Decentralized Message Routing in Mobile Networks

Ryan Kennedy
Mike Kirkpatrick
Computer Science and Engineering

University of Notre Dame
Introduction

- Use of Wireless Technology is Increasing
- Could improve Message Routing of existing Centralized Networks
- New focus on more Efficient Decentralized Message Routing
Applications

- Personal communication
- Robots exploring a distant planet
- Computer Networks
- Wireless Networks
Simulation Environment

- StarLogo
 - Specializes in Simulation Decentralized Systems
 - Graphical Display
 - Easy to program
 - Good Functionality
 - Parallel Execution
Simulation Specifics I

- Environment
 - 50 x 50 grid with defined edges
 - Random initial distribution of Agents
 - Agents occupy 1 grid square
 - Agents move to a random neighboring empty grid square, if available
 - Variable Density of Agents
Simulation Specifics II

- Messages
 - Message known by 1 Agent to start
 - At each Time Step, Agents knowing the Message attempt to pass it to neighboring Agents
 - If an Agent has already received the Message, he refuses to receive it again
 - Agents “remember” the message for Specified number of Time Steps
Simulation Goals

- Maximize Message Saturation
 - Reliably relay Message to Agents
- Increase Efficiency
- Decrease Resources Used
A high Time Step or Density of Agents is required for near 100% Saturation

<table>
<thead>
<tr>
<th>Density</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>---</td>
<td>0.015</td>
<td>0.047</td>
<td>0.052</td>
<td>0.076</td>
<td>0.159</td>
</tr>
<tr>
<td>5</td>
<td>0.015</td>
<td>0.051</td>
<td>0.095</td>
<td>0.197</td>
<td>0.186</td>
<td>0.397</td>
</tr>
<tr>
<td>8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.577</td>
<td>0.86</td>
<td>0.9</td>
</tr>
<tr>
<td>10</td>
<td>0.035</td>
<td>0.239</td>
<td>0.601</td>
<td>0.932</td>
<td>0.981</td>
<td>0.993</td>
</tr>
<tr>
<td>13</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.988</td>
<td>0.995</td>
<td>0.998</td>
</tr>
<tr>
<td>15</td>
<td>0.077</td>
<td>0.815</td>
<td>0.97</td>
<td>0.994</td>
<td>0.999</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>---</td>
<td>---</td>
<td>0.994</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>0.406</td>
<td>0.98</td>
<td>0.996</td>
<td>0.999</td>
<td>1</td>
<td>0.999</td>
</tr>
<tr>
<td>25</td>
<td>0.887</td>
<td>0.998</td>
<td>0.999</td>
<td>0.999</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>0.977</td>
<td>0.999</td>
<td>0.999</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>0.993</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Trends

- Threshold
 - Above threshold more than 80% Saturation is reached
 - Below threshold less than 20% of Agents receive the Message
 - Results in “S” Curve Graph, Figure 1
Figure 1

Varying Densities and Time Steps to Retain Message

Density:
0 0.2 0.4 0.6 0.8 1 1.2

Percent Reached:
0 5 10 15 20 25 30 35 40

Legend:
- 5 Steps
- 10 Steps
- 15 Steps
- 20 Steps
- 25 Steps
- 30 Steps

Graph showing the relationship between density and percent reached for varying time steps.
Summary

- Need a relatively high number of Time Steps to Retain Message or a relatively high density to reach near 100% Saturation
- Thresholds Exist among among Densities for each of the number of Time Steps to Retain Message
Conclusions

- Randomly Moving Agents with “Short-Term Memories” can Result in a Highly Saturated Mobile System
- As Density increases, the likelihood that sharing is possible Increases
- As the Time Steps to Retain Message increases, the likelihood that the agents will have a Message to share Increases