
MATH 20550 Change of coordinates Fall 2016

1. One variable substitution

Usual version: u = t(x) and find h(u) such that f(x) = h
(
t(x)

)
t′(x) and then∫ b

a

f(x) dx =

∫ t(b)

t(a)

h(u) du

Version used for trig substitution: x = s(u) and s(c) = a, s(d) = b∫ b

a

f(x) dx =

∫ d

c

f
(
s(u)

)
s′(u) du

2. Coordinates

A coordinate system is just a special type of vector function of a vector variable. There are
coordinate systems in all dimensions and they take as input a k-vector and return as value a k-
vector. A coordinate system should also preserve dimension in a sense we will make precise as
we go along. We call any function T : S → Rk a C1-transformation where all the partials of the
functions in T exist and are continuous, S ⊂ Rk and S is a k-dimensional region in the following
sense. For any x ∈ Rk, let Bx(r) be the ball of radius r centered at x. The interior of S consists of
all the points in v ∈ S for which there exists an r > 0 with Bv(r) ⊂ S. Then S is a k-dimensional
region provided every point in S is as close to an interior point as you like. The part of S not in
the interior is called the boundary.

• Rk is a k-dimensional region.
• A closed interval is a 1-dimension region with boundary the two end-points.
• A disk is a 2-dimension region with boundary a circle.
• A ball is 3-dimension region with boundary a sphere.

Here are some 2-dimensional examples of transformations.

R1(r, θ) =(r cos θ, r sin θ)

R2(x, y) =
(√

x2 + y2, arctan
(y
x

))
x 6= 0

R3(u,w) =(u2 − w2, uw)

Here are some 3-dimensional examples:

T1(r, θ, z) =(r cos θ, r sin θ, z)

T2(ρ, θ, φ) = (ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ, )

T3(α, β, γ) =(α2 − γβ2, αβ, α + β + γ)

If S is a k-dimensional region and if T : S → Rk is a transformation, let

T (S) =
{
w ∈ Rk whenever there exists v ∈ S with T (v) = w

}
We say T is a change of coordinates from S to R = T (S) provided T is a C1-transformation, R is
a k-dimensional region and whenever T (x1) = T (x2) for x1, x2 ∈ S, then either x1 = x2 or at least
one of them is on the boundary of S. We call this last condition the one-to-one condition. It can
also be stated as

T is one-to-one on the interior of S

which means

Given x1 and x2 in the interior of S, T (x1) = T (x2) if and only if x1 = x2.
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The goal of this section is to describe how to evaluate a multiple integral over R in terms of a
multiple integral over S. ∫∫

R

f dA =

∫∫
S

f · |J(T )| dA∫∫∫
R

f dV =

∫∫∫
S

f · |J(T )| dV

where T is a change of coordinates with T (S) = R and J(T ) is a function, called the determinant
of the Jacobian of T . (The Jacobian of T is the matrix of which you are taking the determinant.)

There is one additional issue. The book usually writes something like∫∫
R

f dA =

∫∫
S

f · |J(T )|du dv

I don’t like this because it seems to commit you to evaluating your integral as du dv when it
might be easier to do it as dv du, (or even convert it to polar coordinates) which is why we write
dA in a double integral. On the other hand on one side of the equation we are working in xy space
and on the other side in uw space. Hence I like to write the change of coordinate equations when
T : S → R as ∫∫

R

f dAxy =

∫∫
S

f · |J(T )| dAuw(1) ∫∫∫
R

f dVxyz =

∫∫∫
S

f · |J(T )| dVuvw(2)

which helps me keep track of which coordinates and region belong on which side.
Remark: You don’t care what type of regions you have. For example you want to use polar
coordinates to integrate over an annulus R in xy space even though an annulus is of neither type.
The corresponding region S is a rectangle.
Remark: The book leaves the interpretation of “one-to-one except possibly on the boundary” for
you to figure out. We defined it as one-to-one on the interior of S. This does not mean that there
is an inverse transformation T−1 from the interior of R back into S.

As an example, in polar coordinates, if R is the unit disk, S is 0 6 r 6 1, 0 6 θ 6 2π which is
a rectangle in rθ space. The image of the interior of S under polar coordinates is the part of the
unit disk minus the boundary circle minus that part of the x-axis with 0 6 x 6 1. Points which
are close to the positive x-axis but on opposite sides coms from points in rθ space which are nearly
a distance 2π apart. Hence there is no way to extend the inverse function for polar coordinates to
all of the interior of the disk.
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3. The Jacobian

To define the Jacobian, suppose the transformation is

R(u,w) =
(
x(u,w), y(u,w))

or

P (α, β, γ) =
(
x(α, β, γ), y(α, β, γ), z(α, β, γ)

)
Then

J(R) = det

∣∣∣∣∣∣∣∣
∂ x

∂ u

∂ x

∂ w

∂ y

∂ u

∂ y

∂ w

∣∣∣∣∣∣∣∣

J(P ) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ x

∂ α

∂ x

∂ β

∂ x

∂ γ

∂ y

∂ α

∂ y

∂ β

∂ y

∂ γ

∂ z

∂ α

∂ z

∂ β

∂ z

∂ γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
With variables as above we will also write

∂(x, y)

∂(u,w)
= J(R)

∂(x, y, z)

∂(α, β, γ)
= J(P )

4. Change of coordinates

Recall that for a transformation T to be a change of coordinates, T : S → R, several things must
happen. Typically the function in T will have all the continuous partials you like. You may think
that the condition that R = T (S) must be a region is going to be difficult to check but a theorem
guarantees that if T is a C1 transformation with J(T ) 6= 0 on S, then R will be a region.

Typically the condition J(T ) 6= 0 is easy enough to check. The one-to-one condition may be
harder to check. For classical coordinate systems we have worked out the answers below and
illustrated some techniques for verifying the condition in other cases. In general one-to-one can be
a difficult problem.

5. Examples

Example. Consider polar coordinates T (r, θ) = (r cos θ, r sin θ). Then

J(T ) = det

∣∣∣∣∣∣∣∣
∂ r cos θ

∂ r

∂ r cos θ

∂ θ

∂ r sin θ

∂ r

∂ r sin θ

∂ θ

∣∣∣∣∣∣∣∣ = det

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r

Note J(T ) > 0 if r > 0. If ri > 0 with T (r1, θ1) = T (r2, θ2), then r1 = J
(
T (1, θ1)

)
= J

(
T (2, θ2)

)
=

r2, cos θ1 = cos θ2 and sin θ1 = sin θ2, then θ1 = θ2 + 2kπ for any integer k. Hence one choice for S
is [0,∞)× [0, 2π] and T (S) = R2. If it is convenient you can use any other interval for θ as long as
it has length 6 2π.
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Example. Consider spherical coordinates T (ρ, θ, φ) = (ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ). Then

J(S) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ ρ cos θ sinφ

∂ ρ

∂ ρ cos θ sinφ

∂ θ

∂ ρ cos θ sinφ

∂ φ

∂ ρ sin θ sinφ

∂ ρ

∂ ρ sin θ sinφ

∂ θ

∂ ρ sin θ sinφ

∂ φ

∂ ρ cosφ

∂ ρ

∂ ρ cosφ

∂ θ

∂ ρ cosφ

∂ φ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= det

∣∣∣∣∣∣
cos θ sinφ −ρ sin θ sinφ ρ cos θ cosφ
sin θ sinφ ρ cos θ sinφ ρ sin θ cosφ

cosφ 0 −ρ sinφ

∣∣∣∣∣∣ =

cosφ det

∣∣∣∣−ρ sin θ sinφ ρ cos θ cosφ
ρ cos θ sinφ ρ sin θ cosφ

∣∣∣∣− 0(?)− ρ sinφ det

∣∣∣∣cos θ sinφ −ρ sin θ sinφ
sin θ sinφ ρ cos θ sinφ

∣∣∣∣ =

cosφ(−ρ2 cosφ sinφ)− 0− ρ sinφ(ρ sin2 φ) = −ρ2(cos2 φ sinφ+ sin3 φ) = −ρ2 sinφ

Check that if S is the set 0 6 ρ 6 ∞, 0 6 φ 6 π, 0 6 θ 6 2π, the interior is 0 < ρ < ∞,
0 < φ < π, 0 < θ < 2π, and on the interior, R is one to one and J(R) > 0 so S is a solid and
P (S) = R3.

Example. Consider T (u,w) = (u2 − w2, uw). Then

J(T ) = det

∣∣∣∣∣∣∣∣
∂ (u2 − w2)

∂ u

∂ (u2 − w2)

∂ w

∂ (uw)

∂ u

∂ (uw)

∂ w

∣∣∣∣∣∣∣∣ = det

∣∣∣∣2u −2w
w u

∣∣∣∣ = 2(u2 + w2)

One way to deal with the one to one requirement is to give an explicit formula for the solution to
T (u,w) = (a, b). In this case u2−w2 = a and uw = b. Since T (u,w) = T (−u,−w) it makes sense to

restrict to u > 0. Then w =
b

u
and then u2− b

2

u2
= a or u4−au2−b2 = 0 so u2 =

a±
√
a2 + 4b2

2
. Since

u2 > 0, u2 =
a+
√
a2 + 4b2

2
and since u > 0, u =

√
a+
√
a2 + 4b2√
2

. Then w =

√
2 b√

a+
√
a2 + 4b2

.

It follows that T is one to one when T is restricted to the set
{

(u, v) ∈ (0,∞)× (−∞,∞)
}

and
J > 0 there. Hence on the closure S = [0,∞) × (−∞,∞), T : [0,∞) × (−∞,∞) → R2 is one to
one and J > 0 on the interior.

To work out the image of T (S) note that the function

P (x, y) =


√
x+

√
x2 + 4y2
√

2
,

√
2 y√

x+
√
x2 + 4y2


has positive first coordinate whenever the second coordinate is defined and it satisfies T

(
P (x, y)

)
=

(x, y). As long as y 6= 0,
√
x+

√
x2 + 4y2 > 0. If y = 0,

√
x+

√
x2 + 4y2 is still positive unless

x 6 0.
Hence R = T (S) contains R2 minus the non-positive x-axis. But for (x, 0) with x 6 0,

T
(
0,
√
−x
)

= (x, 0) so R = R2.
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Example. Consider T (u,w) = (αu+ βw, γu+ δw) for four numbers α, β, γ and δ. Then

J(T ) = det

∣∣∣∣∣∣∣∣
∂ (αu+ βw)

∂ u

∂ (αu+ βw)

∂ w

∂ (γu+ δw)

∂ u

∂ (γu+ δw)

∂ w

∣∣∣∣∣∣∣∣ = det

∣∣∣∣α β
γ δ

∣∣∣∣
Hence J(T ) is non-zero if and only if det

∣∣∣∣α β
γ δ

∣∣∣∣ 6= 0. Solving two equations in two unknowns shows

that

T

(
δa− γb

`
,
−βa+ αb

`

)
= (a, b)

where ` = det

∣∣∣∣α β
γ δ

∣∣∣∣ 6= 0. Hence T (R2) = R2.

The first two examples, cylindrical and spherical, and the last, any linear example, will get you
a long way through this course once you add the following theorem.

Suppose T : S → R is a change of coordinates. Suppose S1 ⊂ S and S1 is a k-dimensional region.
Then T : S1 → R1 = T (S1) is also a change of coordinates.

6. Solving for regions

The hardest part of these problems is that you start with a region R and a coordinate change T
and you need to find a region S so that T (S) = R. In the polar, cylindrical and spherical cases we
have discussed this. Here is an example of the linear case.

Example: For example, let R be the parallelogram

The lines are 2x+ 4y = 4, 2x+ 4y = −2, x− 3y = 0 and x− 3y = 2 and YOU should be able to
figure out which is which without any trouble.

Instead of starting with T , let us write T−1(x, y) = (2x+4y, x−3y) or u = 2x+4y and w = x−3y.
If S is the rectangle u = 2, u = −2, w = 0, w = 2 then T−1(R) = S. Then T (S) = R by the

definition of the inverse transformation.
To compute the determinant of the Jacobian we seem to need to find a formula for T (which we

can do) but it is easier to use equation (3) below. Suppose

T−1(x, y) =
(
`1(x, y), `2(x, y)

)
In general you will need to solve equations in order to work out f(x, y) in terms of u and w and

to compute J(T ) which is some function of u and w.
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However, given T−1, you can work out J(T−1) which will be a function of x and y. It is a theorem

generalizing the formula
df−1

dx
(x) =

1

f ′
(
f−1(x)

) that

(3) J(T ) =
1

J(T−1) ◦ T
In our example

∂(u,w)

∂(x, y)
=

∣∣∣∣2 4
1 −3

∣∣∣∣ = −10

Hence
∂(x, y)

∂(u,w)
= −0.1

We need to find T such that T−1 is the inverse transformation to T or more explicitly solve
u = 2x+ 4y and w = x− 3y for x and y as functions of u and w.

In this case x =
1

10
(3u+ 4w) and y =

1

10
(u− 2w) so

T−1(u,w) =

(
1

10
(3u+ 4w),

1

10
(u− 2w)

)
Check

T
(
T−1(x, y)

)
= T (2x+4y, x−3y) =

(
1

10

(
3(2x+ 4y) + 4(x− 3y)

)
,

1

10

(
(2x+ 4y)− 2(x− 3y)

))
= (x, y)

J(T ) = det

∣∣∣∣∣∣∣∣∣∣∣

∂
1

10
(3u+ 4w)

∂ u

∂
1

10
(3u+ 4w)

∂ w

∂
1

10
(u− 2w)

∂ u

∂
1

10
(u− 2w)

∂ w

∣∣∣∣∣∣∣∣∣∣∣
= det

∣∣∣∣0.3 0.4
0.1 −0.2

∣∣∣∣ = −0.06− 0.04 = −0.1

as computed above.
Hence ∫∫

R

f(x, y) dA =

∫∫
S

0.1 · f
(

1

10
(3u+ 4w),

1

10
(u− 2w)

)
dA

Example: Here is an example where the transformation is so simple it is hard to believe that it
could be useful.

T (u,w) = (au, bw)

for positive constants a and b. Suppose R is the inside of the ellipse
x2

a2
+
y2

b2
= 1. The inverse of T

is T−1(x, y) =
(u
a
,
w

b

)
.

If we write u =
x

a
and w =

y

b
then if u2 + w2 = 1,

x2

a2
+
y2

b2
= 1 so if S is u2 + w2 6 1 then

T (S) = R.
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Compute J(T ) = ab so∫∫
R

f(x, y) dA =

∫∫
S

abf(x, y) dA = ab

∫∫
S

f
(u
a
,
w

b

)
dA

Since S is the unit disk, you may very well want to use polar coordinates on

∫∫
u2+w261

f
(u
a
,
w

b

)
dA.

Example: A common situation occurs when R is the region between two pairs of level curves. In
the parallelogram example above, the region can be described as the region between the level curves
of 2x + 4y and x− 3y: specifically between 2x + 4y = 4 & 2x + 4y = −2 and between x− 3y = 0
& x− 3y = 2.

In general, if R is the region between `1(x, y) = c1 & `1(x, y) = c2 and `2(x, y) = d1 & `2(x, y) = d2
then setting u = `1(x, y) an w = `2(x, y) is often a useful choice for T since S = T−1(R) is the
rectangle c1 6 u 6 c2, d1 6 w 6 d2.

If you can solve u = `1(x, y) and w = `2(x, y) for x and y as functions of u and v you will be able
to finish.

Problems 11, 14, and 22 (at least) are of this sort.

Let u = xy and w = xy1.4 so the region in uw space is the rectangle a 6 u 6 b, c 6 w 6 d.

∂(u,w)

∂(x, y)
= det

∣∣∣∣∣∣∣∣
∂ u

∂ x

∂ u

∂ y

∂ w

∂ x

∂ w

∂ y

∣∣∣∣∣∣∣∣ = det

∣∣∣∣ y x
y1.4 1.4xy0.4

∣∣∣∣ = 1.4xy1.4 − xy1.4 = 0.4xy1.4 = 0.4w

∂(x, y)

∂(u,w)
=

1

0.4w
Then ∫∫

R

1 dA =

∫∫
S

1

0.4w
dA =

1

0.4

∫ b

a

∫ d

c

dw

w
dv =

b− a
0.4

ln

(
d

c

)
7. “Substitution”

Sometimes you need help with the function you are trying to integrate. Examples of this sort

are things like f

(
x+ y

x− y

)
or more generally f

(
`1(x, y)

`2(x, y)

)
. Here you can try the “substitution”

u = `1(x, y), w = `2(x, y).
You have written down the transformation T−1(x, y) =

(
`1(x, y), `2(x, y)

)
and it is easy to write

f(x, y) is terms of u and w. Then solve for u and w as functions of x and y and work out S = T−1(R).


