MATH 20550 Differentiable, Directional Derivatives and Gradients Fall 2016

1. DIFFERENTIABLE FUNCTIONS

A real-valued function of a vector variable, F'(x) is differentiable at a point a if and only if

o f@+h) = (@) = Vf(@)h
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As we say in the section on limits, if the limit exists, then its value can be calculated. To
do this, fix a vector h # 0 and let th be a line to 0. Since there is an |h| in our formula it

is useful to compute lim .
t—0+

If f is differentiable, the limit is 0 along every line so
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If we let h = e;, (%) shows that
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and therefore, if f is differentiable at a, all the partials exist at a.
The existence of partial derivatives is insufficient to make the function differentiable, just as
the existence of limits along some lines in insufficient to guarantee the limit exists.

Theorem. If a function has all partial derivatives continuous in a neighborhood of a then f
15 differentiable in that neighborhood.

As a practical matter, write down the partials and argue that they are continuous using your
theorems on when a function is continuous.

1.1. Directional Derivatives. By definition, if u is a unit vector, the directional derivative
of f in the direction u at the point a is

Dulf)(a) = lim T2 =T
It follows that if f is differentiable at a,
Dy(f)(a) =V/f(a)su
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1.2. Properties of the Gradient.

e Dy(f)(a) is the instantaneous rate of change of f at a in the direction u. If D,(f)(a)
is positive, the value of f is increasing; if Dy(f)(a) is negative, the value of f is
decreasing.

e The direction of fastest increase in f at a point a is the direction of the gradient. (Or
meaningless if V f(a) = 0.) The value of this rate is |V f(a)|.

e The direction of fastest decrease in f at a point a is the negative of the direction of
the gradient. (Or meaningless if V f(a) = 0.) The value of this rate is — |V f(a)|.

e In two variables, if r(¢) is a smooth parametrization of a level curve of f(x,y) then
r'(to) is perpendicular to the gradient V f(r(ty)).

e In three variables, if r(¢) is a smooth parametrization of a curve lying in the surface
f(z,y,z) = c then 1'(to) is perpendicular to the gradient V f(r(ty)).

2. MORE ON LEVEL CURVES

Suppose f(z,y) = c is a level curve. Then at any point a on the level curve, Vf(a) is

orthogonal to the level curve. Hence as long as Vf(a) # 0, N = m is a unit normal

IV f(a)l

to the curve and this normal is the direction of fastest increase in the value of f.

It is also possible to work out the remaining invariants of a plane curve for this sort of

example. In particular, B = (0,0,1) and so a vector in the direction of T is NxB =
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The remaining invariant is the curvature. Suppose P # 0. Then the Im-
x
x=a=(z0,Y0)
plicit Function Theorem says that near this point on the level curve, there exists a dif-
ferentiable function «(x) such that r = (z,a(z)) is the level curve. The curvature is
(o)

( 1+ (o/(xo))2>3.

By the Chain Rule, Vf({z,a(x))) (1,a/(x)) =0 so

of 5 .
5 ((wa(@)) + 7y ((z, a(z))) &/ (z) = 0

0? 0? H? H? P
(1) 8:cafx i 8yafxa/<x> - (83/(;:1: * 8y(§ya/(x)) o/(w) + 8_;; ((z, a(x))) a"(z) =0

5\ 2
Multiply (1) by (a—i) and assume mixed partials are equal:
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and so
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Consider this example of the level curves of f(x,y) = 2? — y* from worksheet 4.
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A second example: the graph and level curves of f(z,y) = 2° — 2zy + y°
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((32% — 2y)? + (—2x + 2y)?)*
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3. THE CURVE OF INTERSECTION OF TWO IMPLICIT SURFACES

An implicit surface is the set of solutions to an equation f(z,y,z) = c.

Given two implicit surfaces f(x,y,z) = ¢ and g(z,y,2) = d they typically intersect in a
curve. If a is a point on both surfaces we can try to compute the typical invariants of the
intersect curve at this point.

If we parametrize the curve by r(t) then f(r(t)) = c and Vf(r(¢)) « r'(t) = 0. In particular
r'(t) is perpendicular to V f(r(t)). Similarly r'(¢) is perpendicular to Vg(r(t)). Hence we
will take r'(¢) parallel to V f(r(t))xVg(r(t)) and so

V/(a)xVg(a)
V£ (a)xVa(a)]
)

If we assume Vf( )XVg( ) # 0 it follows that Vf( # 0 and Vg(a) # 0.

The Implicit Function Theorem says that around a, f(z,y, z) = ¢ is a graph z = «a(z,y) and
9(x,y,2) = d is a graph z = B(z, y).

T(a) =



The intersection of the two surfaces is the set of all points where a(z,y) = f(x,y) and (under
some non-zero hypothesis of partials) there is a function v(z) so that « (ZL‘, v(x)) =0 (:1:, v(x)) .
The curve is paramterized by

r(z) = (2,7(x), a(z,7(2))) = (2,7(2). B(z.1()))
fl(@,y,alz,y) =c
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With these formulas and the Chain Rule one can calculate r’, r” and r”’ in terms of the
(higher order) partials of f and g and hence obtain the curvature, the torsion and the
Frenet-Serret frame at a point on the intersection curve.

4. APPROXIMATIONS (EXTRA)

Recall that a function is differentiable if and only if



|(f(a+h)— f(a) = Vf(@a)+h|

h—0 h|

This in turn means that if |h| is small,

(%) (fa+h)— f(a)) = Vf(a)eh=0

4.1. Approximation values. Suppose you have a function f(x) and you know f(a) but
you want to know f(b) for some other input b. Write

f(b) = f(a+(b—a))
Then, letting h = b — a and rewriting ()

f(b) = f(a+ (b—a))~ f(a)+ Vf(a)e(b—a)

4.2. Solve equations. Try to solve f(x) = 0. Pick a point ay and evaluate f(ag). If this is
not 0 solve

f(ao) +toV f(ag) « Vf(ag) =0
for ty. As long as V f(ag) # 0 you can do this.
Since f(ag) +toV f(ag)* Vf(ag) =0, if we take

a; = ag +tVf(ao)
and approximate f(a;) we get
f(a1) = f(ag) + 10V f(ag) * Vf(ap) =0
So we might expect that a; is a better approximation to the solution than was our initial

guess a;. Now iterate.

In summary:

Pick ay, compute
f(ao)
Vf(ag)*Vf(a)

Vf(ao)

a; = ap —

and iterate.

Example: Find a solution to f(x,y, z) = 0 where

flz,y,2) = 2* +2yz — 22> — 4

Compute Vf = (22 + yz — 23, 2z, vy — 322?).



x y

1 2

0.5417085427  2.072361809
0.0335249794  2.1578233775
-1.6962597426 2.2041424771
-1.6846888414 2.2117529262
-1.6843797963 2.211961048
-1.684379582  2.2119611925
-1.684379582  2.2119611925

z f(x,y,z) f_x(x,y,2)

3 -24 -19
2.3969849246 -8.4760490463 -7.7211278229
1.8563221791 -4.0790391515 -2.3240947064
1.6522148448 0.3505362172 -4.2610416023
1.6246452978 0.008853864 -4.0642700231

1.6239142575 6.13224384871103E-006 -4.0591447638
1.6239137505 2.94875235340442E-012 -4.059141211
1.6239137505 0 -4.059141211

f_y(x,y.2)
3

1.2984672104

0.0622331629

-2.8025855273
-2.7370218045
-2.7352883663
-2.7352871642
-2.7352871642

f_z(x,y,z)

-25
-8.21460289
-0.2742334171
10.1526220846
9.6139533387
9.5998388293
9.5998290437
9.5998290437

f/Grad+Grad
-0.024120603
-0.0658172711
-0.7442832331
0.00271551
7.60395100E-005
5.28116489E-008
2.53950719E-014
0

4.3. Points of intersection of two implicit surfaces. Suppose you want a point on
f(z,y,2) = cand g(z,y,z) = d. Solve

(Flay.2) = ) + (glp.2) = ) =0
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