
MATH 20550 Differentiable, Directional Derivatives and Gradients Fall 2016

1. Differentiable Functions

A real-valued function of a vector variable, F (x) is differentiable at a point a if and only if

lim
h→0

f(a + h)− f(a)−∇f(a) • h

|h|
= 0

As we say in the section on limits, if the limit exists, then its value can be calculated. To
do this, fix a vector h 6= 0 and let th be a line to 0. Since there is an |h| in our formula it
is useful to compute lim

t→0±
.

If f is differentiable, the limit is 0 along every line so

0 = lim
t→0+

f(a + th)− f(a)−∇f(a) • (th)

t |h|
or

lim
t→0+

f(a + th)− f(a)

t |h|
= ∇f(a) •

h

|h|
Similalrly

lim
t→0−

f(a + th)− f(a)

−t |h|
= −∇f(a) •

h

|h|
so

(∗) lim
t→0

f(a + th)− f(a)

t |h|
= ∇f(a) •

h

|h|

If we let h = ei, (∗) shows that

lim
t→0

f(a + tei)− f(a)

t
=
∂ f

∂ xi
(a)

and therefore, if f is differentiable at a, all the partials exist at a.

The existence of partial derivatives is insufficient to make the function differentiable, just as
the existence of limits along some lines in insufficient to guarantee the limit exists.

Theorem. If a function has all partial derivatives continuous in a neighborhood of a then f
is differentiable in that neighborhood.

As a practical matter, write down the partials and argue that they are continuous using your
theorems on when a function is continuous.

1.1. Directional Derivatives. By definition, if u is a unit vector, the directional derivative
of f in the direction u at the point a is

Du(f)(a) = lim
t→0

f(a + tu)− f(a)

t

It follows that if f is differentiable at a,

Du(f)(a) = ∇f(a) • u
1



1.2. Properties of the Gradient.

• Du(f)(a) is the instantaneous rate of change of f at a in the direction u. If Du(f)(a)
is positive, the value of f is increasing; if Du(f)(a) is negative, the value of f is
decreasing.
• The direction of fastest increase in f at a point a is the direction of the gradient. (Or

meaningless if ∇f(a) = 0.) The value of this rate is |∇f(a)|.
• The direction of fastest decrease in f at a point a is the negative of the direction of

the gradient. (Or meaningless if ∇f(a) = 0.) The value of this rate is − |∇f(a)|.
• In two variables, if r(t) is a smooth parametrization of a level curve of f(x, y) then

r′(t0) is perpendicular to the gradient ∇f
(
r(t0)

)
.

• In three variables, if r(t) is a smooth parametrization of a curve lying in the surface
f(x, y, z) = c then r′(t0) is perpendicular to the gradient ∇f

(
r(t0)

)
.

2. More on level curves

Suppose f(x, y) = c is a level curve. Then at any point a on the level curve, ∇f(a) is

orthogonal to the level curve. Hence as long as ∇f(a) 6= 0, N =
∇f(a)

|∇f(a)|
is a unit normal

to the curve and this normal is the direction of fastest increase in the value of f .

It is also possible to work out the remaining invariants of a plane curve for this sort of
example. In particular, B = 〈0, 0, 1〉 and so a vector in the direction of T is N××B =∣∣∣∣∣∣∣

i j k
∂ f

∂ x

∂ f

∂ y
0

0 0 1

∣∣∣∣∣∣∣ =

〈
∂ f

∂ y
,−∂ f

∂ x
, 0

〉
.

The remaining invariant is the curvature. Suppose
∂ f

∂ x

∣∣∣∣
x=a=〈x0,y0〉

6= 0. Then the Im-

plicit Function Theorem says that near this point on the level curve, there exists a dif-
ferentiable function α(x) such that r = 〈x, α(x)〉 is the level curve. The curvature is

|α′′(x0)|(√
1 +

(
α′(x0)

)2)3 .

By the Chain Rule, ∇f(〈x, α(x)〉) • 〈1, α′(x)〉 = 0 so

∂ f

∂ x
(〈x, α(x)〉) +

∂ f

∂ y
(〈x, α(x)〉)α′(x) = 0

(1)
∂2 f

∂ x ∂ x
+

∂2 f

∂ y ∂ x
α′(x) +

(
∂2 f

∂ y ∂ x
+

∂2 f

∂ y ∂ y
α′(x)

)
α′(x) +

∂ f

∂ y
(〈x, α(x)〉)α′′(x) = 0

Multiply (1) by

(
∂ f

∂ y

)2

and assume mixed partials are equal:

(2)
∂2 f

∂ x ∂ x

(
∂ f

∂ y

)2

− 2
∂2 f

∂ y ∂ x

∂ f

∂ x

∂ f

∂ y
+

∂2 f

∂ y ∂ y

(
∂ f

∂ x

)2

+

(
∂ f

∂ y

)3

α′′(x) = 0



and so

κ(x0, y0) =

∣∣∣∣∣ ∂2 f∂ x ∂ x

(
∂ f

∂ y

)2

− 2
∂2 f

∂ y ∂ x

∂ f

∂ x

∂ f

∂ y
+

∂2 f

∂ y ∂ y

(
∂ f

∂ x

)2
∣∣∣∣∣√(∂ f

∂ x

)2

+

(
∂ f

∂ y

)2
3

Consider this example of the level curves of f(x, y) = x2 − y2 from worksheet 4.

Here ∇f(x) = 〈2x,−2y〉 and


∂2 f

∂ x ∂ x

∂2 f

∂ x ∂ y
∂2 f

∂ x ∂ y

∂2 f

∂ y ∂ y

 =

[
2 0
0 −2

]
so

κ(x, y) =
|x2 − y2|(
x2 + y2

) 3
2



A second example: the graph and level curves of f(x, y) = x3 − 2xy + y2

Here ∇f(x) = 〈3x2 − 2y,−2x+ 2y〉 and


∂2 f

∂ x ∂ x

∂2 f

∂ x ∂ y
∂2 f

∂ x ∂ y

∂2 f

∂ y ∂ y

 =

[
6x −2
−2 2

]
so

κ(x, y) =
|6x(−2x+ 2y)2 − 8(3x2 − 2y)(−2x+ 2y) + 2(3x2 − 2y)2|(

(3x2 − 2y)2 + (−2x+ 2y)2
) 3

2

3. The curve of intersection of two implicit surfaces

An implicit surface is the set of solutions to an equation f(x, y, z) = c.

Given two implicit surfaces f(x, y, z) = c and g(x, y, z) = d they typically intersect in a
curve. If a is a point on both surfaces we can try to compute the typical invariants of the
intersect curve at this point.

If we parametrize the curve by r(t) then f
(
r(t)
)

= c and ∇f
(
r(t)
)
• r′(t) = 0. In particular

r′(t) is perpendicular to ∇f
(
r(t)
)
. Similarly r′(t) is perpendicular to ∇g

(
r(t)
)
. Hence we

will take r′(t) parallel to ∇f
(
r(t)
)
××∇g

(
r(t)
)

and so

T(a) =
∇f
(
a
)
××∇g

(
a
)∣∣∇f(a)××∇g(a)∣∣

If we assume ∇f
(
a
)
××∇g

(
a
)
6= 0 it follows that ∇f

(
a
)
6= 0 and ∇g

(
a
)
6= 0.

The Implicit Function Theorem says that around a, f(x, y, z) = c is a graph z = α(x, y) and
g(x, y, z) = d is a graph z = β(x, y).



The intersection of the two surfaces is the set of all points where α(x, y) = β(x, y) and (under
some non-zero hypothesis of partials) there is a function γ(x) so that α

(
x, γ(x)

)
= β

(
x, γ(x)

)
.

The curve is paramterized by

r(x) =
〈
x, γ(x), α

(
x, γ(x)

)〉
=
〈
x, γ(x), β

(
x, γ(x)

)〉
f
(
〈x, y, α(x, y)〉

)
= c

∇f
(
〈x, y, α(x, y)〉

)
•

〈
1, 0,

∂ α

∂ x

〉
= 0

∇f
(
〈x, y, α(x, y)〉

)
•

〈
0, 1,

∂ α

∂ y

〉
= 0 so

〈
1, 0,

∂ α

∂ x

〉
××
〈

0, 1,
∂ α

∂ y

〉
=

∣∣∣∣∣∣∣∣∣∣
i j k

1 0
∂ α

∂ x

0 1
∂ α

∂ y

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
0

∂ α

∂ x

1
∂ α

∂ y

∣∣∣∣∣∣∣∣ i−
∣∣∣∣∣∣∣∣
1

∂ α

∂ x

0
∂ α

∂ y

∣∣∣∣∣∣∣∣ j +

∣∣∣∣1 0
0 1

∣∣∣∣k
=

〈
−∂ α
∂ x

,−∂ α
∂ y

, 1

〉
is parallel to ∇f so

∇f =

〈
−∂ α
∂ x
· ∂ f
∂ z

,−∂ α
∂ y
· ∂ f
∂ z

,
∂ f

∂ z

〉
so

∂ α

∂ x
= −

∂ f

∂ x

∂ f

∂ z

and
∂ α

∂ y
= −

∂ f

∂ y

∂ f

∂ z

∇g =

〈
−∂ β
∂ x
· ∂ g
∂ z

,−∂ β
∂ y
· ∂ g
∂ z

,
∂ g

∂ z

〉
so

∂ β

∂ x
= −

∂ g

∂ x

∂ g

∂ z

and
∂ β

∂ y
= −

∂ g

∂ y

∂ g

∂ z

Since α
(
x, γ(x)

)
= β

(
x, γ(x)

)
, differentiating with respect to x gives∇α • 〈1, γ′〉 = ∇β • 〈1, γ′〉

so

γ′(x) =

∂ α

∂ x
− ∂ β

∂ x

∂ β

∂ y
− ∂ α

∂ y

=

∂ g

∂ x
− ∂ f

∂ x

∂ f

∂ y
− ∂ g

∂ y

With these formulas and the Chain Rule one can calculate r′, r′′ and r′′′ in terms of the
(higher order) partials of f and g and hence obtain the curvature, the torsion and the
Frenet-Serret frame at a point on the intersection curve.

4. Approximations (Extra)

Recall that a function is differentiable if and only if



lim
h→0

∣∣(f(a + h)− f(a)
)
−∇f(a) • h

∣∣
|h|

= 0

This in turn means that if |h| is small,

(∗)
(
f(a + h)− f(a)

)
−∇f(a) • h ≈ 0

4.1. Approximation values. Suppose you have a function f(x) and you know f(a) but
you want to know f(b) for some other input b. Write

f(b) = f
(
a + (b− a)

)
Then, letting h = b− a and rewriting (∗)

f(b) = f
(
a + (b− a)

)
≈ f(a) +∇f(a) • (b− a)

4.2. Solve equations. Try to solve f(x) = 0. Pick a point a0 and evaluate f(a0). If this is
not 0 solve

f(a0) + t0∇f(a0) • ∇f(a0) = 0

for t0. As long as ∇f(a0) 6= 0 you can do this.

Since f(a0) + t0∇f(a0) • ∇f(a0) = 0, if we take

a1 = a0 + t0∇f(a0)

and approximate f(a1) we get

f(a1) ≈ f(a0) + t0∇f(a0) • ∇f(a0) = 0

So we might expect that a1 is a better approximation to the solution than was our initial
guess a1. Now iterate.

In summary:

Pick a0, compute

a1 = a0 −
f(a0)

∇f(a0) • ∇f(a0)
∇f(a0)

and iterate.

Example: Find a solution to f(x, y, z) = 0 where

f(x, y, z) = x2 + xyz − xz3 − 4

Compute ∇f = 〈2x+ yz − z3, xz, xy − 3xz2〉.



4.3. Points of intersection of two implicit surfaces. Suppose you want a point on
f(x, y, z) = c and g(x, y, z) = d. Solve(

f(x, y, z)− c
)2

+
(
g(x, y, z)− d

)2
= 0
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