Example. Look at some sort of twisted cubic $\mathbf{r}(t)=\left\langle t^{2}-t, 1, t^{3}\right\rangle$. Find the points on the curve where the curvature vanishes.
$\mathbf{r}^{\prime}(t)=\left\langle 2 t-1,0,3 t^{2}\right\rangle \quad\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{(2 t-1)^{2}+9 t^{4}}$
$\mathbf{r}^{\prime \prime}(t)=\langle 2,0,6 t\rangle$
$\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 t-1 & 0 & 3 t^{2} \\ 2 & 0 & 6 t\end{array}\right|=\left|\begin{array}{cc}0 & 3 t^{2} \\ 0 & 6 t\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}2 t-1 & 3 t^{2} \\ 2 & 6 t\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}2 t-1 & 0 \\ 2 & 0\end{array}\right| \mathbf{k}=\left\langle 0,-6 t^{2}+6,0\right\rangle$
The curvature is

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}=\frac{\sqrt{\left(-6 t^{2}+6\right)^{2}}}{\left(\sqrt{(2 t-1)^{2}+9 t^{4}}\right)^{3}}
$$

Hence the curvature vanishes if and only if $-6 t^{2}+6=0$ or $t= \pm 1$.
Hence the curvature is 0 at the two points $\langle 0,1,1\rangle$ and $\langle 0,1,-1\rangle$.

Example. What is the torsion of $\mathbf{r}(t)=\left\langle t^{2}-t, 1, t^{3}\right\rangle$?
$\mathbf{r}^{\prime \prime \prime}(t)=\langle 0,0,6\rangle$

$$
\left(\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right) \cdot \mathbf{r}^{\prime \prime \prime}(t)=\left\langle 0,-6 t^{2}+6,0\right\rangle \bullet\langle 0,0,6\rangle=0
$$

Notice this confirms are previous remark that a curve is planar if and only if it torsion is 0 since the curve lies in the plane $y=1$.
Notice as long as we're here,

$$
\mathbf{B}=\frac{\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)}{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}=\frac{\left\langle 0,-6 t^{2}+6,0\right\rangle}{\sqrt{\left(-6 t^{2}+6\right)^{2}}}= \begin{cases}\langle 0,1,0\rangle & t^{2}<1 \\ \langle 0,-1,0\rangle & t^{2}>1\end{cases}
$$

Then

$$
\mathbf{N}=\mathbf{B} \times \mathbf{T}
$$

This points in the same direction as

$$
\begin{gathered}
\langle 0, \pm 1,0\rangle \times\left\langle 2 t-1,0,3 t^{2}\right\rangle= \\
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & \pm 1 & 0 \\
2 t-1 & 0 & 3 t^{2}
\end{array}\right|=\left|\begin{array}{rr}
\pm 1 & 0 \\
0 & 3 t^{2}
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
0 & 0 \\
2 t-1 & 3 t^{2}
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
0 & \pm 1 \\
2 t-1 & 0
\end{array}\right| \mathbf{k}= \\
\left\langle \pm 3 t^{2}, 0, \pm(2 t-1)\right\rangle
\end{gathered}
$$

Hence

$$
\mathbf{N}=\frac{1}{\sqrt{9 t^{4}+(2 t-1)^{2}}}\left\langle \pm 3 t^{2}, 0, \pm(2 t-1)\right\rangle= \begin{cases}\frac{\left\langle 3 t^{2}, 0,2 t-1\right\rangle}{\sqrt{9 t^{4}+(2 t-1)^{2}}} & t^{2}<1 \\ \frac{-\left\langle 3 t^{2}, 0,2 t-1\right\rangle}{\sqrt{9 t^{4}+(2 t-1)^{2}}} & t^{2}<1\end{cases}
$$

Example. Look at this quartic cubic $\mathbf{r}(t)=\left\langle t^{3}, t, t^{4}\right\rangle$. Find all the points on the cubic where the osculating plane is parallel to $-12 x+24 y+3 z=5$.
$\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 1,4 t^{3}\right\rangle$
$\mathbf{r}^{\prime \prime}(t)=\left\langle 6 t, 0,12 t^{2}\right\rangle$
A normal to the osculating plane is \mathbf{B} which is parallel to
$\mathbf{n}=\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 t^{2} & 1 & 4 t^{3} \\ 6 t & 0 & 12 t^{2}\end{array}\right|=\left|\begin{array}{cc}1 & 4 t^{3} \\ 0 & 12 t^{2}\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}3 t^{2} & 4 t^{3} \\ 6 t & 12 t^{2}\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}3 t^{2} & 1 \\ 6 t & 0\end{array}\right| \mathbf{k}=\left\langle 12 t^{2},-12 t^{4},-6 t\right\rangle$
We certainly should not waste time normalizing \mathbf{n}. However $\mathbf{n}=-6 t\left\langle-2 t, 2 t^{3}, 1\right\rangle$ so a normal to the osculating plane is $\mathbf{n}_{1}=\left\langle-2 t, 2 t^{3}, 1\right\rangle$ and this is the normal vector we will use.
A normal to $-12 x+24 y+3 z=5$ is $\mathbf{n}_{2}=\langle-12,24,3\rangle$ and the only way \mathbf{n}_{1} and \mathbf{n}_{2} can be parallel is if $\mathbf{n}_{2}=3 \mathbf{n}_{1}$. Hence $-6 t=-12$ and $6 t^{3}=24$. The first equation forces $t=2$ but $t=2$ does not satisfy the second equation. Hence there is no point on the curve where the osculating plane is parallel to $-12 x+24 y+3 z=5$.
If instead we wanted a plane parallel to $-12 x+48 y+3 z=5$ then the only possible solution is still $t=2$ since the first and third coordinates of our normals to the planes are the same. But now $6 t^{3}=48$ is satisfied when $t=2$.
The point on the curve is $\mathbf{r}(2)=\langle 8,2,16\rangle$.
An osculating plane equation is

$$
\langle-12,24,3\rangle \cdot\langle x, y, z\rangle=\langle-12,24,3\rangle \cdot\langle 8,2,16\rangle=-96+48+48=0
$$

or

$$
-4 x+8 y+z=0
$$

Example. Find the cosine of the angle of intersection between the curves
(1) $\mathbf{r}_{1}(t)=\left\langle t+1, t^{3}-t, t^{2}-1\right\rangle$
(2) $\mathbf{r}_{2}(t)=\left\langle t, t^{2}-1,-t^{2}\right\rangle$

First we need to compute the point(s) of intersection. Switch the variable in one of the equations, say $\mathbf{r}_{2}(s)=\left\langle s, s^{2}-1,-s^{2}\right\rangle$ and solve

$$
\left\langle t+1, t^{3}-t, t^{2}-1\right\rangle=\left\langle s, s^{2}-1,-s^{2}\right\rangle
$$

Hence $s=t+1$ and then $s^{2}=t^{2}+2 t+1$. Then $t^{2}-1=-s^{2}=-\left(t^{2}+2 t+1\right)$ so $2 t^{2}+2 t=0$ so $t=0$ and $t=-1$. If $t=0, s=1$ and if $t=-1, s=0$.
When $t=0$ and $s=1$ the point is $(1,0,-1)$. When $t=-1$ and $s=0$ we get two different points $(0,0,0)$ and $(0,-1,0)$ so there is only one point of intersection.
A tangent vector to each curve is $\mathbf{r}_{1}^{\prime}(t)=\left\langle 1,3 t^{2}-1,2 t\right\rangle$ and $\mathbf{r}_{2}^{\prime}(s)=\langle 1,2 s,-2 s\rangle$. At the intersection we have $\mathbf{r}_{1}^{\prime}(0)=\langle 1,-1,0\rangle$ and $\mathbf{r}_{2}^{\prime}(1)=\langle 1,2,-2\rangle$.

$$
\cos (\theta)=\frac{\langle 1,-1,0\rangle \cdot\langle 1,2,-2\rangle}{|\langle 1,-1,0\rangle| \cdot|\langle 1,2,-2\rangle|}=\frac{-1}{\sqrt{2} \cdot \sqrt{9}}=\frac{-1}{3 \sqrt{2}}
$$

