## 1. The fundamental theorem of line integrals

In general $\int_{C} \mathbf{v} \cdot \mathbf{T} d s$ depends on the curve between the starting point and the ending point. Consider two ways to get from $(1,0)$ to $(0,1)$ :
(1) $C_{1}$ : start at $(1,0)$ and first go along the $x$-axis to the origin; then go up the $y$-axis to $(0,1)$.
(2) $C_{2}$ : start at $(1,0)$ and first go straight up to $(1,1)$; then go parallel to the $x$-axis to $(0,1)$.

Suppose $\mathbf{v}=\langle y, 2 x\rangle$. To parametrize things easily, let us do four line integrals along lines: $L_{1}:(0,0)$ to $(1,0) ; L_{2}:(0,0)$ to $(0,1) ; L_{3}:(0,1)$ to $(1,1)$ and $L_{4}:(1,0)$ to $(1,1)$. All $t$ intervals are $[0,1]$.

$$
\begin{aligned}
& L_{1}: \mathbf{r}(t)=\langle t, 0\rangle ; \mathbf{r}^{\prime}(t)=\langle 1,0\rangle d t ; \mathbf{v}(\mathbf{r}(t))=\langle 0,2 t\rangle \text { so } \int_{C} \mathbf{v} \bullet \mathbf{T} d s=\int_{0}^{1} 0 d t=0 . \\
& L_{2}: \mathbf{r}(t)=\langle 0, t\rangle ; \mathbf{r}^{\prime}(t)=\langle 0,1\rangle d t ; \mathbf{v}(\mathbf{r}(t))=\langle t, 0\rangle \text { so } \int_{C} \mathbf{v} \bullet \mathbf{T} d s=\int_{0}^{1} 0 d t=0 . \\
& L_{3}: \mathbf{r}(t)=\langle t, 1\rangle ; \mathbf{r}^{\prime}(t)=\langle 1,0\rangle d t ; \mathbf{v}(\mathbf{r}(t))=\langle 1,2 t\rangle \text { so } \int_{C} \mathbf{v} \bullet \mathbf{T} d s=\int_{0}^{1} 1 d t=1 . \\
& L_{4}: \mathbf{r}(t)=\langle 1, t\rangle ; \mathbf{r}^{\prime}(t)=\langle 0,1\rangle d t ; \mathbf{v}(\mathbf{r}(t))=\langle t, 2\rangle \text { so } \int_{C} \mathbf{v} \bullet \mathbf{T} d s=\int_{0}^{1} 2 d t=2 .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int_{C_{1}} \mathbf{v} \cdot \mathbf{T} d s=-\int_{L_{1}} \mathbf{v} \cdot \mathbf{T} d s+\int_{L_{2}} \mathbf{v} \cdot \mathbf{T} d s=0 \\
& \int_{C_{2}} \mathbf{v} \cdot \mathbf{T} d s=\int_{L_{4}} \mathbf{v} \cdot \mathbf{T} d s-\int_{L_{3}} \mathbf{v} \cdot \mathbf{T} d s=2-1=1
\end{aligned}
$$

Be sure you understand these equations. The figure below should explain the various signs.


Figure 5: Some oriented lines
The four lines $L_{i}$ are labeled and arrows have been added to show the orientations induced by the parametrizations given above. Then $C_{1}=\left(-L_{1}\right) \cup\left(L_{2}\right)$ and $C_{2}=\left(L_{4}\right) \cup\left(-L_{3}\right)$ as oriented curves.

Next $\int_{-L_{1}} \mathbf{v} \cdot \mathbf{T} d s=-\int_{L_{1}} \mathbf{v} \cdot \mathbf{T} d s$ and $\int_{-L_{3}} \mathbf{v} \cdot \mathbf{T} d s=-\int_{L_{3}} \mathbf{v} \cdot \mathbf{T} d s$. Finally we have used the additivity of paths in line integrals (property P 4 ) to get $\int_{C_{k}} \mathbf{v} \cdot \mathbf{T} d s$ from the $\int_{L_{i}} \mathbf{v} \cdot \mathbf{T} d s$.

There is a class of vector fields for which the line integral only depends on the starting point and the ending point. These are precisely the conservative fields. To see this, let $\mathbf{v}=\nabla p$ so $\mathbf{v}$ is conservative and $p$ is a potential function for it. Let $g(t)=p(\mathbf{r}(t))$. Then $g^{\prime}(t)=\nabla p(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)$ by the Chain Rule and so

$$
\int_{C} \mathbf{v} \cdot \mathbf{T} d s=\int_{a}^{b} \mathbf{v}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{a}^{b} \nabla p(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{a}^{b} g^{\prime}(t) d t=g(b)-g(a)
$$

so

$$
\int_{C} \mathbf{v} \cdot \mathbf{T} d s=p(\mathbf{r}(b))-p(\mathbf{r}(a))
$$

This result is called the Fundamental Theorem of Line Integrals and has many uses, both practical and theoretical.

One theoretical use is to show that some fields are not conservative. For example, we just showed that $\langle y, 2 x\rangle$ is not conservative since $C_{1}$ and $C_{2}$ have the same starting points and the same ending points but the two line integrals are not equal.

The converse is also true. Any vector field $\mathbf{v}$ such that the value of $\int_{C} \mathbf{v} \bullet \mathbf{T} d s$ only depends on the starting point and the ending point of $C$ and not on the actual curve is conservative. Here we are require this for all curves which lie in the domain of $\mathbf{v}$. This seems a largely theoretical result since you have no practical way to check the hypothesis unless you actually see a potential function in which case you already know the field is conservative.

## 2. Conservative vector fields

Clairaut's Theorem supplies another way to check if a field is conservative which is much more practical. If $\langle M, N\rangle=\nabla p$ then $M=\frac{\partial p}{\partial x}$ and $N=\frac{\partial p}{\partial y}$. Note $\frac{\partial M}{\partial y}=\frac{\partial^{2} M}{\partial x \partial y}$ and $\frac{\partial N}{\partial x}=\frac{\partial^{2} N}{\partial y \partial x}$. If these are both continuous, Clairaut's Theorem says

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

The continuity hypothesis is rarely a problem and so we only need to compute a couple of partials. For the field in the last section, $\langle y, 2 x\rangle, \frac{\partial M}{\partial y}=\frac{\partial y}{\partial y}=1$ whereas $\frac{\partial N}{\partial x}=\frac{\partial 2 x}{\partial x}=2$ so here is another reason why $\langle y, 2 x\rangle$ is not conservative.

You can verify the result for fields in space.

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \quad \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x} \quad \frac{\partial N}{\partial z}=\frac{\partial P}{\partial y}
$$

provided the displayed functions are continuous.

It would be really nice if this necessary condition were sufficient but alas it is not.
Example. Let $\mathbf{v}=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$.
$M=-\frac{y}{x^{2}+y^{2}}, \frac{\partial M}{\partial y}=-\frac{1\left(x^{2}+y^{2}\right)-y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
$N=\frac{x}{x^{2}+y^{2}}, \frac{\partial N}{\partial x}=\frac{1\left(x^{2}+y^{2}\right)-x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
so

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Let us do $\int_{C} \mathbf{v} \bullet \mathbf{T} d s$ for this $\mathbf{v}$ around the unit circle centered at the origin. One parametrization for $C$ is $\mathbf{r}(t)=\langle\cos t, \sin t\rangle 0 \leqslant t \leqslant 2 \pi d \mathbf{r}=\langle-\sin t, \cos t\rangle d t$ and $\mathbf{v}(\mathbf{r}(t))=\langle-\sin t, \cos t\rangle$ so

$$
\int_{C} \mathbf{v} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\langle-\sin t, \cos t\rangle \cdot\langle-\sin t, \cos t\rangle d t=2 \pi
$$

Hence $\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ is not conservative.
Here is a picture of the associated direction field (the vector field rescaled so that all vectors having length 1 ).


Can you see from the figure why $\int_{C} \mathbf{v} \bullet d \mathbf{r} \neq 0$ ? Click here for the answer.

Fields which satisfy $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ or the 3 dimensional version above are called closed and Clairaut's Theorem says that conservative fields are closed provided the mixed partials of a potential function are continuous. The problem of which closed fields are conservative started modern algebraic topology.

One sure way to show that a field is conservative is to exhibit a potential function for it. Let us start with the 2 dimensional case. Fix a field $\langle M, N\rangle$. We can start with either component so let us find a function $p_{1}(x, y)$ such that $\frac{\partial p_{1}(x, y)}{\partial x}=M$. This is a first year calculus problem so have at it. Once you have found one solution, $p_{1}(x, y)$ all solutions can be found by adding a constant
(in $x$ ) or equivalently, a function of $y$, so the potential function $p(x, y)=p_{1}(x, y)+g(y)$ for some function $g(y)$. Then $\frac{\partial p}{\partial y}=N$ or $\frac{\partial p_{1}(x, y)}{\partial y}+g^{\prime}(y)=N$ so $g^{\prime}(y)=N-\frac{\partial p_{1}(x, y)}{\partial y}$.

This equation has a solution provided $h(x, y)=N-\frac{\partial p_{1}(x, y)}{\partial y}$ is a continuous function of $y$ only and this is guaranteed if $\frac{\partial h(x, y)}{\partial x}=0$. But with our mixed partial assumptions

$$
\frac{\partial h(x, y)}{\partial x}=\frac{\partial N}{\partial x}-\frac{\partial^{2} p_{1}}{\partial x \partial y}=\frac{\partial N}{\partial x}-\frac{\partial^{2} p_{1}}{\partial y \partial x}=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=0
$$

If $M$ and $N$ are differentiable functions and if the field $\langle M, N\rangle$ is closed, then there is a potential function and you can find it if you can do some first year calculus integrals.
There is a similar result in three variables. The calculation takes one more step.
Example. Let $\langle y, x\rangle$. Check (easily) that $\langle y, x\rangle$ is closed. To find $p$, first solve $\frac{\partial p}{\partial x}=y$ or $p=$ $x y+g(y)$. Then solve $\frac{\partial x y+g(y)}{\partial y}=x$ or $g^{\prime}(y)=0$ so $p=x y$ is one potential function and any other looks like $x y+c$.

Actually, there is no reason to check if the field is closed. Here's an example of what happens if it is not.
Example. Let $\langle y, 2 x\rangle$. To find $p$, first solve $\frac{\partial p}{\partial x}=y$ or $p=x y+g(y)$. Then solve $\frac{\partial x y+g(y)}{\partial y}=2 x$ or $x+g^{\prime}(y)=2 x$ so $g^{\prime}(y)=x$ and this is impossible. This sort of issue is your clue that the original field is not closed.

Here is another example
Example. Let $\left\langle x^{2}+y^{2}, 2 x y\right\rangle$. This time let's start with $\frac{\partial p}{\partial y}=2 x y$ so $p=x y^{2}+h(x)$ and then $\frac{\partial x y^{2}+h(x)}{\partial x}=y^{2}+h^{\prime}(x)=x^{2}+y^{2}$ so $h^{\prime}(x)=x^{2}$ and $p=x y^{2}+\frac{x^{3}}{3}+c$.

Here is a 3 dimensional example
Example. Let $\left\langle\frac{2 x y}{z}+z, \frac{x^{2}}{z},-\frac{x^{2} y}{z^{2}}+x+e^{z}\right\rangle$. Start with $\frac{\partial p}{\partial y}=\frac{x^{2}}{z}$ so $p=\frac{x^{2} y}{z}+h(x, z)$. Then solve $\frac{\partial \frac{x^{2} y}{z}+h(x, z)}{\partial x}=\frac{2 x y}{z}+\frac{\partial h}{\partial x}=\frac{2 x y}{z}+z$ so $\frac{\partial h}{\partial x}=z$ and $h(x, z)=x z+g(z)$ and finally $\frac{\partial \frac{x^{2} y}{z}+x z+g(z)}{\partial z}=-\frac{x^{2} y}{z^{2}}+x+g^{\prime}(z)=-\frac{x^{2} y}{z^{2}}+x+e^{z}$ and $g^{\prime}(z)=e^{z}$ so $p=\frac{x^{2} y}{z}+x z+e^{z}+c$.

Let us try to apply this technique to the closed form $\mathbf{v}=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$.

$$
\begin{aligned}
& \frac{\partial p}{\partial y}=\frac{x}{x^{2}+y^{2}} \text { so } p=\arctan \left(\frac{y}{x}\right)+g(x) \text { and } \\
& \qquad \frac{\partial p}{\partial x}=\frac{\partial \arctan \left(\frac{y}{x}\right)+g(x)}{\partial x}=\frac{-\frac{y}{x^{2}}}{1+\left(\frac{y}{x}\right)^{2}}+g^{\prime}(x)=-\frac{y}{x^{2}+y^{2}}
\end{aligned}
$$

SO

$$
p(x, y)=\arctan \left(\frac{y}{x}\right)
$$

is a potential function. But $\mathbf{v}$ has no potential function. What is wrong? Click here for the answer.

## Appendix A. Line integral question.

Recall the question.

is a direction-field and we asked why is $\int_{C} \mathbf{v} \bullet d \mathbf{r} \neq 0$ where $C$ is the unit circle centered at the origin.

The answer is that $C$ is a flow line for the direction field and hence a flow line for the field. Clearly $\mathbf{v} \bullet \mathbf{T}>0$ along the curve and hence $\int_{C} \mathbf{v} \bullet d \mathbf{r}>0$ if we traverse the circle counterclockwise.

From the figure one suspects $C$ is a flow line and clearly it is close one. With no calculation it is pretty clear that $\mathbf{v} \cdot \mathbf{T}>0$ along the curve and hence $\int_{C} \mathbf{v} \cdot d \mathbf{r}>0$.

To see why $C$ is a flow line, note $\nabla\left(x^{2}+y^{2}\right)=\langle 2 x, 2 y\rangle$ is a normal vector to $C$ and so $\langle-y, x\rangle$ is a tangent vector. Along $C, x^{2}+y^{2}=1$ so $\langle-y, x\rangle=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ which shows $C$ is a flow line for the field.

## Appendix B. Why is our "potential" function not a potential function.

 Recall the issue. $\mathbf{v}=\left\langle-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ is a closed vector field which is not conservative.$$
\begin{aligned}
p & =\arctan \left(\frac{y}{x}\right) \\
\nabla p & =\left\langle\frac{-\frac{y}{x^{2}}}{1+\left(\frac{y}{x}\right)^{2}}, \frac{\frac{1}{x}}{1+\left(\frac{y}{x}\right)^{2}}\right\rangle=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle=\mathbf{v}
\end{aligned}
$$

which sure looks like the definition of conservative.

The solution is to notice that $p$ is not defined on the same domain as $\mathbf{v}$. The domain of $\mathbf{v}$ is $\mathbb{R}^{2}-\{(0,0)\}$ but the domain of $p$ is $R=\mathbb{R}^{2}-\{(0, y) \mid-\infty<y<\infty\}$, i.e. $\mathbb{R}^{2}$ minus the $y$-axis. Equivalently $R=\left\{(x, y) \mid(x, y) \in \mathbb{R}^{2} x \neq 0\right\}$

If we restrict $\mathbf{v}$ to $R$, then $\mathbf{v}$ is conservative. Note $R$ is simply-connected and we have a theorem which says $\mathbf{v}$ restricted to $R$ is conservative. We have actually exhibited a potential function for it.

Recall $\arctan (\theta)+\arctan \left(\frac{1}{\theta}\right)=\frac{\pi}{2}$ for $\theta>0$. Therefore $\arctan \left(\frac{y}{x}\right)=\frac{\pi}{2}-\arctan \left(\frac{x}{y}\right)$ if $\frac{y}{x}>0$. Hence $p_{1}=-\arctan \left(\frac{x}{y}\right)$ is also a potential function for $\mathbf{v}$ : i.e. $\nabla p_{1}=\mathbf{v}$. Hence $\mathbf{v}$ is also conservative on the region $R_{1}=\mathbb{R}^{2}-\{(x, 0) \mid-\infty<x<\infty\}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \neq 0\right\}$.

Let $S=\mathbb{R}^{2}-\{(x, 0) \mid-\infty<x<0\}$. Then $S=R^{y>0} \cup R^{x>0}$ where $R^{x>0}=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}$ and $R^{y>0}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$. Note $R^{x>0} \cap R^{y>0}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right.$ and $\left.x>0\right\}$.

Define

$$
q(x, y)= \begin{cases}\arctan \left(\frac{y}{x}\right) & (x, y) \in R^{>0} \\ \frac{\pi}{2}-\arctan \left(\frac{x}{y}\right) & (x, y) \in R_{1}^{>0}\end{cases}
$$

Then $\nabla q=\mathbf{v}$ on $S$ so $\mathbf{v}$ is conservative on $S$ which is simply-connected. The colored part of the plane below is $S$.

$R^{y>0}$ is the union of the yellow and blue regions, while $R^{x>0}$ is the union of the green and blue regions.

FInally, let $T=\left\{(x, y) \in \mathbb{R}^{2} \mid-\infty<x<0\right\}$.


## $T$

The union of the red and green regions is $R^{y<0}=\left\{(x, y) \in \mathbb{R}^{2} \mid y<0\right\}$. If $\theta<0, \arctan (\theta)+$ $\arctan \left(\frac{1}{\theta}\right)=-\frac{\pi}{2}$ so $\frac{\pi}{2}-\arctan \left(\frac{x}{y}\right)=\pi+\arctan \left(\frac{y}{x}\right)$ in $R_{1}^{>0}$. Hence

$$
q_{1}(x, y)=\left\{\begin{array}{lll}
\arctan \left(\frac{y}{x}\right) & (x, y) & y>0 \text { and }-\infty<x<\infty \\
\frac{\pi}{2}-\arctan \left(\frac{x}{y}\right) & (x, y) & x>0 \text { and }-\infty<y<\infty \\
\pi+\arctan \left(\frac{y}{x}\right) & (x, y) & y<0 \text { and }-\infty<x<\infty
\end{array}\right.
$$

is a potential function for $\mathbf{v}$ on $T$. An equivalent way to define $q_{1}$ is

$$
q_{1}(x, y)=\left\{\begin{array}{lll}
\arctan \left(\frac{y}{x}\right) & (x, y) & y>0 \text { and }-\infty<x<\infty \\
\frac{\pi}{2} & (x, 0) & x>0 \\
\pi+\arctan \left(\frac{y}{x}\right) & (x, y) & y<0 \text { and }-\infty<x<\infty
\end{array}\right.
$$

It is harder to see that $q_{1}$ is a differentiable function using the second definition.
For any $x<0, \lim _{t \rightarrow 0^{-}} q_{1}(x, t)=\pi$ and $\lim _{t \rightarrow 0^{+}} q_{1}(x, t)=0$ so there is no way to further extend $q_{1}$ to include part of $x<0$.

