
CHAPTER 2

Classification of Bundles

In this chapter we prove Steenrod’s classification theorem of principal G - bundles, and the
corresponding classification theorem of vector bundles. This theorem states that for every group
G, there is a “classifying space” BG with a well defined homotopy type so that the homotopy
classes of maps from a space X, [X, BG], is in bijective correspondence with the set of isomorphism
classes of principal G - bundles, PrinG(X). We then describe various examples and constructions
of these classifying spaces, and use them to study structures on principal bundles, vector bundles,
and manifolds.

1. The homotopy invariance of fiber bundles

The goal of this section is to prove the following theorem, and to examine certain applications
such as the classification of principal bundles over spheres in terms of the homotopy groups of Lie
groups.

Theorem 2.1. Let p : E → B be a fiber bundle with fiber F , and let f0 : X → B and f1 : X → B

be homotopic maps.Then the pull - back bundles are isomorphic,

f∗0 (E) ∼= f∗1 (E).

The main step in the proof of this theorem is the basic Covering Homotopy Theorem for fiber
bundles which we now state and prove.

Theorem 2.2. Covering Homotopy theorem. Let p0 : E → B and q : Z → Y be fiber
bundles with the same fiber, F , where B is normal and locally compact. Let h0 be a bundle map

E
h̃0−−−−→ Z

p

"
"q

B −−−−→
h0

Y
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Let H : B × I → Y be a homotopy of h0 (i.e h0 = H|B×{0} .) Then there exists a covering of the
homotopy H by a bundle map

E × I
H̃−−−−→ Z

p×1

"
"q

B × I −−−−→
H

Y.

Proof. We prove the theorem here when the base space B is compact. The natural extension
is to when B has the homotopy type of a CW - complex. The proof in full generality can be found
in Steenrod’s book [39].

The idea of the proof is to decompose the homotopy H into homotopies that take place in local
neighborhoods where the bundle is trivial. The theorem is obviously true for trivial bundles, and
so the homotopy H can be covered on each local neighborhood. One then must be careful to patch
the coverings together so as to obtain a global covering of the homotopy H.

Since the space X is compact, we may assume that the pull - back bundle H∗(Z) → B × I has
locally trivial neighborhoods of the form {Uα× Ij}, where {Uα} is a locally trivial covering of B (i.e
there are local trivializations φα,β : Uα × F → p−1(Uα)), and I1, · · · , Ir is a finite sequence of open
intervals covering I = [0, 1], so that each Ij meets only Ij−1 and Ij+1 nontrivially. Choose numbers

0 = t0 < t1 < · · · < tr = 1

so that tj ∈ Ij ∩ Ij+1. We assume inductively that the covering homotopy H̃(x, t) has been defined
E × [0, tj ] so as to satisfy the theorem over this part.

For each x ∈ B, there is a pair of neighborhoods (W,W ′) such that for x ∈ W , W̄ ⊂ W ′ and
W̄ ′ ⊂ Uα for some Uα. Choose a finite number of such pairs (Wi,W ′

i ), (i = 1, · · · , s) covering B.
Then the Urysohn lemma implies there is a map ui : B → [tj , tj+1] such that ui(W̄i) = tj+1 and
uj(B −W ′

i ) = tj . Define τ0(x) = tj for x ∈ B, and

τi(x) = max(u1(x), · · · , ui(x)), x ∈ B, i = 1, · · · , s.

Then

tj = τ0(x) ≤ τ1(x) ≤ · · · ≤ ts(x) = tj+1.

Define Bi to be the set of pairs (x, t) such that tj ≤ t ≤ τi(x). Let Ei be the part of E × I lying
over Bi. Then we have a sequence of total spaces of bundles

E × tj = E0 ⊂ E1 ⊂ · · · ⊂ Es = E × [tj , tj+1].

We suppose inductively that H̃ has been defined on Ei−1 and we now define its extension over Ei.

By the definition of the τ ’s, the set Bi−Bi−1 is contained in W ′
i× [tj , tj+1]; and by the definition

of the W ’s, W̄ ′
i × [tj , tj+1] ⊂ Uα × Ij which maps via H to a locally trivial neighborhood, say Vk,
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for q : Z → Y . Say φk : Vk × F → q−1(Vk) is a local trivialization. In particular we can define
ρk : q−1(Vk) → F to be the inverse of φk followed by the projection onto F . We now define

H̃(e, t) = φk(H(x, t), ρ(H̃(e, τi−1(x)))

where (e, t) ∈ Ei − Ei−1 and x = p(e) ∈ B.

It is now a straightforward verification that this extension of H̃ is indeed a bundle map on Ei.
This then completes the inductive step. !

We now prove theorem 2.1 using the covering homotopy theorem.

Proof. Let p : E → B, and f0;X → B and f1 : X → B be as in the statement of the theorem.
Let H : X × I → B be a homotopy with H0 = f0 and G1 = f1. Now by the covering homotopy
theorem there is a covering homotopy H̃ : f∗0 (E)× I → E that covers H : X× I → B. By definition
this defines a map of bundles over X × I, that by abuse of notation we also call H̃,

f∗0 (E)× I
H̃−−−−→ H∗(E)

"
"

X × I −−−−→
=

X × I.

This is clearly a bundle isomorphism since it induces the identity map on both the base space
and on the fibers. Restricting this isomorphism to X × {1}, and noting that since H1 = f1, we get
a bundle isomorphism

f∗0 (E) H̃−−−−→∼= f∗1 (E)
"

"

X × {1} −−−−→
=

X × {1}.

This proves theorem 2.1 !

We now derive certain consequences of this theorem.

Corollary 2.3. Let p : E → B be a principal G - bundle over a connected space B. Then for
any space X the pull back construction gives a well defined map from the set of homotopy classes of
maps from X to B to the set of isomorphism classes of principal G - bundles,

ρE : [X, B] → PrinG(X).
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Definition 2.1. A principal G - bundle p : EG → BG is called universal if the pull back
construction

ρEG : [X, BG] → PrinG(X)

is a bijection for every space X. In this case the base space of the universal bundle BG is called a
classifying space for G (or for principal G - bundles).

The main goal of this chapter is to prove that universal bundles exist for every group G, and
that the classifying spaces are unique up to homotopy type.

Applying theorem 2.1 to vector bundles gives the following, which was claimed at the end of
chapter 1.

Corollary 2.4. If f0 : X → Y and f1 : X → Y are homotopic, they induce the same
homomorphism of abelian monoids,

f∗0 = f∗1 : V ect∗(Y ) → V ect∗(X)

V ect∗R(Y ) → V ect∗R(X)

and hence of K theories

f∗0 = f∗1 : K(Y ) → K(X)

KO(Y ) → KO(X)

Corollary 2.5. If f : X → Y is a homotopy equivalence, then it induces isomorphisms

f∗ : PrinG(Y )
∼=−−−−→ PrinG(X)

V ect∗(Y )
∼=−−−−→ V ect∗(X)

K(Y )
∼=−−−−→ K(X)

Corollary 2.6. Any fiber bundle over a contractible space is trivial.

Proof. If X is contractible, it is homotopy equivalent to a point. Apply the above corollary. !

The following result is a classification theorem for bundles over spheres. It begins to describe
why understanding the homotopy type of Lie groups is so important in Topology.

Theorem 2.7. There is a bijective correspondence between principal bundles and homotopy
groups

PrinG(Sn) ∼= πn−1(G)
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where as a set πn−1G = [Sn−1, x0; G, {1}], which refers to (based) homotopy classes of basepoint
preserving maps from the sphere Sn−1 with basepoint x0 ∈ Sn−1, to the group G with basepoint the
identity 1 ∈ G.

Proof. Let p : E → Sn be a G - bundle. Write Sn as the union of its upper and lower
hemispheres,

Sn = Dn
+ ∪Sn−1 Dn

−.

Since Dn
+ and Dn

− are both contractible, the above corollary says that E restricted to each of
these hemispheres is trivial. Morever if we fix a trivialization of the fiber of E at the basepoint
x0 ∈ Sn−1 ⊂ Sn, then we can extend this trivialization to both the upper and lower hemispheres.
We may therefore write

E = (Dn
+ ×G) ∪θ (Dn

− ×G)

where θ is a clutching function defined on the equator, θ : Sn−1 → G. That is, E consists of
the two trivial components, (Dn

+ × G) and (Dn
− × G) where if x ∈ Sn−1, then (x, g) ∈ (Dn

+ × G)
is identified with (x, θ(x)g) ∈ (Dn

− × G). Notice that since our original trivializations extended a
common trivialization on the basepoint x0 ∈ Sn−1, then the trivialization θ : Sn−1 → G maps the
basepoint x0 to the identity 1 ∈ G. The assignment of a bundle its clutching function, will define
our correspondence

Θ : PrinG(Sn) → πn−1G.

To see that this correspondence is well defined we need to check that if E1 is isomorphic to E2, then
the corresponding clutching functions θ1 and θ2 are homotopic. Let Ψ : E1 → E2 be an isomorphism.
We may assume this isomorphism respects the given trivializations of these fibers of these bundles
over the basepoint x0 ∈ Sn−1 ⊂ Sn. Then the isomorphism Ψ determines an isomorphism

(Dn
+ ×G) ∪θ1 (Dn

− ×G) Ψ−−−−→∼= (Dn
+ ×G) ∪θ2 (Dn

− ×G).

By restricting to the hemispheres, the isomorphism Ψ defines maps

Ψ+ : Dn
+ → G

and
Ψ− : Dn

− → G

which both map the basepoint x0 ∈ Sn−1 to the identity 1 ∈ G, and furthermore have the property
that for x ∈ Sn−1,

Ψ+(x)θ1(x) = θ2(x)Ψ−(x),

or, Ψ+(x)θ1(x)Ψ−(x)−1 = θ2(x) ∈ G. Now by considering the linear homotopy Ψ+(tx)θ1(x)Ψ−(tx)−1

for t ∈ [0, 1], we see that θ2(x) is homotopic to Ψ+(0)θ1(x)Ψ−(0)−1, where the two zeros in this
description refer to the origins of Dn

+ and Dn
− respectively, i.e the north and south poles of the

sphere Sn. Now since Ψ+ and Ψ− are defined on connected spaces, their images lie in a connected
component of the group G. Since their image on the basepoint x0 ∈ Sn−1 are both the identity,
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there exist paths α+(t) and α−(t) in Sn that start when t = 0 at Ψ+(0) and Ψ−(0) respectively, and
both end at t = 1 at the identity 1 ∈ G. Then the homotopy α+(t)θ1(x)α−(t)−1 is a homotopy from
the map Ψ+(0)θ1(x)Ψ−(0)−1 to the map θ1(x). Since the first of these maps is homotopic to θ2(x),
we have that θ1 is homotopic to θ2, as claimed. This implies that the map Θ : PrinG(Sn) → πn−1G

is well defined.

The fact that Θ is surjective comes from the fact that every map Sn−1 → G can be viewed as
the clutching function of the bundle

E = (Dn
+ ×G) ∪θ (Dn

− ×G)

as seen in our discussion of clutching functions in chapter 1.

We now show that Θ is injective. That is, suppose E1 and E2 have homotopic clutching functions,
θ1 * θ2 : Sn−1 → G. We need to show that E1 is isomorphic to E2 As above we write

E1 = (Dn
+ ×G) ∪θ1 (Dn

− ×G)

and
E2 = (Dn

+ ×G) ∪θ2 (Dn
− ×G).

Let H : Sn−1 × [−1, 1] → G be a homotopy so that H1 = θ1 and H1 = θ2. Identify the closure of
an open neighborhood N of the equator Sn−1 in Sn with Sn−1 × [−1, 1] Write D+ = D2

+ ∪ N̄ and
D− = D2

− ∪ N̄ Then D+ and D− are topologically closed disks and hence contractible, with

D+ ∩D− = N̄ ∼= Sn−1 × [−1, 1].

Thus we may form the principal G - bundle

E = D+ ×G ∪H D− ×G

where by abuse of notation, H refers to the composition

N̄ ∼= Sn−1 × [−1, 1] H−−−−→ G.

We leave it to the interested reader to verify that E is isomorphic to both E1 and E2. This
completes the proof of the theorem. !

2. Universal bundles and classifying spaces

The goal of this section is to study universal principal G - bundles, the resulting classification
theorem, and the corresponding classifying spaces. We will discuss several examples including the
universal bundle for any subgroup of the general linear group. We postpone the proof of the existence
of universal bundles for all groups until the next section.

In order to identify universal bundles, we need to recall the following definition from homotopy
theory.
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Definition 2.2. A space X is said to be aspherical if all of its homotopy groups are trivial,

πn(X) = 0 for all n ≥ 0.

Equivalently, a space X is aspherical if every map from a sphere Sn → X can be extended to a map
of its bounding disk, Dn+1 → X.

Note. A famous theorem of J.H.C. Whitehead states that if X has the homotopy type of a
CW - complex, then X being aspherical is equivalent to X being contractible (see [44]).

The following is the main result of this section. It identifies when a principal bundle is universal.

Theorem 2.8. Let p : E → B be a principal G - bundle, where the total space E is aspherical.
Then this bundle is universal in the sense that if X is any space, the induced pull-back map

ψ : [X, B] → PrinG(X)

f → f∗(E)

is a bijective correspondence.

For the purposes of these notes we will prove the theorem in the setting where the action of
G on the total space E is cellular. That is, there is a CW - decomposition of the space E which,
in an appropriate sense, is respected by the group action. There is very little loss of generality in
these assumptions, since the actions of compact Lie groups on manifolds, and algebraic actions on
projective varieties satisfy this property. For the proof of the theorem in its full generality we refer
the reader to Steenrod’s book [39], and for a full reference on equivariant CW - complexes and how
they approximate a wide range of group actions, we refer the reader to [24]

In order to make the notion of cellular action precise, we need to define the notion of an
equivariant CW - complex, or a G - CW - complex. The idea is the following. Recall that a
CW - complex is a space that is made up out of disks of various dimensions whose interiors are
disjoint. In particular it can be built up skeleton by skeleton, and the (k + 1)st skeleton X(k+1) is
constructed out of the kth skeleton X(k) by attaching (k + 1) - dimensional disks via “attaching
maps”, Sk → X(k).

A “G - CW - complex” is one that has a group action so that the orbits of the points on the
interior of a cell are uniform in the sense that each point in a cell Dk has the same isotropy subgroup,
say H, and the orbit of a cell itself is of the form G/H ×Dk. This leads to the following definition.

Definition 2.3. A G - CW - complex is a space with G -action X which is topologically the
direct limit of G - invariant subspaces {X(k)} called the equivariant skeleta,

X(0) ⊂ X(1) ⊂ · · · ⊂ X(k−1) ⊂ X(k) ⊂ · · ·X
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where for each k ≥ 0 there is a countable collection of k dimensional disks, subgroups of G, and
maps of boundary spheres

{Dk
j , Hj < G, φj : ∂Dk

j ×G/Hj = Sk−1
j ×G/Hj → X(k−1) j ∈ Ik}

so that

(1) Each “attaching map” φj : Sk−1
j ×G/Hj → X(k−1) is G -equivariant, and

(2)
X(k) = Xk−1)

⋃

φj j∈Ij

(Dk
j ×G/Hj).

This notation means that each “ disk orbit ” Dk
j × G/Hj is attached to X(k−1) via the map φj :

Sk−1
j ×G/Hj → X(k−1).

We leave the following as an exercise to the reader.

Exercise. Prove that when X is a G - CW complex the orbit space X/G has the an induced
structure of a (non-equivariant) CW - complex.

Note. Observe that in a G -CW complex X with a free G action, all disk orbits are of the form
Dk ×G, since all isotropy subgroups are trivial.

We now prove the above theorem under the assumption that the principal bundle p : E → B

has the property that with respect to group action of G on E, then E has the structure of a G - CW

- complex. The basespace is then given the induced CW - structure. The spaces X in the statement
of the theorem are assumed to be of the homotopy type of CW - complexes.

Proof. We first prove that the pull - back map

ψ : [X, B] → PrinG(X)

is surjective. So let q : P → X be a principal G - bundle, with P a G - CW - complex. We prove
there is a G - equivariant map h : P → E that maps each orbit pG homeomorphically onto its image,
h(y)G. We prove this by induction on the equivariant skeleta of P . So assume inductively that the
map h has been constructed on the (k − 1) - skeleton,

hk−1 : P (k−1) → E.

Since the action of G on P is free, all the k - dimensional disk orbits are of the form Dk × G.
Let Dk

j × G be a disk orbit in the G-CW - structure of the k - skeleton P (k). Consider the disk
Dk

j × {1} ⊂ Dk
j ×G. Then the map hk−1 extends to Dk

j × {1} if and only if the composition

Sk−1
j × {1} ⊂ Sk−1

j ×G
φj−−−−→ P (k−1) hk−1−−−−→ E
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is null homotopic. But since E is aspherical, any such map is null homotopic and extends to a map
of the disk, γ : Dk

j × {1} → E. Now extend γ equivariantly to a map hk,j : Dk
j × G → E. By

construction hk,j maps the orbit of each point x ∈ Dk
j equivariantly to the orbit of γ(x) in E. Since

both orbits are isomorphic to G (because the action of G on both P and E are free), this map is
a homeomorphism on orbits. Taking the collection of the extensions hk,j together then gives an
extension

hk : P (k) → E

with the required properties. This completes the inductive step. Thus we may conclude we have a
G - equivariant map h : P → E that is a homeomorphism on the orbits. Hence it induces a map on
the orbit space f : P/G = X → E/G = B making the following diagram commute

P
h−−−−→ E

q

"
"p

X −−−−→
f

B

Since h induces a homeomorphism on each orbit, the maps h and f determine a homeomorphism of
principal G - bundles which induces an equivariant isomorphism on each fiber. This implies that h

induces an isomorphism of principal bundles to the pull - back

P
h−−−−→∼= f∗(E)

q

"
"p

X −−−−→
=

X.

Thus the isomorphism class [P ] ∈ PrinG(X) is given by f∗(E). That is, [P ] = ψ(f), and hence

ψ : [X, B] → PrinG(X)

is surjective.

We now prove ψ is injective. To do this, assume f0 : X → B and f1 : X → B are maps so that
there is an isomorphism

Φ : f∗0 (E)
∼=−−−−→ f∗1 (E).

We need to prove that f0 and f1 are homotopic maps. Now by the cellular approximation theorem
(see [37]) we can find cellular maps homotopic to f0 and f1 respectively. We therefore assume
without loss of generality that f0 and f1 are cellular. This, together with the assumption that E is a
G - CW complex, gives the pull back bundles f∗0 (E) and f∗1 (E) the structure of G -CW complexes.

Define a principal G - bundle E → X × I by

E = f∗0 (E)× [0, 1/2] ∪Φ f∗1 (E)× [1/2, 1]

where v ∈ f∗0 (E)× {1/2} is identified with Φ(v) ∈ f∗1 (E)× {1/2}. E also has the structure of a G -
CW - complex.
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Now by the same kind of inductive argument that was used in the surjectivity argument above,
we can find an equivariant map H : E → E that induces a homeomorphism on each orbit, and that
extends the obvious maps f∗0 (E) × {0} → E and f∗1 (E) × {1} → E. The induced map on orbit
spaces

F : E/G = X × I → E/G = B

is a homotopy between f0 and f1. This proves the correspondence Ψ is injective, and completes the
proof of the theorem. !

The following result establishes the homotopy uniqueness of universal bundles.

Theorem 2.9. Let E1 → B1 and E2 → B2 be universal principal G - bundles. Then there is a
bundle map

E1
h̃−−−−→ E2

"
"

B1 −−−−→
h

B2

so that h is a homotopy equivalence.

Proof. The fact that E2 → B2 is a universal bundle means, by 2.8 that there is a “classifying
map” h : B1 → B2 and an isomorphism h̃ : E1 → h∗(E2). Equivalently, h̃ can be thought of as a
bundle map h̃ : E! → E2 lying over h : B1 → B2. Similarly, using the universal property of E1 → B1,
we get a classifying map g : B2 → B1 and an isomorphism g̃ : E2 → g∗(E1), or equivalently, a bundle
map g̃ : E2 → E1. Notice that the composition

g ◦ f : B1 → B2 → B1

is a map whose pull back,

(g ◦ f)∗(E1) = g∗(f∗(E1))

∼= g∗(E2)

∼= E1.

That is, (g ◦ f)∗(E1) ∼= id∗(E1), and hence by 2.8 we have g ◦ f * id : B1 → B1. Similarly,
f ◦ g * id : B2 → B2. Thus f and g are homotopy inverses of each other. !

Because of this theorem, the basespace of a universal principal G - bundle has a well defined
homotopy type. We denote this homotopy type by BG, and refer to it as the classifying space of
the group G. We also use the notation EG to denote the total space of a universal G - bundle.

We have the following immediate result about the homotopy groups of the classifying space BG.
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Corollary 2.10. For any group G, there is an isomorphism of homotopy groups,

πn−1G ∼= πn(BG).

Proof. By considering 2.7 and 2.8 we see that both of these homotopy groups are in bijective
correspondence with the set of principal bundles PrinG(Sn). To realize this bijection by a group
homomorphism, consider the “suspension” of the group G, ΣG obtained by attaching two cones on
G along the equator. That is,

ΣG = G× [−1, 1]/ ∼

where all points of the form (g, 1), (h,−1), or (1, t) are identified to a single point.

Notice that this suspension construction can be applied to any space with a basepoint, and in
particular ΣSn−1 ∼= Sn.

Consider the principal G bundle E over ΣG defined to be trivial on both cones with clutching
function id : G× {0} =−−−−→ G on the equator. That is, if C+ = G × [0, 1]/ ∼⊂ ΣG and C− =
G× [−1, 0] ⊂ ΣE are the upper and lower cones, respectively, then

E = (C+ ×G) ∪id (C− ×G)

where ((g, 0), h) ∈ C+ ×G is identified with ((g, 0)gh ∈ C− ×G. Then by 2.8 there is a classifying
map

f : ΣG → BG

such that f∗(EG) ∼= E.

Now for any space X, let ΩX be the loop space of X,

ΩX = {γ : [−1, 1] → X such that γ(−1) = γ(1) = x0 ∈ X}

where x0 ∈ X is a fixed basepoint. Then the map f : ΣG → BG determines a map (its adjoint)

f̄ : G → ΩBG

defined by f̄(g)(t) = f(g, t). But now the loop space ΩX of any connected space X has the property
that πn−1(ΩX) = πn(X) (see the exercise below). We then have the induced group homomorphism

πn−1(G) f̄∗−−−−→ πn−1(ΩBG)
∼=−−−−→ πn(BG)

which induces the bijective correspondence described above. !

Exercises. 1. Prove that for any connected space X, there is an isomorphism

πn−1(ΩX) ∼= πn(X).

2. Prove that the composition

πn−1(G) f̄∗−−−−→ πn−1(ΩBG)
∼=−−−−→ πn(BG)
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in the above proof yields the bijection associated with identifying both πn−1(G) and πn(BG) with
PrinG(Sn).

We recall the following definition from homotopy theory.

Definition 2.4. An Eilenberg - MacLane space of type (G, n) is a space X such that

πk(X) =





G if k = n

0 otherwise

We write K(G, n) for an Eilenberg - MacLane space of type (G, n). Recall that for n ≥ 2, the
homotopy groups πn(X) are abelian groups, so in this K(G, n) only exists

Corollary 2.11. Let π be a discrete group. Then the classifying space Bπ is an Eilenberg -
MacLane space K(π, 1).

Examples.

• R has a free, cellular action of the integers Z by

(t, n) → t + n t ∈ R, n ∈ Z.

Since R is contractible, R/Z = S1 = BZ = K(Z, 1).
• The inclusion Sn ⊂ Sn+1 as the equator is clearly null homotopic since the inclusion

obviously extends to a map of the disk. Hence the direct limit space

lim−→
n

Sn = ∪nSn = S∞

is aspherical. Now Z2 acts freely on Sn by the antipodal map, as described in chapter
one. The inclusions Sn ⊂ Sn+1 are equivariant and hence there is an induced free action
of Z2 on S∞. Thus the projection map

S∞ → S∞/Z2 = RP∞

is a universal principal Z2 = O(1) - bundle, and so

RP∞ = BO(1) = BZ2 = K(Z2, 1)

.
• Similarly, the inclusion of the unit sphere in Cn into the unit sphere in Cn+1 gives an the

inclusion S2n−1 ⊂ S2n+1 which is null homotopic. It is also equivariant with respect to
the free S1 = U(1) - action given by (complex) scalar multiplication. Then the limit
S∞ = ∪nS2n+1 is aspherical with a free S1 action. We therefore have that the projection

S∞ → S∞/S1 = CP∞
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is a principal S1 = U(1) bundle. Hence we have

CP∞ = BS1 = BU(1).

Moreover since S1 is a K(Z, 1), then we have that

CP∞ = K(Z, 2).

• The cyclic groups Zn are subgroups of U(1) and so they act freely on S∞ as well. Thus
the projection maps

S∞ → S∞/Zn

is a universal principal Zn bundle. The quotient space S∞/Zn is denoted L∞(n) and is
referred to as the infinite Zn - lens space.

These examples allow us to give the following description of line bundles and their relation
to cohomology. We first recall a well known theorem in homotopy theory. This theorem will be
discussed further in chapter 4. We refer the reader to [42] for details.

Theorem 2.12. Let G be an abelian group. Then there is a natural isomorphism

φ : Hn(K(G, n);G)
∼=−−−−→ Hom(G, G).

Let ι ∈ Hn(K(G, n);G) be φ−1(id). This is called the fundamental class. Then if X has the
homotopy type of a CW - complex, the mapping

[X, K(G, n)] → Hn(X;G)

f → f∗(ι)

is a bijective correspondence.

With this we can now prove the following:

Theorem 2.13. There are bijective correspondences which allow us to classify complex line
bundles,

V ect1(X) ∼= PrinU(1)(X) ∼= [X, BU(1)] = [X, CP∞] ∼= [X, K(Z, 2)] ∼= H2(X; Z)

where the last correspondence takes a map f : X → CP∞ to the class

c1 = f∗(c) ∈ H2(X),

where c ∈ H2(CP∞) is the generator. In the composition of these correspondences, the class c1 ∈
H2(X) corresponding to a line bundle ζ ∈ V ect1(X) is called the first Chern class of ζ (or of the
corresponding principal U(1) - bundle).
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Proof. These correspondences follow directly from the above considerations, once we recall
that V ect1(X) ∼= PrinGL(1,C)(X) ∼= [X, BGL(1, C)], and that CP∞ is a model for BGL(1, C) as
well as BU(1). This is because, we can express CP∞ in its homogeneous form as

CP∞ = lim−→
n

(Cn+1 − {0})/GL(1, C),

and that lim−→n
(Cn+1 − {0}) is an aspherical space with a free action of GL(1, C) = C∗. !

There is a similar theorem classifying real line bundles:

Theorem 2.14. There are bijective correspondences

V ect1R(X) ∼= PrinO(1)(X) ∼= [X, BO(1)] = [X, RP∞] ∼= [X, K(Z2, 1)] ∼= H1(X; Z2)

where the last correspondence takes a map f : X → RP∞ to the class

w1 = f∗(w) ∈ H1(X; Z2),

where w ∈ H1(RP∞; Z2) is the generator. In the composition of these correspondences, the class
w1 ∈ H1(X; Z2) corresponding to a line bundle ζ ∈ V ect1R(X) is called the first Stiefel - Whitney
class of ζ (or of the corresponding principal O(1) - bundle).

More Examples.

• Let Vn(CN ) be the Stieflel - manifold studied in the last chapter. We claim that the
inclusion of vector spaces CN ⊂ C2N as the first N - coordinates induces an inclusion
Vn(CN ) ↪→ Vn(C2N ) which is null homotopic. To see this, let ι : Cn → C2N be a fixed
linear embedding, whose image lies in the last N - coordinates in C2N . Then given any
ρ ∈ Vn(CN ) ⊂ Vn(C2N ), then t · ι+(1− t) ·ρ for t ∈ [0, 1] defines a one parameter family of
linear embeddings of Cn in C2N , and hence a contraction of the image of Vn(CN ) onto the
element ι. Hence the limiting space Vn(C∞) is aspherical with a free GL(n, C) - action.
Therefore the projection

Vn(C∞) → Vn(C∞)/GL(n, C) = Grn(C∞)

is a universal GL(n, C) - bundle. Hence the infinite Grassmannian is the classifying space

Grn(C∞) = BGL(n, C)

and so we have a classification

V ectn(X) ∼= PrinGL(n,C)(X) ∼= [X, BGL(n, C)] ∼= [X, Grn(C∞)].
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• A simlar argument shows that the infinite unitary Stiefel manifold, V U
n (C∞) is aspherical

with a free U(n) - action. Thus the projection

V U
n (C∞) → Vn(C∞)/U(n) = Grn(C∞)

is a universal principal U(n) - bundle. Hence the infinite Grassmanian Grn(C∞) is the
classifying space for U(n) bundles as well,

Grn(C∞) = BU(n).

The fact that this Grassmannian is both BGL(n, C) and BU(n) reflects the fact that every
n - dimensional complex vector bundle has a U(n) - structure.

• We have similar universal GL(n, R) and O(n) - bundles:

Vn(R∞) → Vn(R∞)/GL(n, R) = Grn(R∞)

and

V O
n (R∞) → V O

n (R∞)/O(n) = Grn(R∞).

Thus we have

Grn(R∞) = BGL(n, R) = BO(n)

and so this infinite dimensional Grassmannian classifies real n - dimensional vector bundles
as well as principal O(n) - bundles.

Now suppose p : EG → EG/G = BG is a universal G - bundle. Suppose further that H < G is
a subgroup. Then H acts freely on EG as well, and hence the projection

EG → EG/H

is a universal H - bundle. Hence EG/H = BH. Using the infinite dimensional Stiefel manifolds
described above, this observation gives us models for the classifying spaces for any subgroup of a
general linear group. So for example if we have a subgroup (i.e a faithful representation) H ⊂
GL(n, C), then

BH = Vn(C∞)/H.

This observation also leads to the following useful fact.

Proposition 2.15. . Let p : EG → BG be a universal principal G - bundle, and let H < G.
Then there is a fiber bundle

BH → BG

with fiber the orbit space G/H.
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Proof. This bundle is given by

G/H → EG×G G/H → EG/G = BG

together with the observation that EG×G G/H = EG/H = BH. !

3. Classifying Gauge Groups

In this section we describe the classifying space of the group of automorphisms of a principal G

- bundle, or the gauge group of the bundle. We describe the classifying space in two different ways:
in terms of the space of connections on the bundle, and in terms of the mapping space of the base
manifold to the classifying space BG. These constructions are important in Yang - Mills theory,
and we refer the reader to [3] and [11] for more details.

Let A be a connection on a principal bundle P −→ M where M is a closed manifold equipped
with a Riemannian metric. The Yang - Mills functional applied to A, YM(A) is the square of the
L2 norm of the curvature,

YM(A) =
1
2

∫

M
‖FA‖2 d(vol).

We view YM as a mapping YM : A(P ) −→ R. The relevance of the gauge group in Yang -
Mills theory is that this is the group of symmetries of A that YM preserves.

Definition 2.5. The gauge group G(P ) of the principal bundle P is the group of bundle au-
tomorphisms of P −→ M . That is, an element φ ∈ G(P ) is a bundle isomorphism of P with itself
lying over the identity:

P
φ−−−−→∼= P

"
"

M
=−−−−→ M.

Equivalently, G(P ) is the group G(P ) = AutG(P ) of G - equivariant diffeomorphisms of the space
P .

The gauge group G(P ) can be thought of in several equivalent ways. The following one is
particularly useful.

Consider the conjugation action of the Lie group G on itself,

G×G −→ G

(g, h) −→ ghg−1.
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This left action defines a fiber bundle

Ad(P ) = P ×G G −→ P/G = M

with fiber G. We leave the following as an exercise for the reader.

Proposition 2.16. The gauge group of a principal bundle P −→ M is naturally isomorphic (as
topological groups) the the group of sections of Ad(P ), C∞(M ;Ad(P )).

The gauge group G(P ) acts on the space of connections A(P ) by the pull - back construction.
More generally, if f : P → Q is any smooth map of principal G - bundles and A is a connection on
Q, then there is a natural pull back connection f∗(A) on Q, defined by pulling back the equivariant
splitting of τQ to an equivariant splitting of τP in the obvious way. The pull - back construction
for automorphisms φ : P −→ P defines an action of G(P ) on A(P ).

We leave the proof of the following is an exercise for the reader.

Proposition 2.17. Let P be the trivial bundle M × G → M . Then the gauge group G(P ) is
given by the function space from M to G,

G(P ) ∼= C∞(M ;G).

Furthermore if φ : M → G is identified with an element of G(P ), and A ∈ Ω1(M ; g) is identified
with an element of A(G), then the induced action of φ on G is given by

φ∗(A) = φ−1Aφ + φ−1dφ.

It is not difficult to see that in general the gauge group G(P ) does not act freely on the space
of connections A(P ). However there is an important subgroup G0(P ) < G(P ) that does. This is the
group of based gauge transformations. To define this group, let x0 ∈ M be a fixed basepoint, and
let Px0 be the fiber of P at x0.

Definition 2.6. The based gauge group G0(P ) is a subgroup of the group of bundle automor-
phisms G(P ) which pointwise fix the fiber Px) . That is,

G0(P ) = {φ ∈ G(P ) : if v ∈ Px0thenφ(v) = v}.

Theorem 2.18. The based gauge group G0(P ) acts freely on the space of connections A(P ).
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Proof. Suppose that A ∈ A(P ) is a fixed point of φ ∈ G0(P ). That is, φ∗(A) = A. We need
to show that φ = 1.

The equivariant splitting ωA given by a connection A defines a notion of parallel transport in P

along curves in M (see [16]) . It is not difficult to see that the statement φ∗(A) = A implies that
application of the automorphism φ commutes with parallel transport. Now let w ∈ Px be a point in
the fiber of an element x ∈ M . Given curve γ in M between the basepoint x0 and x one sees that

φ(w) = Tγ(φ(Tγ−1(w))

where Tγ is parallel transport along γ. But since Tγ−1(w) ∈ Px0 and φ ∈ G0(P ),

φ(Tγ−1(w)) = w.

Hence φ(w) = w, that is, φ = 1. !

Remark. Notice that this argument actually says that if A ∈ A(P ) is the fixed point of any gauge
transformation φ ∈ G(P ), then φ is determined by its action on a single fiber.

Let B(P ) and B0(P ) be the orbit spaces of connections on P up to guage and based gauge
equivalence respectively,

B(P ) = A(P )/G(P ) B0(P ) = A(P )/G0(P ).

Now it is straightforward to check directly that the Yang - Mills functional in invariant under
gauge transformations. Thus it yields maps

YM : B(P ) → R and YM : B0(P ) → R.

It is therefore important to understand the homotopy types of these orbit spaces. Because of the
freeness of the action of G0(P ), the homotopy type of the orbit space G0(P ) is easier to understand.

We end this section with a discussion of its homotopy type. Since the space of connections A(P )
is affine, it is contractible. Moreover it is possible to show that the free action of the based gauge
group G0(P ) has local slices (see [11]). Thus we have B0(P ) = A(P )/G0(P ) is the classifying space
of the based gauge group,

B0(P ) = BG0(P ).

But the classifying spaces of the gauge groups are relatively easy to understand. (see [3].)

Theorem 2.19. Let G −→ EG −→ BG be a universal principal bundle for the Lie group G (so
that EG is aspherical). Let y0 ∈ BG be a fixed basepoint. Then there are homotopy equivalences

BG(P ) * MapP (M,BG) and B0(P ) * BG0(P ) * MapP
0 (M,BG)
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where Map(M,BG) is the space of all continuous maps from M to BG and Map0(M,BG) is the
space of those maps that preserve the basepoints. The superscript P denotes the path component of
these mapping spaces consisting of the homotopy class of maps that classify the principal G - bundle
P .

Proof. Consider the space of all G - equivariant maps from P to EG, MapG(P,EG). The
gauge group G(P ) ∼= AutG(P ) acts freely on the left of this space by composition. It is easy to see
that MapG(P,EG) is aspherical, and its orbit space is given by the space of maps from the G - orbit
space of P (= M) to the G - orbit space of EG (= BG),

MapG(P,EG)/G(P ) ∼= MapP (M,BG).

This proves that Map(M,BG) = BG(P ). Similarly MapG
0 (P,EG), the space of G - equivariant

maps that send the fiber Px0 to the fiber EGy0 , is an aspherical space with a free G0(P ) action,
whose orbit space is MapP

0 (M,BG). Hence MapP
0 (M,BG) = BG0(P ). !

4. Existence of universal bundles: the Milnor join construction and the simplicial
classifying space

In the last section we proved a “recognition principle” for universal principal G bundles. Namely,
if the total space of a principal G - bundle p : E → B is aspherical, then it is universal. We also
proved a homotopy uniqueness theorem, stating among other things that the homotopy type of the
base space of a universal bundle, i.e the classifying space BG, is well defined. We also described
many examples of universal bundles, and particular have a model for the classifying space BG, using
Stiefel manifolds, for every subgroup of a general linear group.

The goal of this section is to prove the general existence theorem. Namely, for every group G,
there is a universal principal G - bundle p : EG → BG. We will give two constructions of the
universal bundle and the corresponding classifying space. One, due to Milnor [30] involves taking
the “infinite join” of a group with itself. The other is an example of a simplicial space, called the
simplicial bar construction. It is originally due to Eilenberg and MacLane [12]. These constructions
are essentially equivalent and both yield G - CW - complexes. Since they are so useful in algebraic
topology and combinatorics, we will also take this opportunity to introduce the notion of a general
simplicial space and show how these classifying spaces are important examples.

4.1. The join construction. The “join” between two spaces X and Y , written X ∗ Y is the
space of all lines connecting points in X to points in Y . The following is a more precise definition:
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Definition 2.7. The join X ∗ Y is defined by

X ∗ Y = X × I × Y/ ∼

where I = [0, 1] is the unit interval and the equivalence relation is given by (x, 0, y1) ∼ (x, 0, y2) for
any two points y1, y2 ∈ Y , and similarly (x1, 1, y) ∼ (x2, 1, y) for any two points x1, x2 ∈ X.

A point (x, t, y) ∈ X ∗ Y should be viewed as a point on the line connecting the points x and y.
Here are some examples.

Examples.

• Let y be a single point. Then X ∗ y is the cone CX = X × I/X × {1} .
• Let Y = {y1, y2} be the space consisting of two distinct points. Then X ∗ Y is the

suspension ΣX discussed earlier. Notice that the suspension can be viewed as the union
of two cones, with vertices y1 and y2 respectively, attached along the equator.

• Exercise. Prove that the join of two spheres, is another sphere,

Sn ∗ Sm ∼= Sn+m+1.

• Let {x0, · · · , xk} be a collection of k + 1 - distinct points. Then the k - fold join
x0 ∗ x1 ∗ · · · ∗ xk is the convex hull of these points and hence is by the k - dimensional
simplex ∆k with vertices {x0, · · · , xk}.

Observe that the space X sits naturally as a subspace of the join X ∗Y as endpoints of line segments,

ι : X ↪→ X ∗ Y

x → (x, 0, y).

Notice that this formula for the inclusion makes sense and does not depend on the choice of
y ∈ Y . There is a similar embedding

j : Y ↪→ X ∗ Y

y → (x, 1, y).

Lemma 2.20. The inclusions ι : X ↪→ X ∗ Y and j : Y ↪→ X ∗ Y are null homotopic.

Proof. Pick a point y0 ∈ Y . By definition, the embedding ι : X → X ∗ Y factors as the
composition

ι : X ↪→ X ∗ y0 ⊂ X ∗ Y

x → (x, 0, y0).
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But as observed above, the join X ∗ y0 is the cone on X and hence contractible. This means that ι

is null homotopic, as claimed. The fact that j : Y ↪→ X ∗ Y is null homotopic is proved in the same
way. !

Now let G be a group and consider the iterated join

G∗(k+1) = G ∗G ∗ · · · ∗G

where there are k + 1 copies of the group element. This space has a free G action given by the
diagonal action

g · (g0, t1, g1, · · · , tk, gk) = (gg0, t1, gg1, · · · , tk, ggk).

Exercise. 1. Prove that there is a natural G - equivariant map

∆k ×Gk+1 → G∗(k+1)

which is a homeomorphism when restricted to ∆̃k ×Gk+1 where ∆̃k ⊂ ∆k is the interior. Here G

acts on ∆k ×Gk+1 trivially on the simplex ∆k and diagonally on Gk+1.

2. Use exercise 1 to prove that the iterated join G∗(k+1) has the structure of a G - CW - complex.

Define J (G) to be the infinite join

J (G) = lim
k→∞

G∗(k+1)

where the limit is taken over the embeddings ι : G∗(k+1) ↪→ G∗(k+2) Since these embedding maps
are G -equivariant, we have an induced G - action on J (G).

Theorem 2.21. The projection map

p : J (G) → J (G)/G

is a universal principal G - bundle.

Proof. By the above exercise the space J (G) has the structure of a G - CW - complex with
a free G - action. Therefore by the results of the last section the projection p : J (G) → J (G)/G is
a principal G - bundle. To see that J (G) is aspherical, notice that since Sn is compact, any map
α : Sn → J (G) is homotopic to one that factors through a finite join (that by abuse of notation we
still call α), α : Sn → G∗(n+1) ↪→ J (G). But by the above lemma the inclusion G∗(n+1) ⊂ J (G)
is null homotopic, and hence so is α. Thus J (G) is aspherical. By the results of last section, this
means that the projection J (G) → J (G)/G is a universal G - bundle. !
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4.2. Simplicial spaces and classifying spaces. We therefore now have a universal bundle
for every topological group G. We actually know a fair amount about the geometry of the total
space EG = J (G) which, by the above exercise can be described as the union of simplices, where
the k - simplices are parameterized by k + 1 -tuples of elements of G,

EG = J (G) =
⋃

k

∆k ×Gk+1/ ∼

and so the classifying space can be described by

BG = J (G)/G ∼=
⋃

k

∆k ×Gk/ ∼

It turns out that in these constructions, the simplices are glued together along faces, and these
gluings are parameterized by the k + 1 - product maps ∂i : Gk+2 → Gk+1 given by multiplying the
ith and (i + 1)st coordinates.

Having this type of data (parameterizing spaces of simplices as well as gluing maps) is an example
of an object known as a “simplicial set” which is an important combinatorial object in topology. We
now describe this notion in more detail and show how these universal G - bundles and classifying
spaces can be viewed in these terms.

Good references for this theory are [9], [26].

The idea of simplicial sets is to provide a combinatorial technique to study cell complexes built
out of simplices; i.e simplicial complexes. A simplicial complex X is built out of a union of simplices,
glued along faces. Thus if Xn denotes the indexing set for the n - dimensional simplices of X, then
we can write

X =
⋃

n≥0

∆n ×Xn/ ∼

where ∆n is the standard n - simplex in Rn;

∆n = {(t1, · · · , tn) ∈ Rn : 0 ≤ tj ≤ 1, and
n∑

i=1

ti ≤ 1}.

The gluing relation in this union can be encoded by set maps among the Xn’s that would tell
us for example how to identify an n − 1 simplex indexed by an element of Xn−1 with a particular
face of an n - simplex indexed by an element of Xn. Thus in principal simplicial complexes can be
studied purely combinatorially in terms of the sets Xn and set maps between them. The notion of
a simplicial set makes this idea precise.

Definition 2.8. A simplicial set X∗ is a collection of sets

Xn, n ≥ 0
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together with set maps
∂i : Xn −→ Xn−1 and sj : Xn −→ Xn+1

for 0 ≤ i, j ≤ n called face and degeneracy maps respectively. These maps are required to satisfy
the following compatibility conditions

∂i∂j = ∂j−1∂i for i < j

sisj = sj+1si for i < j

and

∂isj =






sj−1∂i for i < j

1 for i = j, j + 1

sj∂i−1 for i > j + 1

As mentioned above, the maps ∂i and sj encode the combinatorial information necessary for
gluing the simplices together. To say precisely how this works, consider the following maps between
the standard simplices:

δi : ∆n−1 −→ ∆n and σj : ∆n+1 −→ ∆n

for 0 ≤ i, j ≤ n defined by the formulae

δi(t1, · · · , tn−1) =





(t1, · · · , ti−1, 0, ti, · · · , tn−1) for i ≥ 1

(1−
∑n−1

q=1 tq, t1, · · · , tn−1) for i = 0

and

σj(t1, · · · , tn+1) =





(t1, · · · , ti−1, ti + ti+1, ti+2, · · · , tn+1) for i ≥ 1

(t2, · · · , tn+1) for i = 0 .

δi includes ∆n−1 in ∆n as the ith face, and σj projects, in a linear fashion, ∆n+1 onto its jth

face.

We can now define the space associated to the simplicial set X∗ as follows.

Definition 2.9. The geometric realization of a simplicial set X∗ is the space

‖X∗‖ =
⋃

n≥0

∆n ×Xn/ ∼

where if t ∈ ∆n−1 and x ∈ Xn, then

(t, ∂i(x)) ∼ (δi(t), x)
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and if t ∈ ∆n+1 and x ∈ Xn then
(t, sj(x)) ∼ (σj(t), x).

In the topology of ‖X∗‖, each Xn is assumed to have the discrete topology, so that ∆n ×Xn is
a discrete set of n - simplices.

Thus ‖X∗‖ has one n - simplex for every element of Xn, glued together in a way determined by
the face and degeneracy maps.

Example. Consider the simplicial set S∗ defined as follows. The set of n - simplices is given by

Sn = Z/(n + 1), generated by an element τn.

The face maps are given by

∂i(τ r
n) =





τ r
n−1 if r ≤ i ≤ n

τ r−1
n−1 if 0 ≤ i ≤ r − 1.

The degeneracies are given by

si(τ r
n) =





τ r
n+1 if r ≤ i ≤ n

τ r+1
n+1 if 0 ≤ i ≤ r − 1.

Notice that there is one zero simplex, two one simplices, one of them the image of the degeneracy
s0 : S0 −→ S1, and the other nondegenerate (i.e not in the image of a degeneracy map). Notice also
that all simplices in dimensions larger than one are in the image of a degeneracy map. Hence we
have that the geometric realization

‖S∗‖ = ∆1/0 ∼ 1 = S1.

Let X∗ be any simplicial set. There is a particularly nice and explicit way for computing the
homology of the geometric realization, H∗(‖X∗‖).

Consider the following chain complex. Define Cn(X∗) to be the free abelian group generated by
the set of n - simplices Xn. Define the homomorphism

dn : Cn(X∗) −→ Cn−1(X∗)

by the formula

dn([x]) =
n∑

i=0

(−1)i∂i([x])

where x ∈ Xn.

Proposition 2.22. The homology of the geometric realization H∗(‖X∗‖) is the homology of the
chain complex

−→ · · · dn+1−−−−→ Cn(X∗)
dn−−−−→ Cn−1(X∗)

dn−1−−−−→ · · · d0−−−−→ C0(X∗).
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Proof. It is straightforward to check that the geometric realization ‖X∗‖ is a CW - complex
and that this is the associated cellular chain complex. !

Besides being useful computationally, the following result establishes the fact that all CW

complexes can be studied simplicially.

Theorem 2.23. Every CW complex has the homotopy type of the geometric realization of a
simplicial set.

Proof. Let X be a CW complex. Define the singular simplicial set of X , S(X)∗ as follows.
The n simplices S(X)n is the set of singular n - simplices,

S(X)n = {c : ∆n −→ X}.

The face and degeneracy maps are defined by

∂i(c) = c ◦ δi : ∆n−1 −→ ∆n −→ X

and

sj(c) = c ◦ σi : ∆n+1 −→ ∆n −→ X.

Notice that the associated chain complex to S(X)∗ as in 2.22 is the singular chain complex of
the space X. Hence by 2.22 we have that

H∗(‖S(X)‖) ∼= H∗(X).

This isomorphism is actually realized by a map of spaces

E : ‖S(X)∗‖ −→ X

defined by the natural evaluation maps

∆n × S(X)n −→ X

given by

(t, c) −→ c(t).

It is straightforward to check that the map E does induce an isomorphism in homology. In fact it
induces an isomorphism in homotopy groups. We will not prove this here; it is more technical and
we refer the reader to [M] for details. Note that it follows from the homological isomorphism by the
Hurewicz theorem if we knew that X was simply connected. A map between spaces that induces an
isomorphism in homotopy groups is called a weak homotopy equivalence. Thus any space is weakly
homotopy equivalent to a CW - complex (i.e the geometric realization of its singular simplicial
set). But by the Whitehead theorem, two CW complexes that are weakly homotopy equivalent are
homotopy equivalent. Hence X and ‖S(X)∗‖ are homotopy equivalent. !
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We next observe that the notion of simplicial set can be generalized as follows. We say that X∗

is a simplicial space if it is a simplicial set (i.e it satisfies definition 2.8) where the sets Xn are
topological spaces and the face and degeneracy maps

∂i : Xn −→ Xn−1 and sj : Xn −→ Xn+1

are continuous maps. The definition of the geometric realization of a simplicial space X∗, ‖X∗‖,
is the same as in 2.9 with the proviso that the topology of each ∆n ×Xn is the product topology.
Notice that since the “set of n - simplices” Xn is actually a space, it is not necessarily true that ‖X∗‖
is a CW complex. However if in fact each Xn is a CW complex and the face and degeneracy maps
are cellular, then ‖X∗‖ does have a natural CW structure induced by the product CW - structures
on ∆n ×Xn.

Notice that this simplicial notion generalizes even further. For example a simplicial group
would be defined similarly, where each Xn would be a group and the face and degeneracy maps are
group homomorphisms. Simplicial vector spaces, modules, etc. are defined similarly. The categorical
nature of these definitions should by now be coming clear. Indeed most generally one can define a
simplicial object in a category C using the above definition where now the Xn’s are assumed
to be objects in the category and the face and degenarcies are assumed to be morphisms. If the
category C is a subcategory of the category of sets then geometric realizations can be defined as in 2.9
For example the geometric realization of a simplicial (abelian) group turns out to be a topological
(abelian) group.(Try to verify this for yourself!)

We now use this simplicial theory to construct universal principal G - bundles and classifying
spaces.

Let G be a topological group and let EG∗ be the simplicial space defined as follows. The space
of n - simplices is given by the n + 1 - fold cartesian product

EGn = Gn+1.

The face maps ∂i : Gn+1 −→ Gn are given by the formula

∂i(g0, · · · , gn) = (g0, · · · , ĝi, · · · , gn).

The degeneracy maps sj : Gn+1 −→ Gn+2 are given by the formula

sj(g0, · · · , gn) = (g0, · · · , gj , gj , · · · , gn).

Exercise. Show that the geometric realization ‖EG∗‖ is aspherical. Hint. Let ‖EG∗‖(n) be the nth

- skeleton,

‖EG∗‖(n) =
n⋃

p=0

∆p ×Gp+1.
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Then show that the inclusion of one skeleton in the next ‖EG∗‖(n) ↪→ ‖EG∗‖(n+1) is null -
homotopic. One way of doing this is to establish a homeomorphism between ‖EG∗‖(n) and n - fold
join G ∗ · · · ∗G. See [M] for details.

Notice that the group G acts freely on the right of ‖EG∗‖ by the rule

‖EG∗‖ ×G =




⋃

p≥0

∆p ×Gp+1



×G −→ ‖EG∗‖(4.1)

(t; (g0, · · · , gp))× g −→ (t; (g0g, · · · , gpg)) .

Thus we can define EG = ‖EG∗‖. The projection map

p : EG → EG/G = BG

is therefore a universal principal G - bundle.

This description gives the classfiying space BG an induced simplicial structure described as
follows.

.

Let BG∗ be the simplicial space whose n - simplices are the cartesian product

BGn = Gn.(4.2)

The face and degeneracy maps are given by

∂i(g1, · · · , gn) =






(g2, · · · , gn) for i = 0

(g1, · · · , gigi+1, · · · gn) for 1 ≤ i ≤ n− 1

(g1, · · · , gn−1) for i = n.

The degeneracy maps are given by

sj(g1, · · · , gn) =





(1, g1, · · · , gn) for j = 0

(g1, · · · gj , 1, gj+1, · · · , gn) for j ≥ 1.

The simplicial projection map

p : EG∗ −→ BG∗

defined on the level of n - simplicies by

p(g0, · · · , gn) = (g0g
−1
1 , g1g

−1
2 , · · · , gn−1g

−1
n )

is easily checked to commute with face and degeneracy maps and so induces a map on the level of
geometric realizations
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p : EG = ‖EG∗‖ −→ ‖BG∗‖

which induces a homemorphism

BG = EG/G
∼=−−−−→ ‖BG∗‖.

Thus for any topological group this construction gives a simplicial space model for its classifying
space. This is referred to as the simplicial bar construction. Notice that when G is discrete
the bar construction is a CW complex for the classifying space BG = K(G, 1) and 2.22 gives a
particularly nice complex for computing its homology. (The homology of a K(G, 1) is referred to as
the homology of the group G.)

The n - chains are the group ring

Cn(BG∗) = Z[Gn] ∼= Z[G]⊗n

and the boundary homomorphisms

dn : Z[G]⊗n −→ Z[G]⊗n−1

are given by

dn(a1 ⊗ · · ·⊗ an) = (a2 ⊗ · · ·⊗ an)+
n−1∑

i=1

(−1)i(a1 ⊗ · · ·⊗ aiai+1 ⊗ · · ·⊗ an)

+ (−1)n(a1 ⊗ · · ·⊗ an−1).

This complex is called the bar complex for computing the homology of a group and was
discovered by Eilenberg and MacLane in the mid 1950’s.

We end this chapter by observing that the bar construction of the classifying space of a group
did not use the full group structure. It only used the existence of an associative multiplication with
unit. That is, it did not use the existence of inverse. So in particular one can study the classifying
space BA of a monoid A. This is an important construction in algebraic - K - theory.

5. Some Applications

In a sense much of what we will study in the next chapter are applications of the classification
theorem for principal bundles. In this section we describe a few immediate applications.


