
MATH 20550 Flux integrals Fall 2016

1. Review

1.1. Surface integrals. Let T be a surface in R3. Let f : T → R be a function defined on T .
Define ∫∫

T

f dS = lim
mesh(P)→0

∑
P

f(pi)Area(Ti)

as a limit of Riemann sums over sampled-partitions. A sampled-partition of T , P , is a division of
the surface T into pieces, Ti, followed by a choice of sample point, pi, in each Ti. By a division of a
surface into pieces we mean ∪i Ti = T and Ti ∩ Tj lies in the boundary of each piece.

The associated Riemann sum is
∑

i f(pi)Area(Ti). The mesh of the sampled-partition is ≤ ε
provided every Ti is contained in the ball of radius ε centered at pi.

If f is continuous,

∫∫
T

f dS is well-defined, and hence a number.

1.2. Surface integrals as double integrals. Parametrize S as r(u,w) : D → R3 where D is some
bounded region in the plane. We can evaluate f at points in S as f

(
r(u,w)

)
. The remaining issue

is to figure out Area(Ti).
At a point r(u0, w0) we can look at the tangent plane to S at the point. It is

r(u0, w0) + rru(u0, w0) + trw(u0, w0)

In the tangent plane we have the parallelogram with vertices r(u0, w0), r(u0, w0) + ru(u0, w0)du,
r(u0, w0)+rw(u0, w0)dw and r(u0, w0)+ru(u0, w0)du+rw(u0, w0)dw. The area of this parallelogram is
|ru(u0, w0)× rw(u0, w0)| du dw = |ru(u0, w0)× rw(u0, w0)| dA and we use this as the approximation
to Area(Ti).

(∗)
∫∫
T

f dS =

∫∫
D

f
(
r(u,w)

)
|ru × rw| dA

2. Flux integrals

One important source of functions to integrate over surfaces comes using vector fields and the
dot product. Let T be an oriented surface. Given any vector field F defined on T , define∫∫

T

F • dS =

∫∫
T

F •N dS

where N is the unit normal field to T , which is why T has to be oriented.
Since F and N are both vector fields defined on T , F •N is a function defined on T and hence

the right hand surface integral is defined.
Just as in the line integral case, the flux integral looks like it is going to be the most difficult of

the surface integrals, but in fact it is the easiest. First recall,

N =
ru × rw
|ru × rw|

so ∫∫
T

F • dS =

∫∫
D

F
(
r(u,w)

)
•
ru × rw
|ru × rw|

|ru × rw| dA =

∫∫
D

F
(
r(u,w)

)
• (ru × rw) dA

1
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3. Orientation

An orientation for a surface is a continuous choice of unit normal vector for the surface. Every
surface which can be parametrized has two choices of a unit normal vector at every point, hence if
there is an orientation, there are at least two.

The boundary of a solid E in three space has orientations. By ∂E we mean the boundary of E
with the orientation for which the normal vector points out of E.
Remark Also just as in the line integral case, the surface integral does not depend on the orien-
tation, but F •N changes sign if the orientation does. Hence the value of the flux integral depends
on the orientation and changes sign if the orientation changes.

Below we will have occasion to do flux integrals over surfaces that some in several disjoint pieces.
Then we will have to orient each piece and if we switch the orientation on just one piece then only
the sign of the answer for that piece changes. In this case, if there are k pieces, there are 2k possible
orientations.

Consider the case in which E is the region between two shpheres.

This is an example in which ∂E is in two pieces, the inner sphere and the outer sphere. When
we write ∂E we mean the boundary plus an orientation on it. The orientation on the outer sphere
points outward but the orientation on the inner sphere points inward. They both point out of E.

As surfaces, each sphere has two orientations for a total of 4 altogether on the union of the two.

Once you have parametrized the surface, you have a natural choice for normal vector, the cross
product of the two partial derivatives. If the surface is orientable, this works. If the surface is not
orientable, nothing works.

We saw the Möbius strip as an example of a non-orientable surface. In general, any surface
without boundary is orientable. Additionally, any subset of an oriented surface is oriented.

Hence level sets are orientable and surfaces of revolution are orientable. Examples include graphs,
cylinders, cones, . . . .
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4. Examples

Example: Find

∫∫
T

f dS where T is the surface consisting of the part of the plane 2x+3y+z = 6

lying in the first octant and f(x, y, z) = x+ y + z.
Step 1: First parametrize the surface: r(x, y) = 〈x, y, 6− 2x− 3y〉; (x, y) in D where D is the
triangle in the first quadrant of the xy plane below the line 2x+ 3y = 6.
Step 2: Calculate the normal field.

rx = 〈1, 0,−2〉
ry = 〈1, 0,−3〉

rx × ry = det

∣∣∣∣∣∣
i j k
1 0 −2
0 1 −3

∣∣∣∣∣∣ = 〈2, 3, 1〉

Step 3: Reduce to a double integral. This is not a flux integral so there is no need to worry about
the orientation. However we need to compute the length of the normal field.

|rx × ry| =
√

4 + 9 + 1 =
√

14

∫∫
T

f dS =

∫∫
D

(x+ y + z)
√

14 dA =
√

14

∫∫
D

(x+ y + 6− 2x− 3y) dA =
√

14

∫∫
D

(6− x− 2y) dA

Step 4: Evaluate the double integral.

Draw a picture: 2x+ 3y = 6.

√
14

3∫
0

2− 2x
3∫

0

(6− x− 2y) dy dx =
√

14

3∫
0

6y − xy − y2
∣∣2− 2x

3

0
dx =

√
14

3∫
0

(
(12− 4x)− 2x+

2x2

3
−
(

4− 8x

3
+

4x2

9

))
dx =

√
14

3∫
0

(
8− 10x

3
+

2x2

9

)
dx =

√
14

(
8x− 5x2

3
+

2x3

27

∣∣∣∣3
0

)
=
√

14(24− 15 + 2) = 11
√

14

You may certainly evaluate this double integral as dx dy.
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Example: Find

∫∫
T

F • dS where T is the surface in the last example with downward normal and

where F = 〈x, y, z〉.
The region D and the calculation of rx × ry = 〈2, 3, 1〉 are the same as for the last example.

Step 3: Reduce to a double integral. This is a flux integral so we need to check the orientation.
The normal vector at all points is 〈2, 3, 1〉 which points up since the z coordinate is positive. We
wanted downward so∫∫

T

F • dS = −
∫∫
D

〈x, y, z〉 • 〈2, 3, 1〉 dA = −
∫∫
D

(2x+ 3y + 6− 2x− 3y) dA = −
∫∫
D

6 dA

Step 4: Evaluate the double integral.∫∫
D

6 dA = 6 · 2 · 3
2

= 18

so ∫∫
T

F • dS = −18

Example: Let T be the part of z = 4− x2 − y2 above the xy plane and let F = 〈y, x, z〉. Let the
normal field be upward.
Step 1: Parametrize T as r(x, y) = 〈x, y, 4− x2 − y2〉 for D : x2 + y2 6 4.
Step 2: Calculate the normal field.

rx(x, y) = 〈1, 0,−2x〉
ry(x, y) = 〈0, 1,−2y〉

rx × ry = det

∣∣∣∣∣∣
i j k
1 0 −2x
0 1 −2y

∣∣∣∣∣∣ = 〈2x, 2y, 1〉

Step 3: Reduce to a double integral. Check the orientation since this is a flux integral. When
(x, y) = (0, 0), rx × ry = 〈0, 0, 1〉 which points up so the normal field is the one we wanted.

F • (rx × ry) =
〈
y, x, 4− x2 − y2

〉
• 〈2x, 2y, 1〉 = 2xy + 2xy + 4− x2 − y2 = 4xy + 4− x2 − y2∫∫

T

F • dS =

∫∫
x2+y264

(4xy + 4− x2 − y2)dA

Step 4: Evaluate the double integral. In this case, polar coordinates looks good.

2π∫
0

2∫
0

(4r2 cos(θ) sin(θ) + 4− r2)r drdθ =

2π∫
0

2∫
0

(4r3 cos(θ) sin(θ) + 4r − r3) drdθ =

2π∫
0

(
r4 cos(θ) sin(θ) + 2r − r4

4

∣∣∣∣2
0

)
dθ =

2π∫
0

(
16 cos(θ) sin(θ) + 4− 4

)
dθ = 8 sin2(θ)

∣∣∣2π
0

= 0
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Remark: In general, parametrize the surface and do the integral using that parametrization.
After you do the calculation, check to see if you did it with the correct orientation or not. If you
did it with the required orientation you are done. If you did it with the other orientation, then the
correct answer is the negative of the one you worked out.

Example: Let T be the cone z =
√
x2 + y2 below z = 2 together with the disk x2 +y2 6 4, z = 2.

Orient the surface so that the normal is outward. Integrate the field F = 〈x, y, 0〉 over this surface.
Step 1: Parametrize T as T1 ∪ T2 were T1 is parametrized in spherical coordinates by φ = π

4
and

r1(ρ, θ) =

〈
ρ cos(θ)

√
2

2
, ρ sin(θ)

√
2

2
, ρ

√
2

2

〉
=

√
2ρ

2
〈cos(θ), sin(θ), 1〉; D1 : 0 6 θ 6 2π, 0 6 ρ 6

2
√

2. The surface T2 is parametrized by r2(x, y) = 〈x, y, 2〉; D2 : x2 + y2 6 4.
Write the surface as a union of surfaces which you can parametrize and then

∫∫
T

F • dS =∫∫
T1

F • dS +
∫∫
T2

F • dS. Do each surface integral separately.

Step 21: Compute the normal field for T1.

(r1)ρ =

〈√
2 cos(θ)

2
,

√
2 sin(θ)

2
,

√
2

2

〉

(r1)θ =

〈
−
√

2ρ sin(θ)

2
,

√
2ρ cos(θ)

2
, 0

〉

(r1)ρ × (r1)θ = det

∣∣∣∣∣∣∣∣∣
i j k√

2 cos(θ)

2

√
2 sin(θ)

2

√
2

2

−
√

2ρ sin(θ)

2

√
2ρ cos(θ)

2
0

∣∣∣∣∣∣∣∣∣
=

〈
−ρ cos(θ)

2
,−ρ sin(θ)

2
, ρ

cos2(θ) + sin2(θ)

2

〉
=
ρ

2
〈− cos(θ),− sin(θ), 1〉

Step 31: Reduce to a double integral.

F •
(
(r1)ρ × (r1)θ

)
=

〈
ρ cos(θ)

√
2

2
, ρ sin(θ)

√
2

2
, 0

〉
•
ρ

2
〈− cos(θ),− sin(θ), 1〉 = −

(√
2

4

)
ρ2

Check the orientation. We were asked to use the outward normal. If we use the point r1(0, 0)

we get the cone point which is most likely singular, so let’s use r1(1, 0) =

〈√
2

2
, 0,

√
2

2

〉
. Hence

(r1)ρ × (r1)θ =
1

2
〈−1, 0, 1〉. This points upward whereas outward on this cone points down. Hence

we have the opposite orientation to the one we want.∫∫
T1

F • dS = −
∫∫
D1

−

(√
2

4

)
ρ2 dA =

∫∫
D1

(√
2

4

)
ρ2 dA
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Step 41: Do the double integral.

∫∫
T1

F • dS =

 ∫∫
06θ62π

06ρ62
√
2

√
2

4

 ρ2 dA =

√
2

4

2π∫
0

2
√
2∫

0

ρ2dρ dθ =

√
2

4

2π∫
0

ρ3

3

∣∣∣∣2
√
2

0

dθ =

2π∫
0

8

3
dθ =

16π

3

Repeat for T2
Step 22: Compute the normal field for r2.

(r2)x = 〈1, 0, 0〉 = i

(r2)y = 〈0, 1, 0〉 = j

(r2)x × (r2)y = k = 〈0, 0, 1〉

Step 32: Reduce to a double integral.

F •
(
(r2)x × (r2)y

)
= 〈x, y, 0〉 • 〈0, 0, 1〉 = 0

∫∫
T2

F • dS =

∫∫
D2

0 dA = 0

and there was no need to check the orientation. Note however that it points up and up is the correct
direction. Also there is no need for a separate step to evaluate the double integral.

Final Step:

∫∫
T

F • dS =
16π

3
.

Example: Let T the unit cube in the first octant. Orient the surface so that the normal is outward
from the solid cube. Integrate the field F = 〈x, y, z〉 over this surface.
Step 1: There are six surfaces to parametrize. Let D be the unit square in the first quadrant of
uw space. The six faces of the cube can be parametrized by

(1) C1: r[0](u,w) = 〈u,w, 0〉;
(2) C2: r[1](u,w) = 〈u,w, 1〉;
(3) C3: s[0](u,w) = 〈u, 0, w〉;
(4) C4: s[1](u,w) = 〈u, 1, w〉;
(5) C5: t[0](u,w) = 〈0, u, w〉;
(6) C6: t[1](u,w) = 〈1, u, w〉

for (u,w) ∈ D.
Step 2:

(1) r
[0]
u (u,w) = 〈1, 0, 0〉; r[0]w (u,w) = 〈0, 1, 0〉; r[0]u × r

[0]
w = 〈0, 0, 1〉

(2) r
[1]
u (u,w) = 〈1, 0, 0〉; r[1]w (u,w) = 〈0, 1, 0〉; r[1]u × r

[1]
w = 〈0, 0, 1〉

(3) s
[0]
u (u,w) = 〈1, 0, 0〉; s[0]w (u,w) = 〈0, 0, 1〉; s[0]u × s

[0]
w = 〈0,−1, 0〉

(4) s
[1]
u (u,w) = 〈1, 0, 0〉; s[1]w (u,w) = 〈0, 0, 1〉; s[1]u × s

[1]
w = 〈0,−1, 0〉

(5) t[0]u (u,w) = 〈0, 1, 0〉; t[0]w (u,w) = 〈0, 0, 1〉; t[0]u × t[0]w = 〈1, 0, 0〉
(6) t[1]u (u,w) = 〈0, 1, 0〉; t[1]w (u,w) = 〈0, 0, 1〉; t[1]u × t[1]w = 〈1, 0, 0〉

Steps 3 & 4: Reduce to a double integral.

(1) F •
(
r
[0]
u × (r

[0]
w

)
= 〈u,w, 0〉 • 〈0, 0, 1〉 = 0;

∫∫
C1

F • dS =

∫∫
D

0 dA = 0
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(2) F •
(
r
[1]
u × (r

[1]
w

)
= 〈u,w, 1〉 • 〈0, 0, 1〉 = 1;

∫∫
C2

F • dS =

∫∫
D

1 dA = Area of(D) = 1

(3) F •
(
s
[0]
u × (s

[0]
w

)
= 〈u, 0, w〉 • 〈0,−1, 0〉 = 0;

∫∫
C3

F • dS =

∫∫
D

0 dA = 0

(4) F •
(
s
[1]
u × (s

[1]
w

)
= 〈u, 1, w〉 • 〈0,−1, 0〉 = −1;

∫∫
C4

F • dS =

∫∫
D

(−1) dA = −1

(5) F •
(
t[0]u × (t[0]w

)
= 〈0, u, w〉 • 〈1, 0, 0〉 = 0;

∫∫
C5

F • dS =

∫∫
D

0 dA = 0

(6) F •
(
t[1]u × (t[1]w

)
= 〈1, u, w〉 • 〈1, 0, 0〉 = 1;

∫∫
C6

F • dS =

∫∫
D

1 dA = 1

Step 4+: Determine the normal vectors and add up the answers.

(1) The normal vector points up, we want down.
(2) The normal vector points up, we want up.
(3) The normal vector points in negative y direction, we want negative.
(4) The normal vector points in negative y direction, we want positive.
(5) The normal vector points in positive x direction, we want negative.
(6) The normal vector points in positive x direction, we want positive.

Hence ∫∫
T

F • dS = (−0) + 1 + 0− (−1)− (0) + 1 = 3
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