1. Example of the Divergence Theorem

Example. A torus

$$
\mathbf{r}(u, w)=\langle(a+b \cos (w)) \cos (u),(a+b \cos (w)) \sin (u), b \sin (w)\rangle ; \quad 0 \leqslant u \leqslant 2 \pi, \quad 0 \leqslant w \leqslant 2 \pi
$$

with $a>b>0$.

Torus is $a=2, b=1$
Note

$$
\begin{aligned}
& \mathbf{r}_{u}(u, w)=\langle-(a+b \cos (w)) \sin (u),(a+b \cos (w)) \cos (u), 0\rangle \\
& \mathbf{r}_{w}(u, w)=\langle-b \sin (w) \cos (u),-b \sin (w) \sin (u), b \cos (w)\rangle \\
& \mathbf{r}_{u} \times \mathbf{r}_{w}= \operatorname{det}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-(a+b \cos (w)) \sin (u) & (a+b \cos (w)) \cos (u) & 0 \\
-b \sin (w) \cos (u) & -b \sin (w) \sin (u) & b \cos (w)
\end{array}\right|= \\
& \quad\langle b \cos (w) \cos (u)(a+b \cos (w)), b \cos (w) \sin (u)(a+b \cos (w)), b \sin (w)(a+b \cos (w))\rangle= \\
& \mathbf{r}_{u} \times \mathbf{r}_{w}=b(a+b \cos (w))\langle\cos (w) \cos (u), \cos (w) \sin (u), \sin (w)\rangle \\
&\left|\mathbf{r}_{u} \times \mathbf{r}_{w}\right|=b(a+b \cos (w))
\end{aligned}
$$

The torus is the boundary of a solid and so is orientable. At $(0,0)$ the point is $\mathbf{r}(0,0)=\langle a+b, 0,0\rangle$ which is the largest of the four points on the x-axis. (The other three are $\langle a-b, 0,0\rangle,\langle-a+b, 0,0\rangle$ and $\langle-a-b, 0,0\rangle$.)

At $(0,0), \mathbf{r}_{u} \times \mathbf{r}_{w}(0,0)=b(a+b)\langle 1,0,0\rangle$ and since $b(a+b)>0$, this normal field points out.
There is no need to check additional points but suppose you were asked to check the direction at $\langle a-b, 0,0\rangle$. Now the first problem is to find (u, w) so that $\mathbf{r}(u, w)=\langle a-b, 0,0\rangle$. To get the z-coordinate right, $w=0$ or π or 2π. $w=0$ or 2π gives an $a+b$ factor in the other two coordinates so $w=\pi$ looks like the right way to go. To get the y-coordinate right, take $u=0$ and we see
$\mathbf{r}(0, \pi)=\langle a-b, 0,0\rangle$. At this point, $\mathbf{r}_{u} \times \mathbf{r}_{w}(0, \pi)=a(a-b)\langle-1,0,0\rangle$. Since $a(a-b)>0$, this points towards the origin, which is outward from the solid!

Surface area of a torus: $\left|\mathbf{r}_{u} \times \mathbf{r}_{w}\right|=b(a+b \cos (w))$ with $0 \leqslant u \leqslant 2 \pi, 0 \leqslant w \leqslant 2 \pi$.
Hence

$$
\begin{aligned}
\text { Surface area } & =\iint_{\substack{0 \leqslant u \leqslant 2 \pi \\
0 \leqslant w \leqslant 2 \pi}} b(a+b \cos (w)) d A=\int_{0}^{2 \pi} \int_{0}^{2 \pi} b(a+b \cos (w)) d w d u= \\
& b \int_{0}^{2 \pi} a w+\left.b \sin (w)\right|_{0} ^{2 \pi} d u=b \int_{0}^{2 \pi} 2 \pi a d u=4 \pi^{2} a b
\end{aligned}
$$

Volume of a torus: If E is the solid torus, the volume is $\iiint_{E} 1 d V$. The fields $\mathbf{F}_{1}=\langle x, 0,0\rangle$, $\mathbf{F}_{2}=\langle 0, y, 0\rangle$ and $\mathbf{F}_{3}=\langle 0,0, z\rangle$ have the property that $\operatorname{div} \mathbf{F}_{i}=1$. Hence

$$
\begin{gathered}
\iint_{\partial E} \mathbf{F}_{i} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F}_{i} d V=\iiint_{E} 1 d V \\
d \mathbf{S}=\left(\mathbf{r}_{u} \times \mathbf{r}_{w}\right) d A=b(a+b \cos (w))\langle\cos (w) \cos (u), \cos (w) \sin (u), \sin (w)\rangle d A
\end{gathered}
$$

Of the three fields, \mathbf{F}_{3} seems easiest to work with.

$$
\mathbf{F}_{3}=\langle 0,0, b \sin (w)\rangle
$$

so

$$
\mathbf{F}_{3} \cdot d \mathbf{S}=(b(a+b \cos (w)) \sin (w) \cdot b \sin (w)) d A=b^{2}\left(a \sin ^{2}(w)+b \cos (w) \sin ^{2}(w) d A\right.
$$

Hence

$$
\begin{gathered}
\iiint_{E} 1 d V=\iint_{\substack{0 \leqslant u \leqslant 2 \pi \\
0 \leqslant w \leqslant 2 \pi}} b^{2}\left(a \sin ^{2}(w)+b \cos (w) \sin ^{2}(w)\right) d A= \\
\int_{0}^{2 \pi} \int_{0}^{2 \pi} b^{2}\left(a \sin ^{2}(w)+b \cos (w) \sin ^{2}(w)\right) d u d w=2 \pi b^{2} \int_{0}^{2 \pi}\left(a \sin ^{2}(w)+b \cos (w) \sin ^{2}(w) d w=\right. \\
2 \pi b^{2} \int_{0}^{2 \pi} a \sin ^{2}(w) d w=\left.2 \pi b^{2} a \frac{1-\cos (2 w)}{2}\right|_{0} ^{2 \pi}=2 \pi^{2} a b^{2}
\end{gathered}
$$

