DIFFERENTIATION OF CURVES September 7, 2016

LAURENCE R. TAYLOR

If $\mathbf{r}(t)$ is a curve then

$$\mathbf{r}'(a) = \lim_{t \to a} \frac{\mathbf{r}(t) - \mathbf{r}(a)}{t - a}$$

If $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ then $\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$. The pieces, x', y', z' admit the usual interpretations. If x'(a) > 0 then the *x*-coordinate of \mathbf{r} is increasing at *a*. Similar remarks apply to the other inequality and to the other components.

In the 2-dimensional case, $\mathbf{r}(t) = \langle x(t), y(t) \rangle$. Suppose near t = a, the curve is the graph of a function y = F(x). Then y(t) = F(x(t)) and we can differentiate with respect to t

$$y'(t) = F'(x(t))x'(t)$$
 or $F'(x(t)) = \frac{y'(t)}{x'(t)}$

The second formula only holds if $x'(t) \neq 0$. There is a theorem called the Implicit Function Theorem which says that if **r** is differentiable in a neighborhood of *a* and if $x'(t) \neq 0$ in that neighborhood, then *F* exists and is differentiable. Note *F* is increasing in the first-year calculus sense if and only if x' and y' have the same sign.

1. SIX RULES

(1)
$$(\mathbf{r}_1 + \mathbf{r}_2)'(t) = \mathbf{r}'_1(t) + \mathbf{r}'_2(t)$$

(2) $(c \mathbf{r})'(t) = c \mathbf{r}'(t)$
(3) $\frac{d c(t)\mathbf{r}(t)}{dt} = c'(t)\mathbf{r} + c(t)\mathbf{r}'(t)$
(4) $(\mathbf{r}_1 \cdot \mathbf{r}_2)'(t) = \mathbf{r}'_1(t) \cdot \mathbf{r}(t) + \mathbf{r}(t) \cdot \mathbf{r}'_2(t)$
(5) $(\mathbf{r}_1 \times \mathbf{r}_2)'(t) = \mathbf{r}'_1(t) \times \mathbf{r}(t) + \mathbf{r}(t) \times \mathbf{r}'_2(t)$
(6) $\frac{d \mathbf{r}(f(t))}{dt} = \mathbf{r}'(f(t))f'(t)$
Additional formulas:

(1)
$$\frac{d |\mathbf{r}(t)|}{dt} = \frac{\mathbf{r} \cdot \mathbf{r}'}{|\mathbf{r}|}$$

(2)
$$\frac{d \mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3)}{dt} = \mathbf{r}'_1 \cdot (\mathbf{r}_2 \times \mathbf{r}_3) + \mathbf{r}_1 \cdot (\mathbf{r}'_2 \times \mathbf{r}_3) + \mathbf{r}_1 \cdot (\mathbf{r}_2 \times \mathbf{r}'_3)$$

2. TANGENT LINE

Tangent line to $\mathbf{r}(t)$ at a:

$$\mathbf{r}(a) + t\mathbf{r}'(a)$$

Which way are you moving along a curve \mathbf{r} ? If $\mathbf{r}'(a) \neq \mathbf{0}$ then at the point $\mathbf{r}(a)$ you are moving in one direction or the other along the curve. At least one of the components of $\mathbf{r}'(a)$ must be non-zero. If it is positive, move in the direction which increases that coordinate; if negative move in the other direction.

Example. One way to parametrize the unit circle is $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$, $0 \leq t \leq 2\pi$. At the point $\mathbf{r}\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, which way are we moving as t is increasing? Well $\mathbf{r}'(t) = \langle -\sin(t), \cos(t) \rangle$ so $\mathbf{r}'\left(\frac{\pi}{4}\right) = \left\langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$. Hence the x-coordinate is decreasing and the y-coordinate is increasing and we are moving counterclockwise.

Example. Another way to parametrize the unit circle is $\mathbf{r}(t) = \langle \sin(t), \cos(t) \rangle$, $0 \leq t \leq 2\pi$. At the point $\mathbf{r}\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, which way are we moving as t is increasing? Well $\mathbf{r}'(t) = \langle \cos(t), -\sin(t) \rangle$ so $\mathbf{r}'\left(\frac{\pi}{4}\right) = \left\langle \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right\rangle$. Hence the x-coordinate is increasing and the y-coordinate is decreasing and we are moving clockwise.

Example. A way to parametrize the unit circle minus (-1,0) is $\mathbf{r}(t) = \left\langle \frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2} \right\rangle$, $-\infty < t < \infty$. When $t = \frac{1}{1+\sqrt{2}}$, $1 + t^2 = \frac{2\sqrt{2}}{1+\sqrt{2}}$ and $1 - t^2 = \frac{2}{1+\sqrt{2}}$ Hence $\mathbf{r}\left(\frac{2}{1+\sqrt{2}}\right) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. Which way are we moving at this point as t increases? Well $\mathbf{r}'(t) = \left\langle \frac{-4t}{(1+t^2)^2}, \frac{2-2t^2}{(1+t^2)^2} \right\rangle$ so $\mathbf{r}'\left(\frac{1}{1+\sqrt{2}}\right) = \left\langle -\frac{1+\sqrt{2}}{2}, \frac{1+\sqrt{2}}{2} \right\rangle$. Hence the x-coordinate is decreasing and the y-coordinate is increasing and we are moving counterclockwise. Notice also that $\mathbf{r} \cdot \mathbf{r}' = 0$ as it must since we are on a circle centered at the origin.

 $\mathbf{2}$

In the first two examples, $|\mathbf{r}'(t)| = 1$ whereas in the third $|\mathbf{r}'(t)| = \frac{2}{1+t^2}$. Note in all three examples, $|\mathbf{r}'(t)| \neq 0$ for all t.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF NOTRE DAME NOTRE DAME, IN 46556 U.S.A. *E-mail address*: taylor.2@nd.edu