
Fixed Priority Scheduling for Reducing Overall
Energy on Variable Voltage Processors

Gang Quan Linwei Niu
Dept. of CSE

University of South Carolina
Columbia, SC 29208
{gquan, niul}cse.sc.edu

Xiaobo Sharon Hu Bren Mochocki
Dept. of CSE

University of Notre Dame
Notre Dame, IN 46556

{ shu, bmochock}cse.nd.edu

Abstract— While Dynamic Voltage Scaling (DVS) is an effi-
cient technique in reducing the dynamic energy consumption
of a CMOS processor, methods that employ DVS without
considering leakage current are quickly becoming less efficient
when considering the processor’s overall energy consumption.
A leakage conscious DVS voltage schedule may require the
processor to run at a higher-than-necessary speed to execute a
given set of real-time tasks, which can result in a large number
of idle intervals. To effectively reduce the energy consumption
during these idle intervals, and therefore the overall energy
consumption, the DVS schedule must dictate that the processor
both enter and leave the power down state during these idle
intervals, while carefully considering the time and energy cost
of doing so. In this paper, we present a scheduling technique
that can effectively reduce the overall energy consumption for
hard real-time systems scheduled according to a fixed priority
(FP) scheme. Experimental results demonstrate that a processor
using our strategy consumes as less as 15% of the idle energy
of a processor employing the conventional strategy.

I. I NTRODUCTION

Power consumption has become one of the primary design
issues of next-generation portable, scalable and sophisticated
embedded systems. For CMOS circuits, power consumption
includes dynamic power and leakage power. Dynamic power
is due to the switching activities of the transistors, while
leakage power results from the sub-threshold current (or
leakage current) that flows through the transistors, even
when they should be logically “off”. Current power saving
techniques mainly focus on reducing dynamic power because
it has been the dominant component in the overall power
consumption for most embedded systems today. However,
as VLSI technology continues its evolution towards deep
sub-micron and nanoscale circuits operating at multi-GHz
frequencies, the rapidly elevated leakage power dissipation
will soon become comparable to, if not exceed, the dynamic
power consumption [1]. More advanced techniques required
for the development of future generations of low-power
embedded systems.

Due to the increasing challenges presented by leakage
power consumption, design efforts on all fronts must be
pursued to form an integrated solution for this problem.
Recently, many circuit and architecture techniques, such as
those presented in [2], [3], [4], [5], have been proposed

to control leakage power. It is our belief that real-time
scheduling plays a unique role in this integrated effort not
only because a large percentage of future embedded systems
will be real-time, but also because real-time scheduling is one
of the most effective ways of reducing power consumption,
through the exploitation of advanced power-management
features available in many of today’s processors.

Dynamic Voltage Scaling (DVS) can effectively reduce dy-
namic power consumption in real-time systems. DVS works
by varying the processor’s supply voltage and frequency
during runtime to match workload and deadline requirements.
However, the energy savings achievable via voltage reduction
is becoming severely limited due to the dramatic increase
of the leakage power consumption, a five-fold increase per
technology generation according to [1]. In fact, as shown in
our experiments, using DVS alone with no consideration of
leakage power consumption may actually increase the total
energy consumption! This situation occurs because DVS and
leakage reduction techniques are at odds. The most effective
way to reduce leakage power is to put the processor into
a sleep state during idle intervals, while DVS reduces the
processor’s execution speed to minimize dynamic power. By
reducing the execution speed, the processor utilization is
increased, thus reducing and fragmenting available idle times.
It is this tradeoff that makes leakage reduction a considerable
challenge.

In this paper, we study scheduling techniques that can
minimize the overall power consumption for a real-time
system scheduled using a fixed-priority (FP) scheme. Many
DVS based real-time scheduling techniques,e.g. [8], [9],
[10], [11], have been proposed to conserve energy in a real-
time system. Some of these approaches, such as [12], [13],
[14], [11], [15], [16], [17], are targeted at FP systems.

Recently, some work has been reported that deals with the
leakage power consumption in real-time scheduling. Leeet.
al. [18] proposed a leakage reduction scheduling technique
calledLC-EDF . They assumed a non-DVS processor, which
makes shutting down the processor during idle intervals the
most effective way to reduce the overall energy consumption.
Considering the timing and energy overhead associated with
shutting down the processor, LC-EDF carefully delays the



execution of arriving task instances in order to expand
the length of idle intervals. Due to the limitation of their
processor model, the overall energy consumed cannot be
minimized. Irani et. al. [19] theoretically proved that the
optimal voltage schedule, which also considers the leakage
power, can be constructed from the corresponding DVS
voltage schedule without the leakage power consideration.
In this case, higher-than-necessary processor speeds may be
required in the optimal schedule to balance the dynamic and
leakage power consumption. To better save idle energy during
idle periods, Jejurikaret. al. [20] proposed a better approach,
called CS-DVSP to extend idle intervals. They showed that
the minimal length of the idle intervals according toCS-
DVSP is no less that that byLC-EDF . However, all these
approaches are targeted at the real-time systems scheduled
according to the earliest deadline first (EDF) scheme [21].

We are more interested in real-time systems scheduled
according to a FP scheme. Because of their high predictabil-
ity, low overhead, and ease of implementation, FP schemes
are among the most popular in real-time embedded appli-
cations [22]. Leeet. al. [18] proposed a leakage reduction
scheduling technique for FP systems, calledLC-DP, by
extending the Dual-Priority (DP) scheduling model presented
in [23]. In LC-DP, idle time is treated as a “soft task” in the
DP model. A task instance is delayed by first being released
in the lower priority queue if the processor is idle. It is
promoted to the higher priority queue for execution at an
optimal promotion time to avoid any deadline misses.LC-
DP also immediately promotes a task instance to the higher
priority queue when the processor is not idle in order to
reduce the number of idle intervals. However, Jejurikaret.
al. [30] pointed out that this may potentially lead some task
instances to miss their deadlines. They further proved that
using the optimal promotion time as the allowable delay for
each task instance can guarantee for both dual priority and
fixed priority policies. However, since the computation of the
optimal promotion time for each task instance is performed
based on the exact response time analysis, which is NP-hard
in nature [23], this approach cannot be readily applied on-line
or for large task sets. If the promotion time is computed based
on the worst case response time (by assuming a task instance
arrives simultaneously with all the higher priority ones), the
possible delay for each task instance can be estimated rather
pessimistically which severely limits the energy performance
of this approach.

In this paper, we present a scheduling technique that com-
bines both the DVS and a shut-down strategy to effectively
reduce the overall energy consumption of FP hard real-time
systems. As shown by Iraniet. al. [19], such a technique
may require that the processor run at a higher-than-necessary
speed and hence produce a large number of processor idle
intervals. The major source of energy consumption in these
intervals is the result of leakage current, which will soon
become a major portion of the overall energy consumption.
In this regard, we present an efficient technique that delays

the execution of tasks to merge scattered idle intervals, thus
greatly reducing leakage power as well as the impact of
processor shutdown overhead. The proposed technique has
a very low on-line computation cost, and experiment results
show that our method can significantly reduce the energy
consumption when compared with the traditional non-delay
strategy.

This paper is organized as follows. Section II introduces
preliminaries related to our problem. Section III discusses our
delay analysis technique. Section III-C presents our on-line
leakage conscious DVS algorithm. Section IV demonstrates
the effectiveness of our approach based on simulations.
Section V concludes the paper.

II. PRELIMINARIES

This section, describes the real-time system and power
model used in this paper.

A. System model

We perform analysis based on a particular job set, denoted
by J = {J1, J2, · · · JN}. Each individual job is denoted
by Ji = (ri, ci, di), where ri, ci, and di are arrival time,
worst case execution cycle, and absolute deadline for the job,
respectively. Additionally, each job is statically assigned a
priority corresponding to its index. We assume thatJi has a
higher priority thanJj , if i < j. Often a real-time system is
described by a set of periodic tasks, where each task instance
represents one job. In these cases, it is sufficient to schedule
the set of jobs produced up until the Least Common Multiple
(LCM) of the periods of each task.

B. Power model

In a CMOS circuit, the power consumption includes both
dynamic and static components during its active operation.
The dynamic power consumption (Pdyn) mainly consists of
the switching power for charging and discharging the load
capacitance, which can be represented [24] as

Pdyn = αCLV 2f, (1)

whereα is the switching activity,CL is the load capacitance,
V is the supply voltage, andf is the system clock frequency.
The static power (Pleak) can be expressed [25] as

Pleak = IleakV, (2)

whereIleak is the leakage current which consists of both the
sub-threshold leakage current and the reverse bias junction
current in the CMOS circuit. Leakage current increases
rapidly with the scaling of the devices and becomes par-
ticularly significant with the reduction of the threshold
voltage [26]. Therefore, the leakage power consumption is
becoming a major part of the the active power consumption
(Pact), i.e.,

Pact = Pdyn + Pleak, (3)

in future CMOS circuits with low supply voltage and high
transistor density.



t=0 5 151310

J1

J4

J3

J2 C2=3

C3=1

C4=3

(a)

(c)

0 1 5 10

(b)

S

0.5

0.22

t

22 22

C1=1

1 12

t=0 5 151310

J1

J4

J3

J2
C2=3

C3=1

C4=3

22

C1=1

1 12

(d)

t=0 5 151310

J1

J4

J3

J2
C2=3

C3=1

C4=3

22

C1=1

1 12 18 7

idle
interval

idle
interval

3

idle
interval

Fig. 1. (a) A job set that consists of four jobs. (b) The voltage schedule that can reduce dynamic power consumption. (c) The actual executions of the
jobs according to the voltage schedule shown in(b). (d) Applying the threshold speed (sth = 0.5) results in the scattered idle intervals.

The processor consumes energy not only in its active mode
but also when it is idle. When the processor is idle, the major
portion of the power consumption comes from the leakage,
which is increasing rapidly with newer CMOS technologies.
Shutting down the processor, i.e., putting the processor into
a “sleep mode” can greatly reduce the energy consumption
during these idle periods. For example, it has been reported
in [27] that the power dissipation when the processor is idle
can be on the order of103 times that when it is sleeping.
While the processor consumes less power in sleep mode,
extra energy and time are needed for it to enter and later
leave this state, because one must save/restore the context as
well as initiate architectural components such as the cache,
translation look aside buffers, and branch target buffers. This
energy overhead may outweigh the energy saved if the idle
interval is not long enough. Assume that the energy overhead
of shutdown/wakeup isEo, the timing overhead isto, and the
power consumption of a processor in its idle and sleeping
state arePidle and Psleep, respectively. Then, the energy
can be saved only when the length of the idle interval is
larger thanTmin = max{ Eo

Pidle−Psleep
, to}. We callTmin the

minimal length of the idle interval.

C. A motivational example

Our goal is to minimize theoverall energy consumption
while guaranteeing task deadlines. As indicated in equa-
tion (1), the dynamic energy consumption is quadratically
related to the supplied voltage. Therefore, traditional DVS
scheduling techniques [14], [15], [16] try to reduce the
the supply voltage to as low a level as possible. As an
illustrative example, Figure 1(a) shows a job set with four

jobs. Figure 1(b) is the voltage schedule according to the
DVS scheduling technique presented in [14], and Figure 1(c)
shows the actual executions of the jobs based on the voltage
schedule from Figure 1(b).

As shown in Figure 1(b) and Figure 1(c), previous DVS
techniques [14], [15], [16] can effectively reduce the pro-
cessor speed and guarantee the deadlines of the real-time
jobs. However, such a voltage schedule is not always feasible
and/or energy efficient overall. First, practical processors
have a minimal voltage supply limitation. Second, they only
provide a discrete set of voltages, including the minimum
level. This means the processor will likely not be able to run
at a speed selected by a particular DVS algorithm. Instead,
the desired speed needs to be rounded up to the next discrete
speed that is available. On the other hand, even when a low
processor speed is available, the rapidly increased leakage
current may increase the static power consumption to the
extent of over-weighing the dynamic power consumption.
Therefore, to achieve the best energy efficiency, the processor
speed must be determined in a cooperative manner with both
dynamic and static energy consumption in mind.

Consider a job with workloadw. Let the total power of a
processor during its active mode bePact(s). Then the total
energy, i.e.,Eact(s), consumed to finish this job with speed
s can be represented as

Eact(s) = Pact(s)× w

s
. (4)

Hence, to minimize theEact(s) in equation 4, we have

Pact(s) = P ′act(s)s. (5)



Equation (5) computes the most energy efficient speed to
execute one job. We call this speed as thethreshold speed,
and denoted assth. To increase or decrease the processor
speed fromsth will increase either the dynamic or static
power, and thus the total power consumption.

Note that, while it is desirable to execute a job using the
threshold speed to minimize the active power consumption, it
is not always feasible to do so when considering the deadlines
and the preemption effects among jobs,i.e., jobs with higher
priorities can always block jobs with lower priorities until
they are finished. Given a voltage schedule, a job that is
required to run at a speed higher thansth must be executed
with that higher speed to guarantee the schedulability of the
job set. For jobs having required speeds lower thansth, they
can be executed atsth to conserve energy. Figure 1(d) shows
the scheduling results withsth = 0.5.

Usingsth for jobs with speed requirements lower thansth

while maintaining the speeds of the rest certainly guarantees
all deadlines. The problem is, as shown in Figure 1(d),
it can result in a large number of scattered idle intervals.
While using a processor shut-down strategy is the most
efficient method to reduce the energy consumption for these
intervals, too many shut-downs will incur a significant energy
overhead. Moreover, using a processor power down strategy
is not always feasible or necessarily energy efficient if the idle
interval is not long enough. Unless we can effectively deal
with the idle intervals in the schedule, we cannot achieve our
ultimate goal of maximizing the overall energy performance
of the system. In what follows, we introduce our approach
to save the idle energy when scheduling a FP task set by
extending the length of idle intervals.

III. L EAKAGE CONSCIOUS SCHEDULING ALGORITHM FOR

A FP TASK SET

In this section, we present our scheduling technique to
reduce the idle energy for a set of real-time jobs. We first
analyze how a job set can be delayed without missing
deadlines. Then we construct an algorithm that can be applied
on-line to reduce energy consumption during idle periods.

A. Basic concepts

The power down strategy is in favor of longer idle inter-
vals. To extend an idle interval, one can always increase the
processor speed so that each job is executed faster. However,
as shown in equation 5, increasing the speed oversth will
increase the overall power consumption. A better approach,
as suggested in [18], [19], [20], would be one that extends the
interval lengths by delaying the executions of the incoming
jobs, i.e. a job is executed as soon as possible when the
processor is not idle, but delayed as much as possible when
the processor is idle.

Delaying job executions helps to merge scattered idle
intervals into longer ones. More energy can be saved because
energy overhead during the shut-down process is reduced.
Moreover, intervals that were previously shorter thanTmin

can now be shut down. As mentioned before, the power

dissipation when the processor is idle can be in the order
of 103 times of that when the processor is shut down.

The main difficulty when extending the length of idle inter-
vals is to determine how long a job set can be delayed without
causing any future job to miss its deadline. Chetto [28]
introduced a static scheduling technique called EDL (earliest
deadline as late as possible) to determine the longest time
that a job can be delayed. However, it requires the jobs
be scheduled according to the earliest deadline scheduling
algorithm. For job set scheduled by a FP (fixed priority)
scheme, we derived a new approach to determine the maximal
time point to which the job set can be delayed. To facilitate a
clear explanation, we first introduce the following definitions.

Definition 1: Let job set (J ) be executed with a constant
speeds∗.
• The latest starting time of a job, e.g.,Ji ∈ J , (denoted

as lst(Ji)) is the latest time such that, if the execution
of Ji or jobs with a priority higher thanJi start no later
than lst(Ji), Ji will meet its deadline.

• The latest starting time of a job set, e.g.J , (denoted as
LST (J )) is the latest time such that, if the execution
of any jobs inJ starts no later thanLST (J ), all jobs
will meet their deadlines.

In [29], Mochockiet. al. introduced a method to compute
LST (J ) when J is scheduled according to EDF. Their
method is based on the following lemma.

Lemma 1: [29] Let job set (J ) be executed with a constant
speeds∗. Then,

lst(Ji) = di −
∑

Jk∈hp(Ji)

ck

s∗
, (6)

wherehp(Ji) is the jobs with the same or higher priorities
than that ofJi. Furthermore,

LST (J ) = min
i
{lst(Ji)}. (7)

The rationale behind Lemma 1 is that if the accumulated
workload from a jobJi and all the higher priority jobs can
be finished beforedi, the deadline ofJi will be satisfied.
In addition, the minimal latest starting time of all the jobs
can certainly guarantee all the deadlines. It is not difficult
to see that using equation (7) to compute the starting time
for a FP job set can still guarantee the feasibility of this job
set. Unfortunately, using Lemma 1 may not ensure that the
feasiblestarting time for the FP job set is always the latest.
For example, in Figure 2(a), according to equation (6) and
(7), assumings∗ = 0.5, we havelst(J1) = 13, lst(J2) = 14,
lst(J3) = 3, lst(J4) = 6, and therefore,LST (J ) = 3.
However, as shown in Figure 2(b), if the job set is delayed to
t = 6, all the jobs can meet their deadlines. The consequence
is that all of the short idle intervals cannot be effectively
merged as shown in Figure 2(a).

Note that accumulating the workload from all the higher
priority jobs in equation (6) is equivalent toassumingthat
all the higher priority jobs have to finish before the deadline
of current job. This is true for job sets scheduled according
to EDF, but is not necessarily true for FP job sets since



t=0 5 151310

J1

J4

J3

J2
C2=3

C3=1

C4=3

22

C1=1

1 12

(a)

3 18 t=0 5 151310

J1

J4

J3

J2
C2=3

C3=1

C4=3

22

C1=1

1 12

(b)

8 187

idle
interval

idle
interval

idle
interval

t=0 5 2213 1512

J1

J4

J3

J2 C2=3

C3=1

C4=3

C1=1

1 10

(c)

t=0 5 151310

J1

J4

J3

J2
C2=3

C3=1

C4=3

22

C1=1

1 12

(d)

8 18

deadline miss

6

Fig. 2. (a) The latest starting time of job set from Figure 1(a) is 3 according to Lemma 1 (s∗ = 0.5). (b) Delay the job set untilt = 6 and every job
can still meet its deadline. (c)J3-scheduling points (marked by “x”). (d) Delay execution of the job set tillt = 8 andJ4 misses its deadline.

higher priority jobs in a FP job set can arrive much later
than the deadline of the current job. In what follows, we
present a more effective technique to accurately identify the
latest starting point for FP job sets.

B. Analyzing the latest starting time for FP job sets

Recall that the jobs with required speeds higher thansth

should run at their required speeds in order to guarantee
deadlines. These jobs cannot be delayed at all and must be
executed within the intervals in the DVS voltage schedule.
For ease of computation, we “shrink” the intervals during
which jobs with a required speed higher thansth are exe-
cuted. This includes removing all jobs in these intervals, and
also adjusting the deadlines and arrival times of the rest of
the jobs. Specifically, we have the following definition.

Definition 2: (Adjusted job set) A job set is called an
adjusted job set of J , if all jobs in J having a speed re-
quirement higher thansth (as well as the intervals containing
these jobs) are removed, and the arrival times and deadlines
of the rest of the jobs are adjusted correspondingly.

Before we explain our strategy in detail, we also want to
introduce several important concepts.

Definition 3: (Scheduling point) Time t is called aJn-
scheduling point if t = dn or t = ri, i < n and rn < ri <
dn.

As explained before, a job set is delayed only when the
processor is idle. Therefore, when identifying the delay that
a job can tolerate, we are more interested in the case that the
processor is idle when a job arrives. Specifically, we have
the following definition.

Definition 4: (Reduced job set)An adjusted job set is
called aJn-reduced job setif every jobJi in the set satisfies
ri ≥ rn.

We use Figure 2 to illustrate these definitions. Figure 2(c)
shows theJ3-reduced job set and all theJ3-scheduling points
(as marked by “x”). Note that in Figure 2(c) ifJ3 is to
be finished at any one of theJ3-scheduling points (e.g.,
t = 12) all the higher priority jobs arriving before this
scheduling point (e.g.,J1) must be completed before this
scheduling point. Therefore, for eachJn-scheduling pointt,
the execution ofJn or any higher priority jobs must begin
no later thanstn(t), where

stn(t) = t−
∑

Jk∈hp(Jn)

ck

sth
, rk < t, (8)

wherehp(Jn) is the set of jobs with a priority greater than
or equal toJn and arriving beforet. It is not difficult to
see that differentJn-scheduling points can lead to different
stn(t). Specifically, we have the following Lemma.

Lemma 2:Let job set (J ) be theJn-reduced job set and
S(Jn) be the set of allJn-scheduling points. Then,

lst(Jn) = max{stn(t), t ∈ S(Jn)}. (9)
The correspondingJn-scheduling point is denoted as

P (lst(Jn)). The proof for this lemma is trivial according
to Definition 1 and is therefore omitted. From Figure 2(c),
we havelst(J3) = 8 (andP (lst(J3)) = 12). And it can be
readily verified thatJ3 can meet its deadline with respect to
lst(J3) = 8.

We are interested in finding the latest time for a FP job set.
Unfortunately,lst(Jn) can only guarantee the feasibility of
job Jn but not necessarily any other job in theJn-reduced
job set. For example, as shown in Figure 2(d), ifJ3 and
all the higher priority jobs are delayed tot = 8, J4 will
miss its deadline. The reason is that, withlst(J3) = 8,
J3 and the higher priority jobs are not completed until the



corresponding scheduling pointt = 12, which will block
the executions ofJ4 and cause it to miss its deadline. A
remedy for this problem is to compute the latest starting
times in a similar way for all the lower priority jobs that
may potentially be preempted, and pick the smallest one. We
call this latest starting time theeffectivelatest starting time
for the job, denoted as̃lst(Jn). The above idea is formulated
in Algorithm 1.

Algorithm 1 Compute the effective latest starting time
˜lst(Jn) for job Jn such thatJn and all the lower priority

jobs in theJn-reduced job set can meet their deadlines.
1: Input: The Jn-reduced job setJ .
2: Output: The effective latest starting timẽlst(Jn)
3: nlst = lst(Jn); //Equation (9)
4: end = P (lst(Jn));//the scheduling point corresponding

to lst(Jn)
5: for Jk ∈ J , k = n + 1, n + 2, ... do
6: if rk < end then
7: nlst = min{nlst, lst(Jk)};
8: end = max{end, P (lst(Jk))};
9: end if

10: end for
11: ˜lst(Jn) = nlst;

For theJn-reduced job set, Algorithm 1 helps to compute
the latest time for aJn-reduced job set. This conclusion is
formally presented in the following lemma.

Lemma 3:Let J be theJn-reduced job set. The effective
latest starting time (̃lst(Jn)), output from Algorithm 1, is
the latest time thatJn and all the higher priority jobs can be
delayed to such thatJn and all the lower priority jobs inJ
will meet their deadlines.

Proof: According to Lemma 2, the schedulability for
Jn is guaranteed in line (3) of Algorithm 1 as well as the fact
that nlst can only be smaller later on with the progress of
the algorithm. Variableend helps to keep track of all lower
priority jobs that are potentially preempted when delaying
Jn and jobs with a priority higher thanJn to nlst. The
schedulability for each of these jobs is guaranteed in line
(7) for the same reason as that ofJn.

Therefore, to prove Lemma 3, we only need to check
if other lower priority jobs (i.e., with a release time later
than end during each FOR loop) can meet their deadlines.
Consider a lower priority jobJk in one of the FOR loops and
let rk > end. Note that, when consideringJk with respect
to nlst and end, any job with priority the same or higher
than that ofJk that is delayed tonlst will finish no later
than end. Therefore, delaying these jobs will not affect the
schedulability ofJk. Moreover, the value ofnlst can only be
reduced later on, soJk can meet its deadline ifJ is delayed
to nlst.

With Algorithm 1, we can compute the effective latest
starting time for each of the jobs in the adjusted job set. For
example, in Figure 2(c), we havẽlst(J1) = 8, ˜lst(J2) = 16,

˜lst(J3) = 6, ˜lst(J4) = 10. Also, we observe the following
interesting property of˜lst(Jn).

Lemma 4:For adjusted job setJ , let Ji, Jk ∈ J , i < k.
Then ˜lst(Ji) ≤ ˜lst(Jk) if ri < rk.

Proof: The proof for the casedi ≤ rk is trivial since
˜lst(Ji) cannot exceeddi. We use contradiction to prove that

whendi > rk andri < rk, ˜lst(Ji) > ˜lst(Jk) is not possible.
Let Ji and Jk represent the correspondingJi- and Jk-

reduced job sets, respectively, andLP (Jp,Jp) represent the
jobs inJp with priorities the same or lower than that ofJp.
Then

Ji ⊃ Jk, and LP (Ji,Ji) ⊃ LP (Jk,Jk).

According to Lemma 3, delaying the execution ofJi to
˜lst(Ji) can ensure that all jobs inLP (Ji,Ji) meet their

deadlines. If ˜lst(Ji) > ˜lst(Jk), this contradicts to the fact
that ˜lst(Jk) is the latest time thatJk can be delayed to such
that the jobs inLP (Jk,Jk) can meet their deadlines.

Recall that our goal is to identify the latest starting time
for a job set such thateveryjob can meet its deadline. Using
˜lst(Jn) cannot achieve this goal because (1) it is based on

an adjusted job set and (2) because the schedulability of jobs
with a priority higher than that ofJn is not guaranteed.
However, based on Lemma 3 and Lemma 4, we have the
following theorem.

Theorem 1:Given a general job setJ and threshold speed
sth, the latest starting time forJ can be computed as

LST (J ) = min
n
{ ˜lst(Jn))}. (10)

where ˜lst(Jn) is rn if Jn requires a speed higher thansth

in the DVS voltage schedule, otherwisẽlst(Jn) is computed
according to Algorithm 1.

Proof: We first assumeJ is an adjusted job set. Let
LST (J ) = ˜lst(Ji) = minn{ ˜lst(Jn)}. We want to prove
that any one of the jobs,i.e. Jk, can meet their deadlines if
job setJ is delayed to ˜lst(Ji).

Note that from Lemma 4, inJ , we have for anyk < i,
rk ≥ ri. We consider three different cases separately.

• Case 1:k < i.
Let job rq be the earliest arrival time for any jobJq such
that q < k. If we haverq ≥ rk, according to Lemma 3,
Jk can meet its deadline sincẽlst(Jk) ≥ ˜lst(Ji). On
the other hand, ifrq < rk, the schedulability ofJk

is guaranteed with respect tõlst(Jq). Since ˜lst(Jq) ≥
˜lst(Jk) ≥ ˜lst(Ji), Jk can meet its deadline if job setJ

is delayed to ˜lst(Ji).
• Case 2:k = i.

The only difference between job setJ and theJk-
reduced job set is thatJ may contain some jobs with
priorities lower than that ofJk. According to Lemma 3,
Ji can meet its deadline since adding any lower pri-
ority job to theJk-reduced job set cannot change the
schedulability ofJi and can only decreasẽlst(Ji).

• Case 3:k > i



If all the jobs arrive later thanJi, Lemma 3 can
guaranteeJk ’s deadline. Assume there is at least one
job arriving earlier thanJi, and letJk be the one with
the earliest arrival time. Sincẽlst(Ji) ≤ ˜lst(Jk), Jk

and all the lower priority jobs can meet their deadlines.
Note that, for jobJq such thati < q < k, removingJk

and all the lower priority jobs fromJ neither changes
its feasibility nor increase ˜lst(Jq). If rq < ri andrq is
the next earliest arrival time of the jobs, we can prove
that Jq and all the lower priority jobs can meet their
deadlines similarly. By repeating this process, we thus
prove that all the lower priority jobs can meet their
deadlines ifJ is delayed to ˜lst(Ji).

WhenJ is a general job set, any job with speed require-
ment higher thansth cannot be delayed according to equation
(10). Hence, no such job will miss its deadline. In addition,
the latest starting time for the rest of the jobs is no later than
that computed with the adjusted job set. Therefore, all the
jobs can meet their deadlines.

From Theorem 1, we haveLST (J ) = 6, which is exactly
the case shown in Figure 2(b).

C. The leakage conscious scheduling algorithm

After studying how long a job set can be safely delayed,
we are now ready to present our scheduling strategy to reduce
the overall energy consumption. Our approach consists of two
phases, an off-line phase and an online phase. In the off-line
phase (Algorithm 2), we compute foreachjob, assuming the
processor is idle upon the arrival of the job, how long the
remaining job set can be delayed; while in the online phase
of our approach (Algorithm 3), we simply use the results
produced in the off-line phase and make the scheduling
decision on-line.

In Algorithm 2, the latest starting time for the coming
job set is computed according to Theorem 1. Note that even
though equation (10) requires the computation of theeffective
latest starting time for all jobs, it is not necessary in practice.
Note thatTB (in line 8 of Algorithm 2) actually sets up an
upper delay bound,i.e. the job set cannot be delayed to any
time later thanTB without missing a deadline. Therefore,
we only need to check the higher priority jobs (Lemma 4)
released beforeTB to determine the latest starting time for the
job set (line 9-13). In order to do so, we only need to perform
linear scanning within the interval from the earliest arrival
time to TB , which has a complexity ofO(N ′), whereN ′ is
the total number of higher priority jobs within this interval.
The complexity of the rest of the algorithm is also linear
related toN ′. SinceN ′ is usually very small for a periodic
task set, Algorithm 2 typically has a very low computation
complexity.

The on-line algorithm follows the principles discussed
earlier. It takes the desired processor speed (sn) and the
maximal delay (δn) for each jobJn (output from Algo-
rithm 2) as input. When the processor is not idle, it will run
the jobs in the ready queue according to the fixed priority

Algorithm 2 The off-line phase to determine the processor
speed (sn) for each job (Jn), and, assumingJn is the
next arrival job, to compute the maximal delay (δn) for the
remaining job set.

1: Input: J , sth

2: Output: sn, δn, n = 1, 2, ..., N
3: Compute the DVS voltage schedule forJ and thus

sn, n = 1, 2...N ;
4: for Jn ∈ J do
5: Jc = J ;
6: // make a copy ofJ
7: Remove allJi ∈ Jc with ri < rn;
8: sn = max{sn, sth};
9: TB = ˜lst(Jn);

10: for Jk with rk < TB andk < n do
11: if ˜lst(Jk) < TB then
12: TB = ˜lst(Jk);
13: //computed by Algorithm 1
14: end if
15: end for
16: δn = TB − rn;
17: end for

scheme; when it is idle, the later jobs will be delayed to
the latest starting time (line 7) computed based on the first
job arrival. The algorithm is calledFPLK and illustrated in
Algorithm 3. FPLK has a constant time complexity, because
it only requires a single table lookup to identifyδn.

Algorithm 3 (FPLK ) The on-line leakage conscious fixed-
priority scheduling algorithm

1: Input: (J , sn, δn, n = 1, ..., N)
2: if processor is not idlethen
3: Run jobJn in the ready queue according to FP, using

speedsn;
4: else
5: Let Jn be the next coming job;
6: nlst = rn + δn;
7: if nlst− tcur > Tmin then
8: // tcur is the current time
9: Shut down the processor and set up the wake up

time to benlst− tcur;
10: end if
11: end if

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the overall energy efficiency
of the proposed technique with several experiments. In our
experiments, we compare five strategies:

• No DVS, No Delay (NSND)The task sets are scheduled
without DVS, i.e., all jobs are always executed using the
highest speed. A processor is shut down when there is
enough idle time, and no task instance is delayed.



0

0.5

1

1.5

2

2.5

0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7

Utilization 

n
o

rm
al

iz
ed

 t
o

ta
l e

n
er

g
y 

co
n

su
m

p
ti

o
n



NSND

SNTND

STND

STD

SDP

Fig. 3. The average total energy consumptions of five different approaches.

• DVS, No Threshold, No Delay (SNTND)The task sets
are scheduled with DVS but with no consideration of the
leakage (i.e. the threshold speed), and no task instance
is delayed;

• DVS, Threshold, No Delay (STND) The task sets are
scheduled with DVS, and the jobs are executed with
the threshold speed,i.e. sth, if its speed requirement is
lower thansth in the DVS voltage schedule. However,
no job execution is delayed.

• DVS, Threshold, Delay (STD) – Our approachTask
sets are scheduled with DVS with consideration of both
the leakage (i.e. the threshold speed) and execution delay
(Algorithm 2).

• DVS, Dual Priority (SDP) Task sets are scheduled
with DVS and delayed with Dual Priority. This is the
approach in [30]. We compute the promotion time once
for each task based on the worst case scenario and use
it for each jobs in the task.

For the algorithms employing DVS above (SNTND, STND
and STD), the method in [14] is used to find the off-
line voltage schedule under FP scheme. This method is
chosen because, while the FP DVS problem is NP-Hard,
this heuristic can provide results very close to that by the
optimal one [15] in polynomial time (O(N3)). The power
model and technology parameters of the processor used in
our simulation are adopted from [25]. The threshold speed is
around 0.4 [20] for this processor model. For the processor
power down/up overhead, we use the same values as that used
in [20], i.e., Pidle = 240mW , Eo = 483µJ , andto = 2ms.

The real-time systems tested in our experiments are pe-
riodic task systems randomly generated with five periodic
tasks each. All tasks are scheduled with the RM method.
The period of each task is randomly chosen in the range of
[5, 30]ms. The deadline of each task is set to be equal to its
period. We examine the different energy saving performance

of the above four approaches for systems with different
utilization. Based on the utilization bound for periodic task
set with five periodic tasks, i.e.,U = 5(21/5 − 1) = 0.74,
we divide utilization ranging from 0.0 to 0.7 into intervals
of length 0.1. Within each interval, we randomly generated
no less than 50 periodic task sets. For each task set, we
collect both overall energy consumption and the idle energy
consumption for the task set starting from 0 to the LCM of
its periods. We accumulated the values for each utilization
interval, normalized1 the results byNSND. The results are
shown in Figure 3 and Figure 4, respectively.

From Figure 3, it is interesting to note that using DVS
without the consideration of the leakage current (SNTND)
cannot effectively reduce the overall energy consumed. This
is particularly true when the utilization of the task set is
low. For example, when the utilization is less than 0.2, the
average overall energy consumption withSNTND is in fact
larger than that byNSND. When the utilization is less than
0.1, the average overall energy with “pure” DVS voltage
schedule (SNTND) is 1.2 times higher than that byNSND,
and almost as three times as that by the other two strategies.
This is because, when the utilization is low, the processor
is running at a very low speed inSNTND. The processor
consumes more energy due to the large leakage current. Also,
the overall energy consumption ofSTD is about19.6% less
than STND and SDP. When the utilization of the task set
is high, from Figure 3, the overall energy consumption for
SNTND seems to be very close to that ofSTND, STD or
SDP. This is because the processor usually has to run at
a speed higher than the threshold speed to guarantee the
deadlines of the tasks. Therefore, all these strategies use
the similar speed most of the time and have similar energy
consumption.

Since the leakage power consumption is becoming compa-
rable or even exceeding the dynamic power consumption, the
energy consumption during the processor idle time, mainly
due to the leakage current, will soon become a significant
part of the overall energy consumption. We are therefore
interested in investigating how our approach can help to
reduce this part of energy consumption compared with other
approaches. In Figure 4, it is not surprising to see that
SNTND consumes very little idle energy since there is less
slack time during task execution. It is interesting to see that
by delaying the execution of the jobs (STD), the idle energy
is greatly reduced compared withSTND. The smaller the
utilization is, the more energy is saved during idle periods
by delaying jobs. When the utilization is low, the threshold
speed can be much larger than the speed required for each
job and results in a large number of idle intervals.STD
can effectively merge many of the intervals by delaying the
execution of jobs and is therefore a much better approach
than STND. As shown in Figure 4, when the utilization is
within 0.1-0.2, the average idle energy consumed bySTD

1For example, normalizingC to N means usingC
N

as the value of C for
comparisons.



0

0.2

0.4

0.6

0.8

1

1.2

0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7

Utilization

N
o

rm
al

iz
ed

 Id
le

 E
n

er
g

y

NSND

SNTND

STND

STD

SDP

Fig. 4. The average idle energy consumptions by five different approaches.

is less than 15% of that consumed bySTND. When the
utilization is high, there is only a limited number of idle
intervals. In addition, many jobs may require speeds higher
than the threshold speed which cannot be delayed at all.
Hence, the idle energy efficiency ofSTD is limited. Even so,
when the utilization of a task set is within [0.4-0.5], the idle
energy consumed usingSTD is, on average, around 50% of
that usingSTND as shown in Figure 4. Our experiments also
show that pessimistically estimating the delay amount for
each job inSDP can severely degrade the energy efficiency
of this approach. As shown in Figure 4, when the utilization
is within 0.3-0.4, the average idle energy consumed bySTD
is less than 10% of that consumed bySDP.

V. SUMMARY

Reducing the overall power dissipation is critical in the
design of future real-time embedded systems. As the IC
technology continues to scale down, leakage power consump-
tion is becoming a more and more significant part of the
overall power consumption. In this paper, we investigated
the problem of applying scheduling techniques to reduce
the overall energy consumption for fixed-priority real-time
systems.

As shown by our experiments and discussions, applying a
DVS based voltage schedule alone cannot effectively reduce
the overall energy consumption for the system, and can
even increase it significantly. A leakage power conscious
DVS voltage schedule may require the processor to adopt
a speed higher-than-necessary to avoid the rapidly increasing
leakage current at low voltage levels. This may result in
a large number of small idle intervals during job execu-
tion. We proposed an efficient approach to merge these
intervals by delaying the execution of the jobs to reduce
the processor shutdown overhead and improve the overall
energy performance. In our approach, the maximal delay

for each job is statically computed, and is then applied on-
line to extend idle intervals. Based on a practical processor
model, our experimental results clearly demonstrate that this
approach has a great potential in future embedded systems
to reduce the overall power consumption. Finally, it is worth
mentioning that our approach is a greedy approach. How to
achieve the optimal overall energy performance is another
very interesting problem and needs further study.

REFERENCES

[1] ITRS, International Technology Roadmap for Semiconductors. Austin,
TX.: International SEMATECH, http://public.itrs.net/.

[2] C. Neau and K. Roy, “Optimal body bias selection for leakage improve-
ment and process compensation over different technology generations,”
ISLPED, pp. 116–121, 2003.

[3] S. Duarte, Y. Tsai, N. Vijaykrishnan, and M. Irwin, “Evaluating run-
time techniques for leakage power reduction,”VLSID’02, 2002.

[4] B. H. Calhoun, F. A. Honore, and A. Chandrakasan, “Design method-
ology for fine-grained leakage control in mtcmos,”ISLPED, pp. 104–
109, 2003.

[5] M. Johnson, D. Somasekhar, and K. Roy, “Leakage control with
efficient use of transistor stacks in single threshold cmos,”DAC, pp.
442–445, 1999.

[6] J. Halter and F. Najm, “A gate-level leakage power reduction method
for ultra low power cmos circuits,”CICC, pp. 475–478, 1997.

[7] F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. Ko, and C. Hu,
“Dynamic threshold-voltage mosfet (dtmos) for ultra-low voltage vlsi,”
IEEE Trans. on Elec. Dev., vol. 44, no. 3, pp. 414–422, Mar 1997.

[8] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
cpu energy,”IEEE Annual Foundations of Comp. Sci., pp. 374–382,
1995.

[9] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-
cally variable voltage processors,”ISLPED, pp. 197–202, August 1998.

[10] H. Aydin, R. Melhem, D. Mosse, and P. Alvarez, “Dynamic and
aggressive scheduling techniques for power aware real-time systems,”
IEEE Real-Time System Symposium, 2001.

[11] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in18th ACM Symposium on
Operating Systems Principles, 2001.

[12] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for
hard real-time systems,”DAC, pp. 134–139, 1999.

[13] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-
time embedded systems on variable speed processors,”International
Conference on Computer-Aided Design, pp. 365–368, 2000.

[14] G. Quan and X. S. Hu, “Energy efficient fixed-priority scheduling for
real-time systems on voltage variable processors,”DAC, pp. 828–833,
2001.

[15] G. Quan and X. Hu, “Minimum energy fixed-priority scheduling
for variable voltage processors,”2002 European Design and Test
Conference, 2002.

[16] H.-S. Yun and J. Kim, “On energy optimal voltage scheduling for
fixed-prioirty hard real-time systems,”ACM Transactions on Embedded
Computing Systems, vol. vol 2, 2003.

[17] W. Kim, J. Kim, and S.L.Min, “Dynamic voltage scaling algorithm
for fixed-priority real-time systems using work-demand analysis,”
ISLPED, 2003.

[18] Y. Lee, K. Reddy, and C. Krishna, “Scheduling techniques for reducing
leakage power in hard real-time systems,”ECRTS, 2003.

[19] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power savings,”
ISDA, 2003.

[20] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,”DAC, pp. 275 – 280, 2004.

[21] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,”Journal of the ACM, vol. 17,
no. 2, pp. 46–61, 1973.

[22] J. Liu, Real-Time Systems. NJ: Prentice Hall, 2000.
[23] R. Davis and A. Burns, “Optimal priority assignment for aperiodic

tasks with firm deadlines in fixed-priority preemptive systems,”Infor-
mation Processing Letters, vol. 53, no. 5, pp. 249–254, 1995.



[24] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power cmos
digital design,” IEEE Journal of Solid-State Circuits, vol. 27, no. 4,
pp. 473–484, April 1992.

[25] S. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic
voltage scaling and adaptive body biasing for lower power microp-
orcessor under dynamic workloads,”ICCAD, 2002.

[26] D.Duarte, N.Vijaykrishnan, M.J.Irwin, H.-S. Kim, and G.McFarland,
“Impact of scaling on the effectiveness of dynamic power reduction
schemes,”ICCD, 2002.

[27] Intel, PXA250 and PXA210 Applications Processors Design Guide.
Intel, 2002.

[28] H. Chetto and M. Chetto, “Some results of the earliest deadline
scheduling algorithm,”IEEE Transction On Software Engineering,
vol. 15, 1989.

[29] B. Mochocki, X. Hu, and G. Quan, “A realistic variable voltage
scheduling model for real-time applications,”IEEE/ACM 2002 Inter-
national Conference on Computer Aided Design, 2002.

[30] R. Jejurikar and R. Gupta, “procrastination scheduling in fixed priority
real-time systems,”LCTES, 2004.


