Fixed Priority Scheduling for Reducing Overall
Energy on Variable \Voltage Processors

Gang Quan Linwei Niu Xiaobo Sharon Hu Bren Mochocki
Dept. of CSE Dept. of CSE
University of South Carolina University of Notre Dame
Columbia, SC 29208 Notre Dame, IN 46556
{gquan, niu}jcse.sc.edu { shu, bmochockcse.nd.edu

_ Abstract—While Dynamic Voltage Scaling (DVS) is an effi- to control leakage power. It is our belief that real-time
cient technique in reducing the dynamic energy consumption scheduling plays a unique role in this integrated effort not
of a CMOS processor, methods that employ DVS without 5y hecause a large percentage of future embedded systems

considering leakage current are quickly becoming less efficient ilb I-ti but also b I-ti heduling i
when considering the processor’s overall energy consumption. wilfbe real-ime, but also because real-ime schedufing IS one

A leakage conscious DVS voltage schedule may require theOf the most effective ways of reducing power consumption,
processor to run at a higher-than-necessary speed to execute athrough the exploitation of advanced power-management
given set of real-time tasks, which can result in a large number features available in many of today’s processors.

of idle intervals. To effectively reduce the energy consumption Dynamic Voltage Scaling (DVS) can effectively reduce dy-

during these idle intervals, and therefore the overall energy g tion i -ti ¢ DVS K
consumption, the DVS schedule must dictate that the processor namic power consumption In real-ime systems. WOrks

both enter and leave the power down state during these idle Py varying the processor's supply voltage and frequency
intervals, while carefully considering the time and energy cost during runtime to match workload and deadline requirements.

of doing so. In this paper, we present a scheduling technique However, the energy savings achievable via voltage reduction
that can effectively reduce the overall energy consumption for is becoming severely limited due to the dramatic increase

hard real-time systems scheduled according to a fixed priority f the leak fi five-fold i
(FP) scheme. Experimental results demonstrate thataprocessoro € leakage power consumption, a Tive-lold Increase per

using our strategy consumes as less as 15% of the idle energyteéchnology generation according to [1]. In fact, as shown in
of a processor employing the conventional strategy. our experiments, using DVS alone with no consideration of

leakage power consumption may actually increase the total
energy consumption! This situation occurs because DVS and
Power consumption has become one of the primary desigakage reduction techniques are at odds. The most effective
issues of next-generation portable, scalable and sophisticatery to reduce leakage power is to put the processor into
embedded systems. For CMOS circuits, power consumptiansleep state during idle intervals, while DVS reduces the
includes dynamic power and leakage power. Dynamic powgrocessor’s execution speed to minimize dynamic power. By
is due to the switching activities of the transistors, whileeducing the execution speed, the processor utilization is
leakage power results from the sub-threshold current (oicreased, thus reducing and fragmenting available idle times.
leakage current) that flows through the transistors, evéris this tradeoff that makes leakage reduction a considerable
when they should be logically “off”. Current power savinghallenge.
techniques mainly focus on reducing dynamic power becausdn this paper, we study scheduling techniques that can
it has been the dominant component in the overall powetinimize the overall power consumption for a real-time
consumption for most embedded systems today. Howevsystem scheduled using a fixed-priority (FP) scheme. Many
as VLSI technology continues its evolution towards dedpVS based real-time scheduling techniquesy. [8], [9],
sub-micron and nanoscale circuits operating at multi-GH0], [11], have been proposed to conserve energy in a real-
frequencies, the rapidly elevated leakage power dissipatitime system. Some of these approaches, such as [12], [13],
will soon become comparable to, if not exceed, the dynamit4], [11], [15], [16], [17], are targeted at FP systems.
power consumption [1]. More advanced techniques requiredRecently, some work has been reported that deals with the
for the development of future generations of low-powdeakage power consumption in real-time scheduling. ke
embedded systems. al. [18] proposed a leakage reduction scheduling technique
Due to the increasing challenges presented by leakaggledLC-EDF. They assumed a non-DVS processor, which
power consumption, design efforts on all fronts must bmakes shutting down the processor during idle intervals the
pursued to form an integrated solution for this problenmost effective way to reduce the overall energy consumption.
Recently, many circuit and architecture techniques, such @snsidering the timing and energy overhead associated with
those presented in [2], [3], [4], [5], have been proposezhutting down the processor, LC-EDF carefully delays the

I. INTRODUCTION

execution of arriving task instances in order to exparttie execution of tasks to merge scattered idle intervals, thus
the length of idle intervals. Due to the limitation of theirgreatly reducing leakage power as well as the impact of
processor model, the overall energy consumed cannot frecessor shutdown overhead. The proposed technique has
minimized. Iraniet. al. [19] theoretically proved that the a very low on-line computation cost, and experiment results
optimal voltage schedule, which also considers the leakagjgow that our method can significantly reduce the energy
power, can be constructed from the corresponding DM®nsumption when compared with the traditional non-delay
voltage schedule without the leakage power considerati@trategy.

In this case, higher-than-necessary processor speeds may Heis paper is organized as follows. Section Il introduces
required in the optimal schedule to balance the dynamic apckliminaries related to our problem. Section Il discusses our
leakage power consumption. To better save idle energy duritglay analysis technique. Section III-C presents our on-line
idle periods, Jejurikaet. al.[20] proposed a better approach|eakage conscious DVS algorithm. Section IV demonstrates
called CS-DVSPto extend idle intervals. They showed thathe effectiveness of our approach based on simulations.
the minimal length of the idle intervals according @5- Section V concludes the paper.

DVSP is no less that that by C-EDF. However, all these
approaches are targeted at the real-time systems scheduled
according to the earliest deadline first (EDF) scheme [21]. This section, describes the real-time system and power

We are more interested in real-time systems schedulrerﬁ)del used in this paper.
according to a FP scheme. Because of their high predictalil- system model
lty, low overhead, and ease Of. |mplem_entat|on, FP schemg%e perform analysis based on a particular job set, denoted
are among the most popular in real-time embedded app{l)l- L S
: 'y J = {J1,J2, -+ Jy}. Each individual job is denoted
cations [22]. Leeet. al. [18] proposed a leakage reducnorb T = (ri,c,di), wherers, c;, andd; are arrival time
scheduling technique for FP systems, calle@-DP, by Y Ji = (i, ¢, i), v v '

extending the Dual-Priority (DP) scheduling model presentéN rst case execution cycle, and absolute deadline for the job,

in [23]. In LC-DP, idle time is treated as a “soft task” in ther spectively. Additionally, each job is statically assigned a

DP model. A task instance is delayed by first being reIeasEHomy cqrrgspondlng .to.lts mdex. we assume thiahas a
: . : o —higher priority thanJ,, if i < j. Often a real-time system is
in the lower priority queue if the processor is idle. It is

promoted to the higher priority queue for execution at ag]escrlbed by a set of periodic tasks, where each task instance

. . - ’ . . represents one job. In these cases, it is sufficient to schedule
optimal promotion time to avoid any deadline missk€- P J

DP also immediately promotes a task instance to the highthre set of jobs produced up until the Least Common Multiple

priority queue when the processor is not idle in order t CM) of the periods of each task.
reduce the number of idle intervals. However, Jejurigar B. Power model

al. [30] pointed out that this may potentially lead some task |, 5 c\vos circuit, the power consumption includes both
instances to miss their deadlines. They further proved thal,omic and static components during its active operation.

using the optimal promotion time as the allowable delay f he dynamic power consumptiotPf,,,) mainly consists of

each task instance can guarantee for both dual priority switching power for charging and discharging the load
fixed priority policies. However, since the computation of th‘éapacitance which can be represented [24] as
optimal promotion time for each task instance is performed ’

based on the exact response time analysis, which is NP-hard Pyyn = aCLV?2f, Q)
in nature [23], this approach cannot be readily applied on-lin
or for large task sets. If the promotion time is computed bas
on the worst case response time (by assuming a task inst

arrives simultaneously with all the higher priority ones), th

Il. PRELIMINARIES

ereqa is the switching activity(C';, is the load capacitance,
ig the supply voltage, anfl is the system clock frequency.
ﬁe static power ..x) can be expressed [25] as

possible delay for each task instance can be estimated rather Prear = LicatV, (2)
pessimistically which severely limits the energy performance)))
of this approach. wherel;.. is the leakage current which consists of both the

hi heduli hni h sub-threshold leakage current and the reverse bias junction
In this paper, we present a scheduling technique that co urrent in the CMOS circuit. Leakage current increases

bines both the DVS and a shut-down strategy to effective &pidly with the scaling of the devices and becomes par-

reduce the overall energy consumption of FP hard real-tijé, ry significant with the reduction of the threshold
systems. As shown by Iraret. al. [19], such a technique o 506 [26]. Therefore, the leakage power consumption is

may require that the processor run at a higher-than-neces ¥oming a major part of the the active power consumption
speed and hence produce a large number of processor |), ie
act)y =y

intervals. The major source of energy consumption in these
intervals is the result of leakage current, which will soon
become a major portion of the overall energy consumptiom future CMOS circuits with low supply voltage and high
In this regard, we present an efficient technique that delatyansistor density.

Pa,ct = Priyn + IDlea,k’a (3)

o
=
ﬁ
i
I
[CS8
(=R E— N 0]

|
| |
= |
33 | &=t R 2 | [I
t
| | T | 020 | |
- 1
' A O = B '
| | | L T 1 | | | t
N
| | | | I 1 >
t=0 5 ld 12 13 15 22 1 5 10 22
(a) (b)
idle
tervay idl dl
I [| P e e [|
L n e I R cl=1 |
I c2=3 s | c2=3
I : :32 R
C3=1 C3=
Apm———a— oA |
| L [-
C4=3 C4=3
I : L N Lo
I | 4 | [R I
|| A | A |
t=01 é lb 12 13 15 18 22 t=01 3 5 7 10 12 13 15 22

(c) (d)

Fig. 1. (a) A job set that consists of four jobs. (b) The voltage schedule that can reduce dynamic power consumption. (c) The actual executions of the
jobs according to the voltage schedule showifbip (d) Applying the threshold speed;f, = 0.5) results in the scattered idle intervals.

The processor consumes energy not only in its active mogbs. Figure 1(b) is the voltage schedule according to the
but also when it is idle. When the processor is idle, the maj@VS scheduling technique presented in [14], and Figure 1(c)
portion of the power consumption comes from the leakagghows the actual executions of the jobs based on the voltage
which is increasing rapidly with newer CMOS technologieschedule from Figure 1(b).

Shutting down the processor, i.e., putting the processor intoAs shown in Figure 1(b) and Figure 1(c), previous DVS

a “sleep mode” can greatly reduce the energy consumptitsthniques [14], [15], [16] can effectively reduce the pro-
during these idle periods. For example, it has been reporesssor speed and guarantee the deadlines of the real-time
in [27] that the power dissipation when the processor is idjebs. However, such a voltage schedule is not always feasible
can be on the order of0® times that when it is sleeping. and/or energy efficient overall. First, practical processors
While the processor consumes less power in sleep motlayve a minimal voltage supply limitation. Second, they only
extra energy and time are needed for it to enter and lajgovide a discrete set of voltages, including the minimum
leave this state, because one must save/restore the contexé\asl. This means the processor will likely not be able to run
well as initiate architectural components such as the cacle,a speed selected by a particular DVS algorithm. Instead,
translation look aside buffers, and branch target buffers. Thise desired speed needs to be rounded up to the next discrete
energy overhead may outweigh the energy saved if the idipeed that is available. On the other hand, even when a low
interval is not long enough. Assume that the energy overheaicessor speed is available, the rapidly increased leakage
of shutdown/wakeup i%,, the timing overhead i§,, and the current may increase the static power consumption to the
power consumption of a processor in its idle and sleepirgtent of over-weighing the dynamic power consumption.
state areP;q. and Pye..p, respectively. Then, the energyTherefore, to achieve the best energy efficiency, the processor
can be saved only when the length of the idle interval speed must be determined in a cooperative manner with both
larger thanT,;,, = max{ﬁ,to}. We callT,,.., the dynamic and static energy consumption in mind.

minimal length of the idle interval Consider a job with workloadv. Let the total power of a
processor during its active mode B%.:(s). Then the total

C. A motivational example X h o)
o lis to minimize th I i energy, i.e.,E,.(s), consumed to finish this job with speed
ur goal is to minimize theoverall energy consumption " represented as

while guaranteeing task deadlines. As indicated in equa-
tion (1), the dynamic energy consumption is quadratically Baet(8) = Pact(s) x w 4)
related to the supplied voltage. Therefore, traditional DVS S

scheduling techniques [14], [15], [16] try to reduce thgjence, to minimize theZ,.(s) in equation 4, we have
the supply voltage to as low a level as possible. As an

illustrative example, Figure 1(a) shows a job set with four Poi(s) = Pl.(s)s. (5)

Equation (5) computes the most energy efficient speed dissipation when the processor is idle can be in the order

execute one job. We call this speed as theeshold speed of 103 times of that when the processor is shut down.

and denoted as;;,. To increase or decrease the processor The main difficulty when extending the length of idle inter-

speed froms,, will increase either the dynamic or staticvals is to determine how long a job set can be delayed without

power, and thus the total power consumption. causing any future job to miss its deadline. Chetto [28]
Note that, while it is desirable to execute a job using thiatroduced a static scheduling technique called EDL (earliest

threshold speed to minimize the active power consumptiongdiéadline as late as possible) to determine the longest time

is not always feasible to do so when considering the deadlirthat a job can be delayed. However, it requires the jobs

and the preemption effects among jobs, jobs with higher be scheduled according to the earliest deadline scheduling

priorities can always block jobs with lower priorities untilalgorithm. For job set scheduled by a FP (fixed priority)

they are finished. Given a voltage schedule, a job that 9sheme, we derived a new approach to determine the maximal

required to run at a speed higher thgp must be executed time point to which the job set can be delayed. To facilitate a

with that higher speed to guarantee the schedulability of thkear explanation, we first introduce the following definitions.

job set. For jobs having required speeds lower thanthey Definition 1: Let job set (7) be executed with a constant

can be executed at;, to conserve energy. Figure 1(d) showspeeds*.

the scheduling results witky;, = 0.5. « Thelatest starting time of a jobe.qg.,J; € J, (denoted
Using sy, for jobs with speed requirements lower thap aslst(J;)) is the latest time such that, if the execution

while maintaining the speeds of the rest certainly guarantees of .J; or jobs with a priority higher thad); start no later

all deadlines. The problem is, as shown in Figure 1(d), thanist(J;), J; will meet its deadline.

it can result in a large number of scattered idle intervals. « Thelatest starting time of a job see.g..7, (denoted as

While using a processor shut-down strategy is the most [LST(7)) is the latest time such that, if the execution

efficient method to reduce the energy consumption for these of any jobs in7 starts no later thah.ST(7), all jobs

intervals, too many shut-downs will incur a significant energy will meet their deadlines.

overhead. Moreover, using a processor power down strategyn [29], Mochockiet. al. introduced a method to compute

is not always feasible or necessarily energy efficient if the ideS7(7) when 7 is scheduled according to EDF. Their

interval is not long enough. Unless we can effectively dealethod is based on the following lemma.

with the idle intervals in the schedule, we cannot achieve ourLemma 1:[29] Let job set (7) be executed with a constant

ultimate goal of maximizing the overall energy performancspeeds*. Then,

of the system. In what follows, we introduce our approach Ch

to save the idle energy when scheduling a FP task set by Ist(Ji) = di — Z o (6)

extending the length of idle intervals. Jr€hp(Ji)

where hp(J;) is the jobs with the same or higher priorities

Ill. L EAKAGE CONSCIOUS SCHEDULING ALGORITHM FOR
than that ofJ;. Furthermore,

A FPTASK SET

In this section, we present our scheduling technique to LST(J) = min{lst(J)}- ™
reduce the idle energy for a set of real-time jobs. We first The rationale behind Lemma 1 is that if the accumulated
analyze how a job set can be delayed without missigorkload from a jobJ; andall the higher priority jobs can
deadlines. Then we construct an algorithm that can be applieg finished beforel;, the deadline of/; will be satisfied.
on-line to reduce energy consumption during idle periods_ln addition, the minimal latest starting time of all the jobs

] can certainly guarantee all the deadlines. It is not difficult
A. Basic concepts to see that using equation (7) to compute the starting time

The power down strategy is in favor of longer idle interfor a FP job set can still guarantee the feasibility of this job
vals. To extend an idle interval, one can always increase thet. Unfortunately, using Lemma 1 may not ensure that the
processor speed so that each job is executed faster. Howefegrsiblestarting time for the FP job set is always the latest.
as shown in equation 5, increasing the speed eyemwill For example, in Figure 2(a), according to equation (6) and
increase the overall power consumption. A better approagii), assuming* = 0.5, we havelst(J,) = 13, Ist(J2) = 14,
as suggested in [18], [19], [20], would be one that extends the(.J;) = 3, Ist(Jy) = 6, and therefore LST(J) = 3.
interval lengths by delaying the executions of the incomingowever, as shown in Figure 2(b), if the job set is delayed to
jobs, i.e. a job is executed as soon as possible when the- 6, all the jobs can meet their deadlines. The consequence
processor is not idle, but delayed as much as possible wherthat all of the short idle intervals cannot be effectively
the processor is idle. merged as shown in Figure 2(a).

Delaying job executions helps to merge scattered idle Note that accumulating the workload from all the higher
intervals into longer ones. More energy can be saved becapserity jobs in equation (6) is equivalent @ssumingthat
energy overhead during the shut-down process is reducatli.the higher priority jobs have to finish before the deadline
Moreover, intervals that were previously shorter tH8y;,, of current job. This is true for job sets scheduled according
can now be shut down. As mentioned before, the powkr EDF, but is not necessarily true for FP job sets since

g ISR i PSR | M | |
[I F } I a1 At |
L I c2=3 |
e ey
| |

|

|
| | |
| | |
C3=
13 # I‘ f *I | | : 33: T f : I* | | I
[| | L | | L
A I N T S N B
Lo I || | | p4
e b | [' . b | [
t=01 3 3 7 10 12 13 15 18 22 t=0 1 4 g 1b 12 13 15 18 22
(a) (b)
1 | | | | | |
I a4 C= | | n cit |
|| | o | | c2=3
I | J2 C2=3 | | | | 32
sl : | | | 3l ? | ca=1 | _ * | | deadling miss
| 4 w & ;& I I I I o L |
I b T s N Lol e
B ! T . I pe
N Ly I, | | I | by | [
t=01 4 o 1213 15 22 t=0 1 4 8 1b 12 13 15 18 22
© o)

Fig. 2. (a) The latest starting time of job set from Figure 1(a) is 3 according to Lemma&a % (0.5). (b) Delay the job set untit = 6 and every job
can still meet its deadline. (cJ3-scheduling points (marked by “x”). (d) Delay execution of the job settti# 8 and J4 misses its deadline.

higher priority jobs in a FP job set can arrive much later We use Figure 2 to illustrate these definitions. Figure 2(c)
than the deadline of the current job. In what follows, wehows theJ/s-reduced job set and all thg-scheduling points
present a more effective technique to accurately identify tii@s marked by “x”). Note that in Figure 2(c) ifs is to
latest starting point for FP job sets. be finished at any one of thds-scheduling points (e.g.,
t = 12) all the higher priority jobs arriving before this
scheduling point (e.g.J;) must be completed before this
Recall that the jobs with required speeds higher thgn scheduling point. Therefore, for eadh-scheduling point,
should run at their required speeds in order to guarantde execution of/,, or any higher priority jobs must begin
deadlines. These jobs cannot be delayed at all and mustnigelater thanst,, (¢), where
executed within the intervals in the DVS voltage schedule. Ck
For ease of computation, we “shrink” the intervals during stn(t) =t — —, e <t (8)

S
which jobs with a required speed higher thay are exe- yehp(g) 1"

cuted. This includes removing all jobs in these intervals, a'%jnerehp(Jn) is the set of jobs with a priority greater than

also adjusting the deadlines and arrival times of the rest gf equal to.J, and arriving before. It is not difficult to

the jobs. Specifically, we have the following definition. geq that different/, -scheduling points can lead to different
Definition 2: (Adjusted job set) A job set is called an st,(t). Specifically, we have the following Lemma.

adjusted job setof 7, if all jobs in 7 having a speed re- | emmga 2: et job set (7) be theJ,-reduced job set and

qguirement higher thag,;, (as well as the intervals containingS(Jn) be the set of allJ,-scheduling points. Then,

these jobs) are removed, and the arrival times and deadlines

B. Analyzing the latest starting time for FP job sets

of the rest of the jobs are adjusted correspondingly. Ist(Jy,) = max{st,(t),t € S(Jn)} 9)
Before we explain our strategy in detail, we also want to The correspondingJ/,,-scheduling point is denoted as
introduce several important concepts. P(lst(Jy)). The proof for this lemma is trivial according

Definition 3: (Scheduling point) Time t is called aJ,- to Definition 1 and is therefore omitted. From Figure 2(c),
scheduling pointif ¢t =d, ort =r;, i <n andr, <r; < we havelst(J;) = 8 (and P(lst(J3)) = 12). And it can be
dp. readily verified that/; can meet its deadline with respect to

As explained before, a job set is delayed only when thet(J;) = 8.
processor is idle. Therefore, when identifying the delay that We are interested in finding the latest time for a FP job set.
a job can tolerate, we are more interested in the case that thefortunately,ist(J,,) can only guarantee the feasibility of
processor is idle when a job arrives. Specifically, we hayeb .J,, but not necessarily any other job in thg-reduced
the following definition. job set. For example, as shown in Figure 2(d)Jif and

Definition 4: (Reduced job set)An adjusted job set is all the higher priority jobs are delayed to= 8, J, will
called aJ,-reduced job setif every job J; in the set satisfies miss its deadline. The reason is that, witft(J;) = 8,

T > T Js and the higher priority jobs are not completed until the

corresponding scheduling point= 12, which will block Ist(.Js) = 6, Ist(.J,) = 10. Also, we observe the following
the executions of/, and cause it to miss its deadline. Ainteresting property ofét(Jn).

remedy for this problem is to compute the latest starting Lemma 4:For adjusted job se¥, let J;, J, € J, i < k.
times in a similar way for all the lower priority jobs thatThenlst(.J;) < Ist(Jy) if r; < 7.

may potentially be preempted, and pick the smallest one. We Proof: The proof for the casd; < r, is trivial since
call this latest starting time theffectivelatest starting time [st(.J;) cannot exceed;. We use contradiction to prove that
for the job, denoted aist(.J,,). The above idea is formulatedwhend; > r,, andr; < ry, Ist(J;) > lst(J;,) is not possible.
in Algorithm 1. Let J; and J, represent the corresponding- and Jy-
reduced job sets, respectively, ahé(J,, 7,) represent the
Algorithm 1 Compute the effective latest starting timgobs in 7, with priorities the same or lower than that gf.
Ist(Jy) for job J, such thatJ, and all the lower priority Then

jobs in theJ,,-reduced job set can meet their deadlines.

Ji D jk, and LP(Jq’Z) D LP(Jk,jk)

1: Input: The J,-reduced job sey. 3
2: Output: The effective !atest starting timiat(.J,,) According to Lemma 3, delaying the execution &f to
3: nist = lst(J,); //EqQuation (9) _ __Ist(J;) can ensure that all jobs i P(.J;,7;) meet their
4. end = P(Ist(Jy))i/lthe scheduling point correspondingyeagiines. If/st(.J;) > ist(Jy), this contradicts to the fact
to Ist(Jn) thatlét(Jk) is the latest time that/, can be delayed to such
5. for JyeJ,k=n+1n+2,..do that the jobs inLP(.Jy, J;,) can meet their deadlines. m
6: if 7 <end then Recall that our goal is to identify the latest starting time
£ nlst = min{nlst, lst(Jy)}; for a job set such thaveryjob can meet its deadline. Using
8 end = max{end, P(Ist(Ji))}; Ist(.J,)) cannot achieve this goal because (1) it is based on
1?): en?jnl%rlf an adjusted job set and (2) because the schedulability of jobs

with a priority higher than that of/, is not guaranteed.
However, based on Lemma 3 and Lemma 4, we have the
following theorem.

For the.J,-reduced job set, Algorithm 1 helps to compute Theorem 1:Given a general job sef and threshold speed
the latest time for aJ,,-reduced job set. This conclusion iss;;, the latest starting time fag can be computed as
formally presented in the following lemma. -

Lemma 3:Let 7 be the.J,-reduced job set. The effective LST(J) = Hﬂn{l‘gt(']"))}' (10)
latest starting timelét(Jn)), output from Algorithm 1, is -]))]
the latest time thafl,, and all the higher priority jobs can beWherelst(.J,,) is r, if .J,, requires a speed higher thap,
delayed to such thaf, and all the lower priority jobs iy N the DVS voltage_ schedule, otherwisg(J,,) is computed
will meet their deadlines. according to Algorithm 1. _ . .

Proof: According to Lemma 2, the schedulability for Proof: We first assume7 is an adjusted job set. Let
J, is guaranteed in line (3) of Algorithm 1 as well as the fackST(J) = Ist(Ji) = min,{lst(J,)}. We want to prove
that nlst can only be smaller later on with the progress dhat any one of the jobs.e. Ji, can meet their deadlines if
the algorithm. Variablend helps to keep track of all lower /00 setJ is delayed tdst(J;).
priority jobs that are potentially preempted when delaying Note that from Lemma 4, in7, we have for anyk < i,
J, and jobs with a priority higher thaw,, to nlst. The Tk = Ti- We consider three different cases separately.
schedulability for each of these jobs is guaranteed in linee Case 1k < 1.

11: Ist(J,) = nlst;

(7) for the same reason as that.6f. Let jobr, be the earliest arrival time for any joh, such
Therefore, to prove Lemma 3, we only need to check thatq < k. If we haver, > r, according to Lemma 3,
if other lower priority jobs (e, with a release time later Ji can meet its deadline sindet(Jy) > lst(J;). On
than end during each FOR loop) can meet their deadlines. the other hand, ifr, < r4, the schedulability ofJj
Consider a lower priority joly, in one of the FOR loops and is guaranteed with respect tet(J,). Sincelst(J,;) >
let r, > end. Note that, when considering, with respect lét(Jk) > lét(gi), Ji can meet its deadline if job sgft

to nlst and end, any job with priority the same or higher is delayed tdst(.J;).
than that of J, that is delayed toist will finish no later e Case 2k =i.
thanend. Therefore, delaying these jobs will not affect the The only difference between job sef and the Ji-

schedulability of.J;,. Moreover, the value ofilst can only be reduced job set is thaf may contain some jobs with
reduced later on, sg; can meet its deadline {f’ is delayed priorities lower than that off;,. According to Lemma 3,
to nilst.] J; can meet its deadline since adding any lower pri-

With Algorithm 1, we can compute the effective latest ority job to the Ji-reduced job set cannot change the
starting time for each of the jobs in the adjusted job set. For schedulability ofJ; and can only decreaset(.J;).
example, in Figure 2(c), we havet(.J;) = 8, Ist(J2) = 16, o Case 3k >1

If all the jobs arrive later thanJ;, Lemma 3 can Algorithm 2 The off-line phase to determine the processor

guarantee/,’s deadline. Assume there is at least ongPeed £,) for each job (), and, assuming/, is the
job arriving earlier thanJ;, and let.J; be the one with Nnext arrival job, to compute the maximal delay,) for the

the earliest arrival time. Sincest(.J;) < Ist(Ji), Ji

remaining job set.

and all the lower priority jobs can meet their deadlines.1:
Note that, for jobJ, such that < ¢ < k, removingJ 2:
and all the lower priority jobs fron7 neither changes 3:

its feasibility norincreaselst(J,). If r, < r; andr, is

the next earliest arrival time of the jobs, we can prove4:
that J, and all the lower priority jobs can meet their 5:

Input: 7, sin
Output: s,,0,,n=1,2,... N
Compute the DVS voltage schedule fgf and thus
Sp,n =1,2...N,
for J, € J do
jc = j,

deadlines similarly. By repeating this process, we thus: // make a copy o7
prove that all the lower priority jobs can meet their 72 Remove allJ; € J. with r; <r,;

deadlines if7 is delayed tdst(.J;). 8 s, =max{s,,su};
When J is a general job set, any job with speed require-* Ty = lSt_(Jn);
ment higher tham,;, cannot be delayed according to equatiod® fOr Jx With 7, < T andk < n do
(10). Hence, no such job will miss its deadline. In addition!: if Ist(Jy) <Tp then

the latest starting time for the rest of the jobs is no later that?" Tp = lst(Jx); _
that computed with the adjusted job set. Therefore, all the" /lcomputed by Algorithm 1
jobs can meet their deadlines. m 4 end if
From Theorem 1, we havbST(.7) = 6, which is exactly 5 €nd for
the case shown in Figure 2(b). 16: 0p =Tp —Tn;
17: end for

C. The leakage conscious scheduling algorithm

After studying how long a job set can be safely delaye

. gcheme when it is idle, the later jobs will be delayed to
we are now ready to present our scheduling strategy to red

. : Y& latest starting time (line 7) computed based on the first
the overall energy consumption. Our approach consists of t

h i h d i h In the oft-Ii arrival. The algorithm is calle&#PLK and illustrated in
pnases, an ofi-iné phase and an oniine phase. in the ofr- RFgorithm 3. FPLK has a constant time complexity, because
phase (Algorithm 2), we compute feachjob, assuming the

it only requires a single table lookup to identi
processor is idle upon the arrival of the job, how long thle y requi Ing upto Wy

remaining job set can be delayed; while in the online ph"‘%‘fgonthm 3 (FPLK) The on-line leakage conscious fixed-

of our approach (Algorithm 3), we simply use the resul§r|0r|ty scheduling algorithm

produced in the off-line phase and make the schedulir ¥ nput. (7, 5,,0 1,.
Snv n,TL -

decision on-line. . ; i
2: if processor is not |dlehen

In Algorithm 2, the latest starting time for the coming ™ Run iob 7. in th d ding to EP. usi
job set is computed according to Theorem 1. Note that evelt un JjobJy, In the ready queue according 10 Fr, using

)

though equation (10) requires the computation ofefiective el speeds,;
latest starting time for all jobs, it is not necessary in practice.4: esLetJ be th ‘ ing iob-
Note that7T's (in line 8 of Algorithm 2) actually sets up an Z' ?t " e+§ next coming Joo;
upper delay bound,e. the job set cannot be delayed to any > "5t = "'n T On;

PP y J y y7- if nlst — teyr > Tin then

time later thanTz without missing a deadline. Therefore, -

we only need to check the higher priority jobs (Lemma 4) :

released beforg to determine the latest starting time for the o ;

job set (line 9-13). In order to do so, we only need to perform “”_‘e to benlst — ¢

linear scanning within the interval from the earliest arrival® en_d i

time to Tz, which has a complexity oD(N’), where N’ is 11: end if

the total number of higher priority jobs within this interval.

The complexity of the rest of the algorithm is also linear

related toN’. Since N’ is usually very small for a periodic

task set, Algorithm 2 typically has a very low computation In this section, we evaluate the overall energy efficiency

complexity. of the proposed technique with several experiments. In our
The on-line algorithm follows the principles discusse@xperiments, we compare five strategies:

earlier. It takes the desired processor spegg @nd the o No DVS, No Delay (NSND)The task sets are scheduled

maximal delay §,) for each job.J, (output from Algo- without DVS,i.e,, all jobs are always executed using the

rithm 2) as input. When the processor is not idle, it will run highest speed. A processor is shut down when there is

the jobs in the ready queue according to the fixed priority enough idle time, and no task instance is delayed.

I tey. is the current time
Shut down the processor and set up the wake up

curs

IV. EXPERIMENTAL RESULTS

25

=
= o

o
o

normalized total energy consumption

of the above four approaches for systems with different
utilization. Based on the utilization bound for periodic task
— set with five periodic tasks, i.el/ = 5(21/° — 1) = 0.74,
BSNTND we divide utilization ranging from 0.0 to 0.7 into intervals
i of length 0.1. Within each interval, we randomly generated
OS0P no less than 50 periodic task sets. For each task set, we
collect both overall energy consumption and the idle energy
consumption for the task set starting from 0 to the LCM of
its periods. We accumulated the values for each utilization
interval, normalizet! the results byNSND. The results are
shown in Figure 3 and Figure 4, respectively.

From Figure 3, it is interesting to note that using DVS
without the consideration of the leakage curreBNTND)
00-01 01-02 02-03 03-04 04-05 05-06 06-07 cannot effectively reduce the overall energy consumed. This

vilization is particularly true when the utilization of the task set is

low. For example, when the utilization is less than 0.2, the

Fig. 3. The average total energy consumptions of five different approachg_%erage overall energy consumption WBNTND is in fact

For the algorithms employing DVS above (SNTND, STN
and STD), the method in [14] is used to find the off-
line voltage schedule under FP scheme. This method
chosen because, while the FP DVS problem is NP-Hara
this heuristic can provide results very close to that by ﬂb
optimal one [15] in polynomial time@(N?)). The power .
model and technology parameters of the processor usedsrllg

our

around 0.4 [20] for this processor model. For the process
power down/up overhead, we use the same values as that
in [20], i.e., Pige = 240mW, E, = 483u.J, andt, = 2ms.

larger than that bNSND. When the utilization is less than
0.1, the average overall energy with “pure” DVS voltage
schedule NTND) is 1.2 times higher than that HYSND,

DVS, No Threshold, No Delay (SNTND) The task sets and almost as three times as that by the other two strategies.
are scheduled with DVS but with no consideration of théhis is because, when the utilization is low, the processor
leakage i(e. the threshold speed), and no task instand® running at a very low speed iSNTND. The processor

is delayed; consumes more energy due to the large leakage current. Also,
DVS, Threshold, No Delay (STND) The task sets are the overall energy consumption 8fTD is about19.6% less
scheduled with DVS, and the jobs are executed Wiman STND and SDP. When the utilization of the task set

the threshold speedlg. s, if its speed requirement is is high, from Figure 3, the overall energy consumption for
lower thans,, in the DVS voltage schedule. HoweverSNTND seems to be very close to that STND, STD or

no job execution is delayed. SDP. This is because the processor usually has to run at

DVS, Threshold, Delay (STD) — Our approachTask @ speed higher than the threshold speed to guarantee the
sets are scheduled with DVS with consideration of bo@eadlines of the tasks. Therefore, all these strategies use
the leakageife. the threshold speed) and execution delafe similar speed most of the time and have similar energy

(Algorithm 2). consumption.

DVS, Dual Priority (SDP) Task sets are scheduled Since the leakage power consumption is becoming compa-
with DVS and delayed with Dual Priority. This is therable or even exceeding the dynamic power consumption, the
approach in [30]. We compute the promotion time onc@nergy consumption during the processor idle time, mainly

for each task based on the worst case scenario and g€ to the leakage current, will soon become a significant
it for each jobs in the task. part of the overall energy consumption. We are therefore
I5’nterested in investigating how our approach can help to
reduce this part of energy consumption compared with other
approaches. In Figure 4, it is not surprising to see that
TND consumes very little idle energy since there is less
ack time during task execution. It is interesting to see that
%/ delaying the execution of the jobSTD), the idle energy
reatly reduced compared witBTND. The smaller the
ullfization is, the more energy is saved during idle periods

k()')ysp delaying jobs. When the utilization is low, the threshold

S

simulation are adopted from [25]. The threshold speed

s§%ed can be much larger than the speed required for each
lf £%nd results in a large number of idle interva®TD
can effectively merge many of the intervals by delaying the

_ The real-time systems tested in our experiments are & tion of jobs and is therefore a much better approach
riodic task systems randomly generated with five pe”Od{ﬁan STND. As shown in Figure 4, when the utilization is

tasks each. All tasks are scheduled with the RM methqg

ithin 0.1-0.2, the average idle energy consumedS3pD

The period of each task is randomly chosen in the range of
[57 3_O]m5- The de_ad“ne Of_ each task is set t_o be equal to S For example, normalizing’ to N means usingl% as the value of C for
period. We examine the different energy saving performaneanparisons.

o
Y

o
>

for each job is statically computed, and is then applied on-

line to extend idle intervals. Based on a practical processor
model, our experimental results clearly demonstrate that this
approach has a great potential in future embedded systems
to reduce the overall power consumption. Finally, it is worth

mentioning that our approach is a greedy approach. How to
achieve the optimal overall energy performance is another

Normalized Idle Energy

°
=
T

02 [[l]

(2]

0 - | - |

0.0-0.1 01-02 02-03 03-04

04-05 05-0.6 06-0.7

Utilization

(3]

Fig. 4. The average idle energy consumptions by five different approache[;‘q.]

(5]

is less than 15% of that consumed BYND. When the [6]
utilization is high, there is only a limited number of idle
intervals. In addition, many jobs may require speeds highdr]
than the threshold speed which cannot be delayed at all.
Hence, the idle energy efficiency BfTD is limited. Even so, [g]
when the utilization of a task set is within [0.4-0.5], the idle
energy consumed usingTD is, on average, around 50% of]
that usingSTND as shown in Figure 4. Our experiments also
show that pessimistically estimating the delay amount fqro]
each job inSDP can severely degrade the energy efficiency
of this approach. As shown in Figure 4, when the utilizatioHl]
is within 0.3-0.4, the average idle energy consume®shp
is less than 10% of that consumed 8PP. 121
V. SUMMARY [13]

Reducing the overall power dissipation is critical in the
design of future real-time embedded systems. As the [&
technology continues to scale down, leakage power consump-
tion is becoming a more and more significant part of thes
overall power consumption. In this paper, we investigated
the problem of applying scheduling techniques to redu
the overall energy consumption for fixed-priority real-time
systems.

As shown by our experiments and discussions, applying[]g]
DVS based voltage schedule alone cannot effectively reduce
the overall energy consumption for the system, and cé&igl
even increase it significantly. A leakage power conscio?ﬁ}]
DVS voltage schedule may require the processor to adopt
a speed higher-than-necessary to avoid the rapidly increasizaj
leakage current at low voltage levels. This may result jgl]
a large number of small idle intervals during job execu-
tion. We proposed an efficient approach to merge these
intervals by delaying the execution of the jobs to redu%ﬂ
the processor shutdown overhead and improve the ove &
energy performance. In our approach, the maximal delay

very interesting problem and needs further study.

REFERENCES

ITRS, International Technology Roadmap for Semiconductdksistin,

TX.: International SEMATECH, http://public.itrs.net/.

C. Neau and K. Roy, “Optimal body bias selection for leakage improve-
ment and process compensation over different technology generations,”
ISLPED pp. 116-121, 2003.

S. Duarte, Y. Tsai, N. Vijaykrishnan, and M. Irwin, “Evaluating run-
time techniques for leakage power reductiovl’SID’02, 2002.

B. H. Calhoun, F. A. Honore, and A. Chandrakasan, “Design method-
ology for fine-grained leakage control in mtcmokSLPED, pp. 104—
109, 2003.

M. Johnson, D. Somasekhar, and K. Roy, “Leakage control with
efficient use of transistor stacks in single threshold cmb#C, pp.
442-445, 1999.

J. Halter and F. Najm, “A gate-level leakage power reduction method
for ultra low power cmos circuits,CICC, pp. 475-478, 1997.

F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. Ko, and C. Hu,
“Dynamic threshold-voltage mosfet (dtmos) for ultra-low voltage visi,”
IEEE Trans. on Elec. Dewol. 44, no. 3, pp. 414-422, Mar 1997.

F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
cpu energy,”IEEE Annual Foundations of Comp. Sqap. 374-382,
1995.

T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-
cally variable voltage processor$SLPED, pp. 197-202, August 1998.

H. Aydin, R. Melhem, D. Mosse, and P. Alvarez, “Dynamic and
aggressive scheduling techniques for power aware real-time systems,”
IEEE Real-Time System Symposiji01.

P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” iith ACM Symposium on
Operating Systems Principle2001.

Y. Shin and K. Choi, “Power conscious fixed priority scheduling for
hard real-time systemsPAC, pp. 134-139, 1999.

Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-
time embedded systems on variable speed processntsrhational
Conference on Computer-Aided Desigp. 365-368, 2000.

G. Quan and X. S. Hu, “Energy efficient fixed-priority scheduling for
real-time systems on voltage variable process@#C, pp. 828-833,
2001.

G. Quan and X. Hu, “Minimum energy fixed-priority scheduling
for variable voltage processors2002 European Design and Test
Conference2002.

H.-S. Yun and J. Kim, “On energy optimal voltage scheduling for
fixed-prioirty hard real-time systems{CM Transactions on Embedded
Computing Systemsol. vol 2, 2003.

W. Kim, J. Kim, and S.L.Min, “Dynamic voltage scaling algorithm
for fixed-priority real-time systems using work-demand analysis,”
ISLPED 2003.

Y. Lee, K. Reddy, and C. Krishna, “Scheduling techniques for reducing
leakage power in hard real-time systemSCRTS 2003.

S. Irani, S. Shukla, and R. Gupta, “Algorithms for power savings,”
ISDA 2003.

R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systemBAC, pp. 275 — 280, 2004.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environmentjburnal of the ACMvol. 17,

no. 2, pp. 46-61, 1973.

J. Liu, Real-Time Systems NJ: Prentice Hall, 2000.

R. Davis and A. Burns, “Optimal priority assignment for aperiodic
tasks with firm deadlines in fixed-priority preemptive systenhsfpr-
mation Processing Lettersol. 53, no. 5, pp. 249-254, 1995.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power cmos
digital design,”|IEEE Journal of Solid-State Circuitsol. 27, no. 4,

pp. 473-484, April 1992,

S. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic
voltage scaling and adaptive body biasing for lower power microp-
orcessor under dynamic workload$CCAD, 2002.

D.Duarte, N.Vijaykrishnan, M.J.Irwin, H.-S. Kim, and G.McFarland,
“Impact of scaling on the effectiveness of dynamic power reduction
schemes,1CCD, 2002.

Intel, PXA250 and PXA210 Applications Processors Design Guide
Intel, 2002.

H. Chetto and M. Chetto, “Some results of the earliest deadline
scheduling algorithm,"IEEE Transction On Software Engineering
vol. 15, 1989.

B. Mochocki, X. Hu, and G. Quan, “A realistic variable voltage
scheduling model for real-time application$Z2EE/ACM 2002 Inter-
national Conference on Computer Aided Desigf02.

R. Jejurikar and R. Gupta, “procrastination scheduling in fixed priority
real-time systems,L.CTES 2004.

