test the schedulability of a fixed-priority hard
real-time system. The basic idea is to map each task in the
task set to a new task such that the new task period is less
than or equal to the original period and the computation
time remains the same. An additional requirement is that
the new task set must beharmonic, i.e., any shorter task pe-

riod must divide any longer task period. It is proved in [10]
that if the harmonic task set is schedulable, so is the orig-
inal task set. However, this is no longer true for a task set
with (m,k) constraints. Figure 5 illustrates such an exam-
ple, whereT = f�1; �2g, T1 = C1 = 6; T2 = 7; C2 = 6,
and(m1; k1) = (m2; k2) = (1; 2). The corresponding har-
monic task setT 0 = f� 01; �

0
2g with T 01 = C1 = 6; T 02 =

C2 = 6, and(m0
1; k

0
1) = (m0

2; k
0
2) = (1; 2). As shown in

Figure 5(a),T 0 can be easily scheduled by executing the
mandatory jobs alternatively, butT cannot be scheduled
with the same (m,k)-patterns as shown in Figure 5(b).

We derive a sufficient condition that can be applied to
tasks with (m,k) constraints. Consider�i in aharmonictask
setT . Let �j has a higher priority than�i. Then for any
mandatory job of�i released att0, at mostd Ti

Tj
e mandatory

jobs of�j occur in [t0; t0 + Ti]. SinceT is a harmonic task
set, so

d
Ti
Tj
e =

� Ti

Tj
Ti > Tj

1 otherwise

Supposelij is the maximum number of mandatory jobs
from �j during any time interval of lengthTi. Let

Wi =
X
j�i

(lij � Cj) (8)

Then, if Wi

Ti
� 1, the total work load including the�i 's job

and all other higher priority mandatory jobs under consid-
eration can be completed in one�i 's period. Hence, task�i
is certainly schedulable. For general task sets, we have the
following theorem. (See [15] for the proof.)

Theorem 6 Given two task setsT and T 0 with T 0i �
Ti; C

0
i = Ci;m

0
i = mi; k

0
i = ki, andT 0j dividesT 0i if T 0j �

T 0i . With the given (m,k)-patterns, if
P

j�i(lij � Cj)=T
0
i �

1, wherelij is themaximumnumber of mandatory jobs dur-
ing any time interval of lengthT 0i , thenT is schedulable.

Given a task set with (m,k) constraints, we can apply
the algorithm in [10] to find the corresponding harmonic
task set, and determinelij from the given (m,k)-patterns.
Then, by Theorem 6, the schedulability of the task set can
be tested. A straightforward implementation of our suffi-
cient condition takesO(n3klogn) time, wherek = maxi ki
andn is the number of tasks. Though our analysis above is
based on the assumption thatDi = Ti; i = 1; :::; n, the re-
sult can be extended to the case whenDi < Ti; i = 1; :::; n
with the similar approach shown in [10]. Finding tighter
sufficient conditions without greatly increasing the compu-
tational cost is an open problem.

5. Experimental Results

In this section, we present some experimental results to
compare our approaches with that in [16]. For ease of expla-
nation, we useAlg Orig for the algorithm in [16],Alg RT

�
�
�
�

�
�
�
��������� �������� ����������

�
�
�
�

�
�
�
�

��������

����
����
����
����

�������� ��������

��
��
��
��

�
�
�
������
�����
�����
�����

����
����
����
����

�
�
�
� ��

��
��
��

6 12 18 24 36
Task 1’

Task 2’

Task 1

Task 2

6

7

12

14

18 24 36

21 286 12 18 24 36

miss miss

(a) A harmonic task set is schedulable
with 10 as the (m,k)-pattern for Task 1
and 01 for Task 2

(b) A general task set using the same (m,k)-patterns
as those in (a) is not schedulable even though the tasks
have longer periods

Figure 5. Harmonic task set and its original task set

No. of Schedulable Task Sets Improvement(%)
Utilization Alg Orig Alg RT Alg GA Alg RT Alg GA
0.8 - 1.0 28.3 31.1 31.2 9.89 12.24
1.0 - 1.2 133.7 153.7 151.1 15.96 13.01
1.2 - 1.4 105.6 123.9 127.8 17.32 21.02
1.4 - 1.6 20.1 26.6 36.3 32.34 80.60
1.6 - 1.8 1.6 3.0 6.1 87.50 281.25
1.8 - 2.0 0.0 0.1 0.6 NaN NaN

Table 1. Experimental results comparing the three approaches

for Algorithm 2 in Section 4.1, andAlg GA for our ap-
proach discussed in Section 4.2.

Recall that the goal of our approaches is to select a set
of (m,k)-patterns such that they will make the given task
set easier to be scheduled. According to Theorem 3, a task
set can be scheduled with any set of (m,k)-patterns if it is
schedulable with thedeeply-red(m,k)-patterns. In this case,
there would be no benefit to apply the (m,k)-patterns ob-
tained by either [16] or our approaches. Hence, we discard
such task sets during our experiments. Moreover, since uti-
lization factor values greatly impact task set schedulability,
a fair comparison needs to study a large spectrum of utiliza-
tion factor values.

In one set of our experiments, we consider task sets with
5 tasks starting from the same time. The period of each task
is randomly selected and uniform distributed between 10 to
50. The deadline of each task is assumed to equal its pe-
riod. Themi andki values are also randomly selected.ki is
uniformly distributed between 2 to 10, andmi is uniformly
distributed between 1 andki. We partition the total utiliza-
tion factor values into intervals of length 0.2. The execution
time of each task is randomly selected such that the utiliza-
tion values of the task sets are uniformly distributed within
each interval. To reduce statistical errors, the number of
task sets schedulable by at least one of the approaches is no
less than 50 within each interval, or at least 5000 different
task sets have been generated for the interval. In the genetic
algorithm implementation (Alg GA), both population size
and the number of generations are set to 30. To precisely

assess the performance of the approaches, we resort to sim-
ulation to check the schedulabilities of the task sets.

The program is run for 10 times and the average results
are collected in Table 1. In our experiments, task sets with
utilization values less than 0.8 are all schedulable using the
deeply-red (m,k)-patterns, and none of the task set with uti-
lization greater than 2.0 is schedulable with any of the ap-
proaches. Hence, we omit these data in Table 1. In Table
1, columns 2-4 list the average numbers of schedulable task
sets by each approach across 10 runs. The columns labeled
“Improvement” represent the improvements of our two ap-
proaches over the approach in [16].

From Table 1, one can conclude that bothAlg RT and
Alg GA improve the performance ofAlg Orig , and the im-
provements become more significant as the task-set utiliza-
tion factor values increase. In the experiments, as we ex-
pect, a task set is schedulable withAlg RT as long as it is
schedulable withAlg Orig . We would like to point out that
there exist few cases when a task set is schedulable with
Alg Orig but cannot be scheduled withAlg GA. The solu-
tion quality ofAlg GA can be improved if we increase the
population size of the number of generations. Of course,
this will increase the computation time.

We constructed another set of experiments to test the tim-
ing performance for each of the approaches. All the pa-
rameters are selected as above except the number of tasks
in each task set is set to 30. The experiments were con-
ducted on a SUN Ultra-1 workstation. The results show
that for each task set, excluding the time for simulation,

the CPU time forAlg Orig is negligible (� 0), 0.06s for
Alg RT, and 203.7s forAlg GA. Obviously,Alg GA does
take much longer CPU time thanAlg RT and Alg Orig .
Nevertheless, as shown in Table 1, for a large number
of task sets, much more task sets can be scheduled with
Alg GA, and in most cases,Alg GA has the best perfor-
mance among the three approaches in terms of the number
of task sets satisfying the (m,k) constraints.

6. Conclusions

In this paper, we address the problem of scheduling task
sets with (m,k) constraints using the fixed-priority scheme.
Similar to [16], our scheduling approach partitions the jobs
of each task into mandatory or optional jobs. All the jobs
are scheduled according to their static priorities with the op-
tional jobs assigned the lowest priority. We prove that find-
ing the optimal partition as well as determining the schedu-
lability of the resultant task set are both NP-hard problems.
Since traditional hard real-time analysis techniques can be
very time consuming for analyzing the behavior of such a
task set, we propose a new technique, based on the Gen-
eral Chinese Remainder Theorem, to quantify the interfer-
ence between tasks. We then propose two approaches to
improve the partitions proposed in [16]. Compared with the
approach in [16], our approaches produce better partitions
in terms of reducing the interference among mandatory jobs
and thus better exploit the (m,k) constraints in overloaded
systems. We prove that our solution space is a super set of
that in [16]. Furthermore, we propose a sufficient condition
which takes only polynomial time to predict the schedula-
bility for a task set with arbitrary (m,k)-patterns. Exper-
imental results show that the improvements with our ap-
proaches are quite significant.

Our future work includes constructing a more precise
fitness function for a task set with given (m,k)-patterns
and searching for tighter sufficient conditions to predict the
schedulability of such a task set.

7. Acknowledgments

We would like to thank the reviewers for their valuable
comments. The research is supported in part by NSF under
grant number MIP-9796162 and MIP-9701416.

References

[1] G. Bernat and A. Burns. Combining (n,m)-hard deadlines
and dual priority scheduling.Proceedings of Real-Time Sys-
tems Symposium, pages 46–57, Dec 1997.

[2] G. Buttazzo. Value vs. deadline scheduling in overload
conditions. Proceedings of Real-Time Systems Symposium,
pages 90–99, Dec 1995.

[3] M. Caccamo and G. Buttazzo. Exploiting skips in peri-
odic tasks for enhancing aperiodic responsiveness.Proceed-
ings fo Real-Time Systems Symposium, pages 330–339, Dec
1997.

[4] J.-Y. Chung, J. W. Liu, and K.-J. Lin. Scheduling peri-
odic jobs that allow imprecise results.IEEE Transactions
on Computers, 39(9):1156–1175, Sep 1990.

[5] M. K. Gardner and J. W.S.Liu. Performance of algorithms
for scheduling real-time systems with overrun and overload.
Proceedings of the eleventh euromicro conference on real-
time systems, pages 287–296, Jun 1999.

[6] M. Garey and D. Johnson.Computers and Intractability:
A Guid to the Theory of NP-Completeness. FreeMan, San
Francisco, CA, 1979.

[7] K. Gilad and S. Dennis. Dover: an optimal on-line schedul-
ing algorithm for overloaded uniprocessor real-time sys-
tems.Electronics Letters, 33(15):1301–1302, July 1997.

[8] D. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, MA, 1989.

[9] M. Hamdaoui and P. Ramanathan. A dynamic priority as-
signment technique for streams with (m,k)-firm deadlines.
IEEE Transactions on Computes, 44:1443–1451, Dec 1995.

[10] C.-C. Han and H.-Y. Tyan. A better polynomial-time
schedulability test for real-time fixed-priority scheduling al-
gorithms. Proceedings of the Real-Time Systems Sympo-
sium, pages 36–45, 1997.

[11] G. Koren and D. Shasha. Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips.Proceed-
ings of Real-Time Systems Symposium, pages 110–117, Dec
1995.

[12] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior.Proceedings of the 1989 IEEE Real-time Sys-
tem Symposium, pages 166–171, 1989.

[13] J. Y.-T. Leung and M.L.Merrill. A note on preemptive
scheduling of periodic, real-time tasks.Information Pro-
cessing Letters, 11(3):115–118, Nov 1980.

[14] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic,real-time tasks.Performance
Evaluation, 2:237–250, 1982.

[15] G. Quan and X. Hu.Enhanced Fixed-priority Scheduling
with (m,k)-firm Guarantee. Technical Report TR 00-09,
Dept. of Computer Science & Engineering, University of
Notre Dame, 2000.

[16] P. Ramanathan. Overload management in real-time con-
trol applications using (m,k)-firm guarantee.IEEE Transac-
tions on Parallel and Distributed Systems, 10(6):549–559,
Jun 1999.

[17] F. Remeo.Simulated Annealing: Theory and Applications to
Layout Problems. PhD thesis, Dept. Of Elec. Eng. & Comp.
Sci., University of California, Berkeley, Mar. 1989.

[18] K. Tindell. Adding time-offsets to schedulability analysis.
Technical Report YCS 221, Dept. of Computer Science,
University of York, England, 1994.

[19] R. West and K. Schwan. Dynamic window-constrained
scheduling for multimedia applications.The 6th Interna-
tional Conference on Multimedia Computing and Systems,
Jun 1999.

