1. Vectors

- Dot product: $\left\langle a_{1}, a_{2}, a_{3}\right\rangle \bullet\left\langle b_{1}, b_{2}, b_{3}\right\rangle=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.
- Angle between two vectors: $\cos (\theta)=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \cdot|\mathbf{b}|}$
- Perpendicular and orthogonal: $\mathbf{a} \cdot \mathbf{b}=0$
- Projection of \mathbf{b} onto $\mathbf{a}: \frac{\mathbf{a} \bullet \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$
- Work: Force • Displacement
- Rules: $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2} ; \mathbf{a} \bullet \mathbf{b}=\mathbf{b} \cdot \mathbf{a} ; \mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$; $(c \mathbf{a}) \cdot \mathbf{b}=\mathbf{a} \bullet(c \mathbf{b})=c(\mathbf{a} \bullet \mathbf{b}) ; \mathbf{a} \cdot \mathbf{0}=0$.
- Cross product: $\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\left|\begin{array}{cc}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right| \mathbf{k}$
- Vector orthogonal to two vectors: $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and to \mathbf{b}.
- Area of parallelogram: $A=|\mathbf{a} \times \mathbf{b}|$
- Angle between two vectors: $|\mathbf{a x b}|=|\mathbf{a}||\mathbf{b}| \sin (\theta)$
- Rules: $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a} ; \mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$; $(c \mathbf{a}) \times \mathbf{b}=\mathbf{a} \times(c \mathbf{b})=c(\mathbf{a} \times \mathbf{b})$;
$-\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{cc}\mathbf{b} & \mathbf{c} \\ \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c}\end{array}\right| \quad \& \quad(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=\left|\begin{array}{cc}\mathbf{b} & \mathbf{a} \\ \mathbf{b} \cdot \mathbf{c} & \mathbf{a} \cdot \mathrm{c}\end{array}\right|$
- Triple scalar product: $\mathbf{a} \bullet(\mathbf{b} \times \mathbf{c})$
- To calculate: $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
- Volume of parallelepiped: $|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$
- Rule: $\mathbf{a} \bullet(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$.
- Equations of a line
- Vector equation: $t\left\langle v_{1}, v_{2}, v_{3}\right\rangle+\left\langle c_{1}, c_{2}, c_{3}\right\rangle$
- Symmetric equation: $\frac{x-c_{1}}{v_{1}}=\frac{y-c_{2}}{v_{2}}=\frac{z-c_{3}}{v_{3}}$ with adjustments when $v_{i}=0$.
- Equation of a plane: normal vector $\mathbf{N}=\langle a, b, c\rangle$ and point $\left\langle p_{1}, p_{2}, p_{3}\right\rangle$ gives the equation $\mathbf{N} \bullet\langle x, y, z\rangle=\mathbf{N} \bullet\left\langle p_{1}, p_{2}, p_{3}\right\rangle$.

2. Curves

2.1. Parametrization. Vector valued function $\mathbf{r}(t), a \leqslant t \leqslant b$. A parametrization is smooth provided $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$. A smooth parametrization orients the curve.
2.2. Arc Length. Arc length between points \mathbf{p}_{1} and \mathbf{p}_{2} : find t_{1} and t_{2} such that $\mathbf{r}\left(t_{i}\right)=\mathbf{p}_{i}$ and if the parametrization is smooth, the arc length is $\int_{t_{1}}^{t_{2}}\left|\mathbf{r}^{\prime}(t)\right| d t$ provided $t_{1}<t_{2}$.

$$
\frac{d s}{d t}=\left|\mathbf{r}^{\prime}(t)\right|
$$

2.3. Tangent vector(s). A tangent vector to the curve at t is $\mathbf{r}^{\prime}(t)$. At a point \mathbf{p} find c such that $\mathbf{r}(c)=\mathbf{p}$ and use $\mathbf{r}^{\prime}(c)$.
2.4. Velocity and acceleration. Velocity $=\mathbf{r}^{\prime}(t)$, speed $=\left|\mathbf{r}^{\prime}(t)\right|$. Acceleration $=\mathbf{r}^{\prime \prime}(t)$.
2.5. Frenet-Serret frame. Unit tangent $\mathbf{T}(t)$, unit normal $\mathbf{N}(t)$, and unit binormal, $\mathbf{B}(t)$. These three unit vectors are mutually orthogonal and $\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)$ is a right-handed frame.

$$
\mathbf{r}^{\prime \prime}(t)=a_{\mathbf{T}}(t) \mathbf{T}(t)+a_{\mathbf{N}}(t) \mathbf{N}(t) \text { where } a_{\mathbf{T}}(t)=\frac{d\left|\mathbf{r}^{\prime}(t)\right|}{d t} \text { and } a_{\mathbf{N}}(t)=\kappa(t)\left|\mathbf{r}^{\prime}(t)\right|^{2}
$$

If you actually want to compute $a_{\mathbf{T}}(t)$ use $a_{\mathbf{T}}(t)=\frac{\mathbf{r}^{\prime}(t) \bullet \mathbf{r}^{\prime \prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$.
If you actually want to compute $\kappa(t)$ use $\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$.
If you actually want to compute $a_{\mathbf{N}}(t)$ use $a_{\mathbf{N}}(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}$.
If you actually want to compute the vectors in the Frenet-Serret frame

- $\mathbf{T}(t)$: take $\mathbf{r}^{\prime}(t)$ and make it unit length.
- $\mathbf{B}(t)$: take $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$ and make it unit length.
- $\mathbf{N}=\mathbf{B} \times \mathbf{T}$: take $\left(\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right) \times \mathbf{r}^{\prime}(t)=\left|\begin{array}{cc}\mathbf{r}^{\prime \prime}(t) & \mathbf{r}^{\prime}(t) \\ \mathbf{r}^{\prime \prime}(t) \bullet \mathbf{r}^{\prime}(t) & \mathbf{r}^{\prime}(t) \bullet \mathbf{r}^{\prime}(t)\end{array}\right|$ and make it unit length.

If you want any of these quantities at a single value of t, compute $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}^{\prime \prime}(t)$ at the point and then work with vectors of numbers.
The osculating plane to a curve at a point is the plane spanned by $\mathbf{T}(t)$ and $\mathbf{N}(t)$. A normal vector to this plane is $\mathbf{B}(t)$. If you actually want to find an equation for the osculating plane, use $\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}$ for the normal vector.
The normal plane to a curve at a point is the plane with normal vector \mathbf{T} through the point.
2.6. Antiderivatives. Find the equation of a curve given an equation for velocity, $\mathbf{v}(t)$. $\int \mathbf{v}(t) d t$ is the family of curves with that velocity. One can also compute the velocity from the acceleration up to a constant vector.

