
INSTRUCTION FOR USING texHash.sty

LAURENCE R. TAYLOR

This package allows you to write macros for which the inputs are
named. For example if you are using the semi-direct product a lot, you
might want a macro

\def\semidirect#1#2#3{{#2}\rtimes {#3}{#1}}

so that \semidirect{G}{H}{\psi} gave you HoψG. But twenty pages
later you might not remember which variable is the group and which
is the subgroup. Using texHash.sty you can set things up so you can
write
\semidirect {’group’=>"G",’subgroup’=>"H",’morphism’=>"\psi"}.

Moreover, values persist so the next time you need H oψ G you can
just write \semidirect{} unless you changed some fields. You can
also use the individual fields in your text.

1. The basics

The main command, \newhashcommand, takes four inputs. The first
and last are optional. An invocation of \newhashcommand creates a
new command with a single input. That input is a Perl-type hash list
of key-value pairs.

(1) The first required input passed to \newhashcommand is the name
of the command you wish to create.

(2) The second required input is the code to produce the output.
(3) The first optional output is the name-space for the key-value

pairs. By default the name-space is the name of the macro you
are defining, but it can be set to any legal TEX name.

(4) The second optional input is a list of default values.

A new-hash-command takes only one variable but it is in the form
of a list of key-value pairs. The list resembles a Perl hash list (if that
helps you) but the formatting requirements are more rigid. The macros
in this package generate a sequence of appropriate TEX macros you can
use in the definition part of the command.

1

2 LAURENCE R. TAYLOR

2. First examples

Suppose you wish to create a new command \foo with two hash keys,
’base’ and ’exponent’ so that the output is the base value raised to
the power of the exponent value. The command to create this is

\newhashcommand{\foo} {\foobase∧{\fooexponent}}

and it is used for example as

$$\foo{’base’=>"x",’exponent’=>"w",}$$

which will produce xw.
Notice you did not include the optional variables so the two TEX

macros you create via an invocation of \foo are \foobase and \fooexponent.
You can write
\newhashcommand[NS]{\foo} {\NSbase∧{\NSexponent}}

and this will still produce the same output but now the created TEX
macros are \NSbase and \NSexponent. Since the TEX macros are cre-
ated automatically, the only time you need to worry about the actual
macro names are when the code is written in the \newhashcommand.
After that you only need the key names, base and exponent in the
example.

You can also refer to the current values of the keys elsewhere in your
code. To get the current value of the base for example just type

$\fieldValue{NS}{base}$
and you get the current value of the base. \fieldValue has two inputs,
the name-space followed by the key for the field whose value you want.

As usual with hashes, the data can be in any order, so

$$\foo{’base’=>"x",’exponent’=>"w",}$$ and
$$\foo{’exponent’=>"w",’base’=>"x",}$$
yield exactly the same input. Hence you only need to remember the
keys.

The key-value list has rather strict formatting requirements. The
key is offset with the ’ deliminator (the single quote) and the value is
offset with the " (the double quote - not two single quotes) delimina-
tor. The => which ties them together is just the equal sign followed
immediately by the > inequality. There can be no spaces in the keys,
although spaces are permissible in the values. There must be a comma
immediately after the closing " for each key-value pair and the next

INSTRUCTION FOR USING texHash.sty 3

key-value pair starts immediately after the comma with no space. In-
deed, inside the { . . . } there should be no spaces anywhere except
inside a "-delineated value. The most common error I make is to for-
get the final comma in the list. This results in a ”Paragraph ended
before \next was complete.” error.

The key-value pair creates a TEX macro whose name is
\name-space key
where key is the actual key and name-space is either the first optional
variable when you defined the hash-command or by default is the name
of the hash-command. In the example above, the base key is turned
into the TEX macro \foobase: the value of \foobase is x. Once a
TEX macro like \foobase is created, it retains its value (it was defined
via \gdef) so having created a complicated \newhashcommand named
\foo you can continue to use \foo{} and you will get exactly what you
got the last time. You can also change some fields without changing
others.

Using name-spaces, you can hook hash-commands together.
For example, define

\newhashcommand[NS]{\foo} {\NSbase∧{\NSexponent}}

and

\newhashcommand[NS]{\cofoo} {\NSexponent∧{\NSbase}}

Then
$$\foo{’base’=>"x",’exponent’=>"w",}$$

$$\cofoo{}$$

produces

xw

wx

4 LAURENCE R. TAYLOR

3. The second optional input for \newhashcommand

The second optional input is a default list of values. For example

\newhashcommand[NS]{\foo} {\NSbase∧{\NSexponent}}
[’base’=>"f",’exponent’=>"l",]

sets the default values for base and exponent.
When the hash-command is invoked as $\foo{}$ one gets f l unless

one has changed one or both values. For example
$\foo{’base’=>"2",}$ yields 2l.

Default values go with the name-space and can be set/reset at any
time. The command \resetNameSpace{NS} resets the current values of
the TEX macros to the values previously defined as the default values.
Continuing with our example,
\foo{’exponent’=>"3",} \resetNameSpace{NS} \foo{}
results in 23 f l.

The collection of default values can also be modified. The command
\defaultNameSpace{Name-Space }{values } sets the default TEX macros
for the name-space in the first variable to the key-value list in the sec-
ond variable.

As an example, after \defaultNameSpace{NS}{’base’=>"r"}, the
\foo-command yields rl. The new default base is r while the default
value for exponent has not changed and so it is still l.

Because TEX is not particularly good at text processing, it is cur-
rently impossible to nest hash-commands. The input mechanism chokes
on the interior =>’s. You can define a macro using the interior hash-
command you wanted and pass that, as for example

\newhashcommand{\betterE}{\betterEbase {\betterEsubscript}}
[’base’=>"4",’subscript’=>"6",]

\betterE{}

results in 46. To get this construction as the exponent in the \foo
macro continue as follows.

\def\xx{\betterE{’subscript’=>"8",}}
$\foo{’exponent’=>"\xx"}$

to get r48

As is often the case with TEX, time of evaluation is important in
understanding the output. Meditate on the following two commands:
\betterE{’base’=>"3",’subscript’=>"5",} which yields 35 as you
probably expected. But if you follow it with

INSTRUCTION FOR USING texHash.sty 5

$\foo{’exponent’=>"\xx",}$ you get r38 .

4. A whole paragraph

Having several macros using the same name-space is handy to make
sure that all the pieces you think are the same remain the same as you
“improve” your notation. Using \fieldValue to get the current values
of the fields when you refer to them helps insure uniformity.

Here is a paragraph tied together nicely.

\newhashcommand[HOM]{\homology}{H {\HOMdimension}\HOMleft
\HOMspace ; \HOMcoeff\HOMright}
[’dimension’=>”\ast”,’left’=>”(”,’right’=>”)”,’space’=>”X”,
’coeff’=>”\mathbb Z”,]

Given any space $\fieldValue{HOM}{space}$
there is an associated homology group
$\homology{}$.
Given a continuous function
$f\colon \fieldValue{HOM}{space} \to Y$
there is induced a group homomorphism
$$f {\fieldValue{HOM}{dimension}}\colon
\homology{}\to \homology{’space’=>"Y",}$$

\resetNameSpace{HOM}
Given a subspace
$\fieldValue{HOM}{subspace}\subset\fieldValue{HOM}{space}$
there is a relative homology group, $\homologyrel{}$
and a long exact sequence
$$\cdots\to\homologyrel{’basedim’=>"r",

’dimension’=>"\fieldValue{HOM}{basedim}+1",}
\to
\homologysub{’dimension’=>"\fieldValue{HOM}{basedim}",} \to
\homology{} \to \homologyrel{}
\to \cdots$$
This typesets as follows.

6 LAURENCE R. TAYLOR

Given any space X there is an associated homology group H∗(X; Z).
Given a continuous function f : X → Y there is induced a group ho-
momorphism

f∗ : H∗(X; Z) → H∗(Y ; Z)

Given a subspace A ⊂ X there is a relative homology group, H∗(X, A; Z)
and a long exact sequence

· · · → Hr+1(X, A; Z) → Hr(A; Z) → Hr(X; Z) → Hr(X, A; Z) → · · ·

In texHash.sty keys are evaluated from left to right in order so “trick-
ery” like the above can be worked. We defined a new key, basedim and
used it to compute the two fields we actually used, so for example if we
later decide we’d like to use s instead of r as our base subscript, one
change does it.

On the other hand, it does mean we lied slightly when we said the
order of the key-value pairs in the list made no difference. Most of the
time it doesn’t, but the list is always evaluated left to right.

5. \renewhashcommand

Finally there is a \renewhashcommand which is identical to the
\newhashcommand except that it renews the hash-command in question.
The usual LATEX mechanism to prevent redefining a command is in
effect and so if you want to redefine a hash-command, you need the
\renewhashcommand command.

Department of Mathematics, University of Notre Dame, Notre Dame,
IN 46556

E-mail address: taylor.2@nd.edu

