1. Differentiable Functions

A real-valued function of a vector variable, $F(\mathbf{x})$ is differentiable at a point \mathbf{a} if and only if

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-\nabla f(\mathbf{a}) \cdot \mathbf{h}}{|\mathbf{h}|}=0
$$

As we say in the section on limits, if the limit exists, then its value can be calculated. To do this, fix a vector $\mathbf{h} \neq \mathbf{0}$ and let $t \mathbf{h}$ be a line to $\mathbf{0}$. Since there is an $|\mathbf{h}|$ in our formula it is useful to compute $\lim _{t \rightarrow 0^{ \pm}}$.
If f is differentiable, the limit is 0 along every line so

$$
0=\lim _{t \rightarrow 0^{+}} \frac{f(\mathbf{a}+t \mathbf{h})-f(\mathbf{a})-\nabla f(\mathbf{a}) \cdot(t \mathbf{h})}{t|\mathbf{h}|}
$$

or

$$
\lim _{t \rightarrow 0^{+}} \frac{f(\mathbf{a}+t \mathbf{h})-f(\mathbf{a})}{t|\mathbf{h}|}=\nabla f(\mathbf{a}) \cdot \frac{\mathbf{h}}{|\mathbf{h}|}
$$

Similalrly

$$
\lim _{t \rightarrow 0^{-}} \frac{f(\mathbf{a}+t \mathbf{h})-f(\mathbf{a})}{-t|\mathbf{h}|}=-\nabla f(\mathbf{a}) \cdot \frac{\mathbf{h}}{|\mathbf{h}|}
$$

so

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+t \mathbf{h})-f(\mathbf{a})}{t|\mathbf{h}|}=\nabla f(\mathbf{a}) \cdot \frac{\mathbf{h}}{|\mathbf{h}|} \tag{*}
\end{equation*}
$$

If we let $\mathbf{h}=\mathbf{e}_{i},(*)$ shows that

$$
\lim _{t \rightarrow 0} \frac{f\left(\mathbf{a}+t \mathbf{e}_{i}\right)-f(\mathbf{a})}{t}=\frac{\partial f}{\partial x_{i}}(\mathbf{a})
$$

and therefore, if f is differentiable at a, all the partials exist at \mathbf{a}.
The existence of partial derivatives is insufficient to make the function differentiable, just as the existence of limits along some lines in insufficient to guarantee the limit exists.

Theorem. If a function has all partial derivatives continuous in a neighborhood of a then f is differentiable in that neighborhood.

As a practical matter, write down the partials and argue that they are continuous using your theorems on when a function is continuous.
1.1. Directional Derivatives. By definition, if \mathbf{u} is a unit vector, the directional derivative of f in the direction \mathbf{u} at the point \mathbf{a} is

$$
D_{\mathbf{u}}(f)(\mathbf{a})=\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+t \mathbf{u})-f(\mathbf{a})}{t}
$$

It follows that if f is differentiable at \mathbf{a},

$$
D_{\mathbf{u}}(f)(\mathbf{a})=\nabla f(\mathbf{a}) \cdot \mathbf{u}
$$

1.2. Properties of the Gradient.

- $D_{\mathbf{u}}(f)(\mathbf{a})$ is the instantaneous rate of change of f at \mathbf{a} in the direction \mathbf{u}. If $D_{\mathbf{u}}(f)(\mathbf{a})$ is positive, the value of f is increasing; if $D_{\mathbf{u}}(f)(\mathbf{a})$ is negative, the value of f is decreasing.
- The direction of fastest increase in f at a point a is the direction of the gradient. (Or meaningless if $\nabla f(\mathbf{a})=\mathbf{0}$.) The value of this rate is $|\nabla f(\mathbf{a})|$.
- The direction of fastest decrease in f at a point \mathbf{a} is the negative of the direction of the gradient. (Or meaningless if $\nabla f(\mathbf{a})=\mathbf{0}$.) The value of this rate is $-|\nabla f(\mathbf{a})|$.
- In two variables, if $\mathbf{r}(t)$ is a smooth parametrization of a level curve of $f(x, y)$ then $\mathbf{r}^{\prime}\left(t_{0}\right)$ is perpendicular to the gradient $\nabla f\left(\mathbf{r}\left(t_{0}\right)\right)$.
- In three variables, if $\mathbf{r}(t)$ is a smooth parametrization of a curve lying in the surface $f(x, y, z)=c$ then $\mathbf{r}^{\prime}\left(t_{0}\right)$ is perpendicular to the gradient $\nabla f\left(\mathbf{r}\left(t_{0}\right)\right)$.

2. More on level curves

Suppose $f(x, y)=c$ is a level curve. Then at any point a on the level curve, $\nabla f(\mathbf{a})$ is orthogonal to the level curve. Hence as long as $\nabla f(\mathbf{a}) \neq \mathbf{0}, \mathbf{N}=\frac{\nabla f(\mathbf{a})}{|\nabla f(\mathbf{a})|}$ is a unit normal to the curve and this normal is the direction of fastest increase in the value of f.
It is also possible to work out the remaining invariants of a plane curve for this sort of example. In particular, $\mathbf{B}=\langle 0,0,1\rangle$ and so a vector in the direction of \mathbf{T} is $\mathbf{N} \times \mathbf{B}=$ $\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & 0 \\ 0 & 0 & 1\end{array}\right|=\left\langle\frac{\partial f}{\partial y},-\frac{\partial f}{\partial x}, 0\right\rangle$.
The remaining invariant is the curvature. Suppose $\left.\frac{\partial f}{\partial x}\right|_{\mathbf{x}=\mathbf{a}=\left\langle x_{0}, y_{0}\right\rangle} \neq 0$. Then the Implicit Function Theorem says that near this point on the level curve, there exists a differentiable function $\alpha(x)$ such that $\mathbf{r}=\langle x, \alpha(x)\rangle$ is the level curve. The curvature is $\frac{\left|\alpha^{\prime \prime}\left(x_{0}\right)\right|}{\left(\sqrt{1+\left(\alpha^{\prime}\left(x_{0}\right)\right)^{2}}\right)^{3}}$.
By the Chain Rule, $\nabla f(\langle x, \alpha(x)\rangle) \cdot\left\langle 1, \alpha^{\prime}(x)\right\rangle=0$ so

$$
\begin{gather*}
\frac{\partial f}{\partial x}(\langle x, \alpha(x)\rangle)+\frac{\partial f}{\partial y}(\langle x, \alpha(x)\rangle) \alpha^{\prime}(x)=0 \\
\frac{\partial^{2} f}{\partial x \partial x}+\frac{\partial^{2} f}{\partial y \partial x} \alpha^{\prime}(x)+\left(\frac{\partial^{2} f}{\partial y \partial x}+\frac{\partial^{2} f}{\partial y \partial y} \alpha^{\prime}(x)\right) \alpha^{\prime}(x)+\frac{\partial f}{\partial y}(\langle x, \alpha(x)\rangle) \alpha^{\prime \prime}(x)=0 \tag{1}
\end{gather*}
$$

Multiply (1) by $\left(\frac{\partial f}{\partial y}\right)^{2}$ and assume mixed partials are equal:

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x \partial x}\left(\frac{\partial f}{\partial y}\right)^{2}-2 \frac{\partial^{2} f}{\partial y \partial x} \frac{\partial f}{\partial x} \frac{\partial f}{\partial y}+\frac{\partial^{2} f}{\partial y \partial y}\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{3} \alpha^{\prime \prime}(x)=0 \tag{2}
\end{equation*}
$$

and so

$$
\kappa\left(x_{0}, y_{0}\right)=\frac{\left|\frac{\partial^{2} f}{\partial x \partial x}\left(\frac{\partial f}{\partial y}\right)^{2}-2 \frac{\partial^{2} f}{\partial y \partial x} \frac{\partial f}{\partial x} \frac{\partial f}{\partial y}+\frac{\partial^{2} f}{\partial y \partial y}\left(\frac{\partial f}{\partial x}\right)^{2}\right|}{\left(\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}\right)^{3}}
$$

Consider this example of the level curves of $f(x, y)=x^{2}-y^{2}$ from worksheet 4.

Here $\nabla f(x)=\langle 2 x,-2 y\rangle$ and $\left[\begin{array}{cc}\frac{\partial^{2} f}{\partial x \partial x} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y \partial y}\end{array}\right]=\left[\begin{array}{rr}2 & 0 \\ 0 & -2\end{array}\right]$ so

$$
\kappa(x, y)=\frac{\left|x^{2}-y^{2}\right|}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
$$

A second example: the graph and level curves of $f(x, y)=x^{3}-2 x y+y^{2}$

Here $\nabla f(x)=\left\langle 3 x^{2}-2 y,-2 x+2 y\right\rangle$ and $\left[\begin{array}{cc}\frac{\partial^{2} f}{\partial x \partial x} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y \partial y}\end{array}\right]=\left[\begin{array}{rr}6 x & -2 \\ -2 & 2\end{array}\right]$ so

$$
\kappa(x, y)=\frac{\left|6 x(-2 x+2 y)^{2}-8\left(3 x^{2}-2 y\right)(-2 x+2 y)+2\left(3 x^{2}-2 y\right)^{2}\right|}{\left(\left(3 x^{2}-2 y\right)^{2}+(-2 x+2 y)^{2}\right)^{\frac{3}{2}}}
$$

3. The curve of intersection of two implicit surfaces

An implicit surface is the set of solutions to an equation $f(x, y, z)=c$.
Given two implicit surfaces $f(x, y, z)=c$ and $g(x, y, z)=d$ they typically intersect in a curve. If a is a point on both surfaces we can try to compute the typical invariants of the intersect curve at this point.
If we parametrize the curve by $\mathbf{r}(t)$ then $f(\mathbf{r}(t))=c$ and $\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=0$. In particular $\mathbf{r}^{\prime}(t)$ is perpendicular to $\nabla f(\mathbf{r}(t))$. Similarly $\mathbf{r}^{\prime}(t)$ is perpendicular to $\nabla g(\mathbf{r}(t))$. Hence we will take $\mathbf{r}^{\prime}(t)$ parallel to $\nabla f(\mathbf{r}(t)) \times \nabla g(\mathbf{r}(t))$ and so

$$
\mathbf{T}(\mathbf{a})=\frac{\nabla f(\mathbf{a}) \times \nabla g(\mathbf{a})}{|\nabla f(\mathbf{a}) \times \nabla g(\mathbf{a})|}
$$

If we assume $\nabla f(\mathbf{a}) \times \nabla g(\mathbf{a}) \neq \mathbf{0}$ it follows that $\nabla f(\mathbf{a}) \neq \mathbf{0}$ and $\nabla g(\mathbf{a}) \neq \mathbf{0}$.
The Implicit Function Theorem says that around $\mathbf{a}, f(x, y, z)=c$ is a graph $z=\alpha(x, y)$ and $g(x, y, z)=d$ is a graph $z=\beta(x, y)$.

The intersection of the two surfaces is the set of all points where $\alpha(x, y)=\beta(x, y)$ and (under some non-zero hypothesis of partials) there is a function $\gamma(x)$ so that $\alpha(x, \gamma(x))=\beta(x, \gamma(x))$. The curve is paramterized by

$$
\mathbf{r}(x)=\langle x, \gamma(x), \alpha(x, \gamma(x))\rangle=\langle x, \gamma(x), \beta(x, \gamma(x))\rangle
$$

$f(\langle x, y, \alpha(x, y)\rangle)=c$
$\nabla f(\langle x, y, \alpha(x, y)\rangle) \cdot\left\langle 1,0, \frac{\partial \alpha}{\partial x}\right\rangle=0$
$\nabla f(\langle x, y, \alpha(x, y)\rangle) \cdot\left\langle 0,1, \frac{\partial \alpha}{\partial y}\right\rangle=0$ so

$$
\begin{aligned}
\left\langle 1,0, \frac{\partial \alpha}{\partial x}\right\rangle \times\left\langle 0,1, \frac{\partial \alpha}{\partial y}\right\rangle & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & \frac{\partial \alpha}{\partial x} \\
0 & 1 & \frac{\partial \alpha}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
0 & \frac{\partial \alpha}{\partial x} \\
1 & \frac{\partial \alpha}{\partial y}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & \frac{\partial \alpha}{\partial x} \\
0 & \frac{\partial \alpha}{\partial y}
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right| \mathbf{k} \\
& =\left\langle-\frac{\partial \alpha}{\partial x},-\frac{\partial \alpha}{\partial y}, 1\right\rangle
\end{aligned}
$$

is parallel to ∇f so

$$
\begin{aligned}
& \nabla f=\left\langle-\frac{\partial \alpha}{\partial x} \cdot \frac{\partial f}{\partial z},-\frac{\partial \alpha}{\partial y} \cdot \frac{\partial f}{\partial z}, \frac{\partial f}{\partial z}\right\rangle \quad \text { so } \quad \frac{\partial \alpha}{\partial x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}} \text { and } \frac{\partial \alpha}{\partial y}=-\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}} \\
& \nabla g=\left\langle-\frac{\partial \beta}{\partial x} \cdot \frac{\partial g}{\partial z},-\frac{\partial \beta}{\partial y} \cdot \frac{\partial g}{\partial z}, \frac{\partial g}{\partial z}\right\rangle \quad \text { so } \quad \frac{\partial \beta}{\partial x}=-\frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial z}} \text { and } \frac{\partial \beta}{\partial y}=-\frac{\frac{\partial g}{\partial y}}{\frac{\partial g}{\partial z}}
\end{aligned}
$$

Since $\alpha(x, \gamma(x))=\beta(x, \gamma(x))$, differentiating with respect to x gives $\nabla \alpha \cdot\left\langle 1, \gamma^{\prime}\right\rangle=\nabla \beta \bullet\left\langle 1, \gamma^{\prime}\right\rangle$ so

$$
\gamma^{\prime}(x)=\frac{\frac{\partial \alpha}{\partial x}-\frac{\partial \beta}{\partial x}}{\frac{\partial \beta}{\partial y}-\frac{\partial \alpha}{\partial y}}=\frac{\frac{\partial g}{\partial x}-\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}-\frac{\partial g}{\partial y}}
$$

With these formulas and the Chain Rule one can calculate $\mathbf{r}^{\prime}, \mathbf{r}^{\prime \prime}$ and $\mathbf{r}^{\prime \prime \prime}$ in terms of the (higher order) partials of f and g and hence obtain the curvature, the torsion and the Frenet-Serret frame at a point on the intersection curve.

4. Approximations (Extra)

Recall that a function is differentiable if and only if

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{|(f(\mathbf{a}+\mathbf{h})-f(\mathbf{a}))-\nabla f(\mathbf{a}) \cdot \mathbf{h}|}{|\mathbf{h}|}=0
$$

This in turn means that if $|\mathbf{h}|$ is small,

$$
\begin{equation*}
(f(\mathbf{a}+\mathbf{h})-f(\mathbf{a}))-\nabla f(\mathbf{a}) \cdot \mathbf{h} \approx 0 \tag{*}
\end{equation*}
$$

4.1. Approximation values. Suppose you have a function $f(\mathbf{x})$ and you know $f(\mathbf{a})$ but you want to know $f(\mathbf{b})$ for some other input \mathbf{b}. Write

$$
f(\mathbf{b})=f(\mathbf{a}+(\mathbf{b}-\mathbf{a}))
$$

Then, letting $\mathbf{h}=\mathbf{b}-\mathbf{a}$ and rewriting $(*)$

$$
f(\mathbf{b})=f(\mathbf{a}+(\mathbf{b}-\mathbf{a})) \approx f(\mathbf{a})+\nabla f(\mathbf{a}) \cdot(\mathbf{b}-\mathbf{a})
$$

4.2. Solve equations. Try to solve $f(\mathbf{x})=0$. Pick a point \mathbf{a}_{0} and evaluate $f\left(\mathbf{a}_{0}\right)$. If this is not 0 solve

$$
f\left(\mathbf{a}_{0}\right)+t_{0} \nabla f\left(\mathbf{a}_{0}\right) \cdot \nabla f\left(\mathbf{a}_{0}\right)=0
$$

for t_{0}. As long as $\nabla f\left(\mathbf{a}_{0}\right) \neq \mathbf{0}$ you can do this.
Since $f\left(\mathbf{a}_{0}\right)+t_{0} \nabla f\left(\mathbf{a}_{0}\right) \cdot \nabla f\left(\mathbf{a}_{0}\right)=0$, if we take

$$
\mathbf{a}_{1}=\mathbf{a}_{0}+t_{0} \nabla f\left(\mathbf{a}_{0}\right)
$$

and approximate $f\left(\mathbf{a}_{1}\right)$ we get

$$
f\left(\mathbf{a}_{1}\right) \approx f\left(\mathbf{a}_{0}\right)+t_{0} \nabla f\left(\mathbf{a}_{0}\right) \bullet \nabla f\left(\mathbf{a}_{0}\right)=0
$$

So we might expect that \mathbf{a}_{1} is a better approximation to the solution than was our initial guess \mathbf{a}_{1}. Now iterate.
In summary:

Pick \mathbf{a}_{0}, compute

$$
\mathbf{a}_{1}=\mathbf{a}_{0}-\frac{f\left(\mathbf{a}_{0}\right)}{\nabla f\left(\mathbf{a}_{0}\right) \cdot \nabla f\left(\mathbf{a}_{0}\right)} \nabla f\left(\mathbf{a}_{0}\right)
$$

and iterate.
Example: Find a solution to $f(x, y, z)=0$ where

$$
f(x, y, z)=x^{2}+x y z-x z^{3}-4
$$

Compute $\nabla f=\left\langle 2 x+y z-z^{3}, x z, x y-3 x z^{2}\right\rangle$.

	x	y	z	$f(x, y, z)$	f_x (x, y, z)	f $_$y (x, y, z)	f_z(x,y,z)	f/Grad•Grad
a_0	1	2	3	-24	-19	3	-25	-0.024120603
a_1	0.5417085427	2.072361809	2.3969849246	-8.4760490463	-7.7211278229	1.2984672104	-8.21460289	-0.0658172711
a_2	0.0335249794	2.1578233775	1.8563221791	-4.0790391515	-2.3240947064	0.0622331629	-0.2742334171	-0.7442832331
a_3	-1.6962597426	2.2041424771	1.6522148448	0.3505362172	-4.2610416023	-2.8025855273	10.1526220846	0.00271551
a_4	-1.6846888414	2.2117529262	1.6246452978	0.008853864	-4.0642700231	-2.7370218045	9.6139533387	7.60395100E-005
a_5	-1.6843797963	2.211961048	1.6239142575	$6.13224384871103 \mathrm{E}-006$	-4.0591447638	-2.7352883663	9.5998388293	5.28116489E-008
a_6	-1.684379582	2.2119611925	1.6239137505	$2.94875235340442 \mathrm{E}-012$	-4.059141211	-2.7352871642	9.5998290437	2.53950719E-014
a_7	-1.684379582	2.2119611925	1.6239137505	0	-4.059141211	-2.7352871642	9.5998290437	0

4.3. Points of intersection of two implicit surfaces. Suppose you want a point on $f(x, y, z)=c$ and $g(x, y, z)=d$. Solve

$$
(f(x, y, z)-c)^{2}+(g(x, y, z)-d)^{2}=0
$$

