Line integrals III

1. The fundamental theorem of line integrals

In general $\int_C \mathbf{v} \cdot \mathbf{T} \, ds$ depends on the curve between the starting point and the ending point. Consider two ways to get from (1,0) to (0,1):

(1) C_1 : start at (1,0) and first go along the x-axis to the origin; then go up the y-axis to (0,1).

(2) C_2 : start at (1,0) and first go straight up to (1,1); then go parallel to the x-axis to (0,1). Suppose $\mathbf{v} = \langle y, 2x \rangle$. To parametrize things easily, let us do four line integrals along lines: L_1 : (0,0) to (1,0); L_2 : (0,0) to (0,1); L_3 : (0,1) to (1,1) and L_4 : (1,0) to (1,1). All t intervals are [0,1].

$$L_{1}: \mathbf{r}(t) = \langle t, 0 \rangle; \mathbf{r}'(t) = \langle 1, 0 \rangle \ dt; \mathbf{v}(\mathbf{r}(t)) = \langle 0, 2t \rangle \text{ so } \int_{C} \mathbf{v} \cdot \mathbf{T} \ ds = \int_{0}^{1} 0 \ dt = 0.$$

$$L_{2}: \mathbf{r}(t) = \langle 0, t \rangle; \mathbf{r}'(t) = \langle 0, 1 \rangle \ dt; \mathbf{v}(\mathbf{r}(t)) = \langle t, 0 \rangle \text{ so } \int_{C} \mathbf{v} \cdot \mathbf{T} \ ds = \int_{0}^{1} 0 \ dt = 0.$$

$$L_{3}: \mathbf{r}(t) = \langle t, 1 \rangle; \mathbf{r}'(t) = \langle 1, 0 \rangle \ dt; \mathbf{v}(\mathbf{r}(t)) = \langle 1, 2t \rangle \text{ so } \int_{C} \mathbf{v} \cdot \mathbf{T} \ ds = \int_{0}^{1} 1 \ dt = 1.$$

$$L_{4}: \mathbf{r}(t) = \langle 1, t \rangle; \mathbf{r}'(t) = \langle 0, 1 \rangle \ dt; \mathbf{v}(\mathbf{r}(t)) = \langle t, 2 \rangle \text{ so } \int_{C} \mathbf{v} \cdot \mathbf{T} \ ds = \int_{0}^{1} 2 \ dt = 2.$$

Then

$$\int_{C_1} \mathbf{v} \cdot \mathbf{T} \, ds = -\int_{L_1} \mathbf{v} \cdot \mathbf{T} \, ds + \int_{L_2} \mathbf{v} \cdot \mathbf{T} \, ds = 0$$
$$\int_{C_2} \mathbf{v} \cdot \mathbf{T} \, ds = \int_{L_4} \mathbf{v} \cdot \mathbf{T} \, ds - \int_{L_3} \mathbf{v} \cdot \mathbf{T} \, ds = 2 - 1 = 1$$

Be sure you understand these equations. The figure below should explain the various signs.

Figure 5: Some oriented lines

The four lines L_i are labeled and arrows have been added to show the orientations induced by the parametrizations given above. Then $C_1 = (-L_1) \cup (L_2)$ and $C_2 = (L_4) \cup (-L_3)$ as oriented curves. Next $\int_{-L_1} \mathbf{v} \cdot \mathbf{T} \, ds = -\int_{L_1} \mathbf{v} \cdot \mathbf{T} \, ds$ and $\int_{-L_3} \mathbf{v} \cdot \mathbf{T} \, ds = -\int_{L_3} \mathbf{v} \cdot \mathbf{T} \, ds$. Finally we have used the

additivity of paths in line integrals (property P4) to get $\int_{C_k} \mathbf{v} \cdot \mathbf{T} \, ds$ from the $\int_{L_i} \mathbf{v} \cdot \mathbf{T} \, ds$.

There is a class of vector fields for which the line integral only depends on the starting point and the ending point. These are precisely the conservative fields. To see this, let $\mathbf{v} = \nabla p$ so \mathbf{v} is conservative and p is a potential function for it. Let $g(t) = p(\mathbf{r}(t))$. Then $g'(t) = \nabla p(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$ by the Chain Rule and so

$$\int_C \mathbf{v} \cdot \mathbf{T} \, ds = \int_a^b \mathbf{v} \big(\mathbf{r}(t) \big) \cdot \mathbf{r}'(t) \, dt = \int_a^b \nabla p \big(\mathbf{r}(t) \big) \cdot \mathbf{r}'(t) \, dt = \int_a^b g'(t) \, dt = g(b) - g(a)$$

 \mathbf{SO}

$$\int_C \mathbf{v} \bullet \mathbf{T} \, ds = p\big(\mathbf{r}(b)\big) - p\big(\mathbf{r}(a)\big)$$

This result is called the *Fundamental Theorem of Line Integrals* and has many uses, both practical and theoretical.

One theoretical use is to show that some fields are not conservative. For example, we just showed that $\langle y, 2x \rangle$ is not conservative since C_1 and C_2 have the same starting points and the same ending points but the two line integrals are not equal.

The converse is also true. Any vector field \mathbf{v} such that the value of $\int_C \mathbf{v} \cdot \mathbf{T} \, ds$ only depends on the starting point and the ending point of C and not on the actual curve is conservative. Here we are require this for all curves which lie in the domain of \mathbf{v} . This seems a largely theoretical result since you have no practical way to check the hypothesis unless you actually see a potential function in which case you already know the field is conservative.

2. Conservative vector fields

Clairaut's Theorem supplies another way to check if a field is conservative which is much more

practical. If
$$\langle M, N \rangle = \nabla p$$
 then $M = \frac{\partial p}{\partial x}$ and $N = \frac{\partial p}{\partial y}$. Note $\frac{\partial M}{\partial y} = \frac{\partial^2 M}{\partial x \partial y}$ and $\frac{\partial N}{\partial x} = \frac{\partial^2 N}{\partial y \partial x}$. If

these are both continuous, Clairaut's Theorem says

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

The continuity hypothesis is rarely a problem and so we only need to compute a couple of partials. For the field in the last section, $\langle y, 2x \rangle$, $\frac{\partial M}{\partial y} = \frac{\partial y}{\partial y} = 1$ whereas $\frac{\partial N}{\partial x} = \frac{\partial 2x}{\partial x} = 2$ so here is another reason why $\langle y, 2x \rangle$ is not conservative.

You can verify the result for fields in space.

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \qquad \frac{\partial M}{\partial z} = \frac{\partial P}{\partial x} \qquad \frac{\partial N}{\partial z} = \frac{\partial P}{\partial y}$$

provided the displayed functions are continuous.

It would be really nice if this necessary condition were sufficient but alas it is not.

Example. Let
$$\mathbf{v} = \left\langle -\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$$
.
 $M = -\frac{y}{x^2 + y^2}, \frac{\partial M}{\partial y} = -\frac{1(x^2 + y^2) - y(2y)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$
 $N = \frac{x}{x^2 + y^2}, \frac{\partial N}{\partial x} = \frac{1(x^2 + y^2) - x(2x)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$
so
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

Let us do $\int_C \mathbf{v} \cdot \mathbf{T} \, ds$ for this \mathbf{v} around the unit circle centered at the origin. One parametrization for C is $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$ $0 \leq t \leq 2\pi \, d\mathbf{r} = \langle -\sin t, \cos t \rangle \, dt$ and $\mathbf{v}(\mathbf{r}(t)) = \langle -\sin t, \cos t \rangle$ so

$$\int_{C} \mathbf{v} \cdot d\mathbf{r} = \int_{0}^{2\pi} \langle -\sin t, \cos t \rangle \cdot \langle -\sin t, \cos t \rangle \, dt = 2\pi$$

Hence $\left\langle -\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2} \right\rangle$ is not conservative.

Here is a picture of the associated *direction field* (the vector field rescaled so that all vectors having length 1).

Can you see from the figure why $\int_C \mathbf{v} \cdot d\mathbf{r} \neq 0$? Click here for the answer.

Fields which satisfy $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ or the 3 dimensional version above are called *closed* and Clairaut's Theorem says that conservative fields are closed provided the mixed partials of a potential function are continuous. The problem of which closed fields are conservative started modern algebraic topology.

One sure way to show that a field is conservative is to exhibit a potential function for it. Let us start with the 2 dimensional case. Fix a field $\langle M, N \rangle$. We can start with either component so let us find a function $p_1(x, y)$ such that $\frac{\partial p_1(x, y)}{\partial x} = M$. This is a first year calculus problem so have at it. Once you have found one solution, $p_1(x, y)$ all solutions can be found by adding a constant (in x) or equivalently, a function of y, so the potential function $p(x, y) = p_1(x, y) + g(y)$ for some function g(y). Then $\frac{\partial p}{\partial y} = N$ or $\frac{\partial p_1(x, y)}{\partial y} + g'(y) = N$ so $g'(y) = N - \frac{\partial p_1(x, y)}{\partial y}$.

This equation has a solution provided $h(x, y) = N - \frac{\partial p_1(x, y)}{\partial y}$ is a continuous function of y only and this is guaranteed if $\frac{\partial h(x, y)}{\partial x} = 0$. But with our mixed partial assumptions

$$\frac{\partial h(x,y)}{\partial x} = \frac{\partial N}{\partial x} - \frac{\partial^2 p_1}{\partial x \partial y} = \frac{\partial N}{\partial x} - \frac{\partial^2 p_1}{\partial y \partial x} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 0$$

If M and N are differentiable functions and if the field $\langle M, N \rangle$ is closed, then there is a potential function and you can find it if you can do some first year calculus integrals.

There is a similar result in three variables. The calculation takes one more step.

Example. Let $\langle y, x \rangle$. Check (easily) that $\langle y, x \rangle$ is closed. To find p, first solve $\frac{\partial p}{\partial x} = y$ or p = xy + g(y). Then solve $\frac{\partial xy + g(y)}{\partial y} = x$ or g'(y) = 0 so p = xy is one potential function and any other looks like xy + c.

Actually, there is no reason to check if the field is closed. Here's an example of what happens if it is not.

Example. Let $\langle y, 2x \rangle$. To find p, first solve $\frac{\partial p}{\partial x} = y$ or p = xy + g(y). Then solve $\frac{\partial xy + g(y)}{\partial y} = 2x$ or x + g'(y) = 2x so g'(y) = x and this is impossible. This sort of issue is your clue that the original field is not closed.

Here is another example

Example. Let $\langle x^2 + y^2, 2xy \rangle$. This time let's start with $\frac{\partial p}{\partial y} = 2xy$ so $p = xy^2 + h(x)$ and then $\frac{\partial xy^2 + h(x)}{\partial x} = y^2 + h'(x) = x^2 + y^2$ so $h'(x) = x^2$ and $p = xy^2 + \frac{x^3}{3} + c$.

Here is a 3 dimensional example

Example. Let $\left\langle \frac{2xy}{z} + z, \frac{x^2}{z}, -\frac{x^2y}{z^2} + x + e^z \right\rangle$. Start with $\frac{\partial p}{\partial y} = \frac{x^2}{z}$ so $p = \frac{x^2y}{z} + h(x, z)$. Then solve $\frac{\partial \frac{x^2y}{z} + h(x, z)}{\partial x} = \frac{2xy}{z} + \frac{\partial h}{\partial x} = \frac{2xy}{z} + z$ so $\frac{\partial h}{\partial x} = z$ and h(x, z) = xz + g(z) and finally $\frac{\partial \frac{x^2y}{z} + xz + g(z)}{\partial z} = -\frac{x^2y}{z^2} + x + g'(z) = -\frac{x^2y}{z^2} + x + e^z$ and $g'(z) = e^z$ so $p = \frac{x^2y}{z} + xz + e^z + c$.

Let us try to apply this technique to the closed form $\mathbf{v} = \left\langle -\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$. $\frac{\partial p}{\partial y} = \frac{x}{x^2 + y^2}$ so $p = \arctan\left(\frac{y}{x}\right) + g(x)$ and $\frac{\partial p}{\partial x} = \frac{\partial \arctan\left(\frac{y}{x}\right) + g(x)}{\partial x} = \frac{-\frac{y}{x^2}}{1 + \left(\frac{y}{x}\right)^2} + g'(x) = -\frac{y}{x^2 + y^2}$

$$p(x,y) = \arctan\left(\frac{y}{x}\right)$$

is a potential function. But \mathbf{v} has no potential function. What is wrong? Click here for the answer.

Recall the question.

is a direction-field and we asked why is $\int_C \mathbf{v} \cdot d\mathbf{r} \neq 0$ where C is the unit circle centered at the origin.

The answer is that C is a flow line for the direction field and hence a flow line for the field. Clearly $\mathbf{v} \cdot \mathbf{T} > 0$ along the curve and hence $\int_C \mathbf{v} \cdot d\mathbf{r} > 0$ if we traverse the circle counterclockwise.

From the figure one suspects C is a flow line and clearly it is close one. With no calculation it is pretty clear that $\mathbf{v} \cdot \mathbf{T} > 0$ along the curve and hence $\int_{C} \mathbf{v} \cdot d\mathbf{r} > 0$.

To see why C is a flow line, note $\nabla(x^2 + y^2) = \langle 2x, 2y \rangle$ is a normal vector to C and so $\langle -y, x \rangle$ is a tangent vector. Along C, $x^2 + y^2 = 1$ so $\langle -y, x \rangle = \left\langle -\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$ which shows C is a flow line for the field.

APPENDIX B. WHY IS OUR "POTENTIAL" FUNCTION NOT A POTENTIAL FUNCTION.

Recall the issue. $\mathbf{v} = \left\langle -\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$ is a closed vector field which is not conservative.

$$p = \arctan\left(\frac{y}{x}\right)$$
$$\nabla p = \left\langle \frac{-\frac{y}{x^2}}{1 + \left(\frac{y}{x}\right)^2}, \frac{\frac{1}{x}}{1 + \left(\frac{y}{x}\right)^2} \right\rangle = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle = \mathbf{v}$$

which sure looks like the definition of conservative.

The solution is to notice that p is not defined on the same domain as \mathbf{v} . The domain of \mathbf{v} is $\mathbb{R}^2 - \{(0,0)\}$ but the domain of p is $R = \mathbb{R}^2 - \{(0,y) | -\infty < y < \infty\}$, i.e. \mathbb{R}^2 minus the y-axis. Equivalently $R = \{(x,y) | (x,y) \in \mathbb{R}^2 \ x \neq 0\}$

If we restrict \mathbf{v} to R, then \mathbf{v} is conservative. Note R is simply-connected and we have a theorem which says \mathbf{v} restricted to R is conservative. We have actually exhibited a potential function for it.

Recall $\arctan(\theta) + \arctan\left(\frac{1}{\theta}\right) = \frac{\pi}{2}$ for $\theta > 0$. Therefore $\arctan\left(\frac{y}{x}\right) = \frac{\pi}{2} - \arctan\left(\frac{x}{y}\right)$ if $\frac{y}{x} > 0$. Hence $p_1 = -\arctan\left(\frac{x}{y}\right)$ is also a potential function for \mathbf{v} : i.e. $\nabla p_1 = \mathbf{v}$. Hence \mathbf{v} is also conservative on the region $R_1 = \mathbb{R}^2 - \{(x,0) | -\infty < x < \infty\} = \{(x,y) \in \mathbb{R}^2 | y \neq 0\}.$

Let $S = \mathbb{R}^2 - \{(x,0) \mid -\infty < x < 0\}$. Then $S = R^{y>0} \cup R^{x>0}$ where $R^{x>0} = \{(x,y) \in \mathbb{R}^2 \mid x > 0\}$ and $R^{y>0} = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$. Note $R^{x>0} \cap R^{y>0} = \{(x,y) \in \mathbb{R}^2 \mid y > 0 \text{ and } x > 0\}$. Define

$$q(x,y) = \begin{cases} \arctan\left(\frac{y}{x}\right) & (x,y) \in R^{>0} \\ \frac{\pi}{2} - \arctan\left(\frac{x}{y}\right) & (x,y) \in R_1^{>0} \end{cases}$$

Then $\nabla q = \mathbf{v}$ on S so \mathbf{v} is conservative on S which is simply-connected. The colored part of the plane below is S.

 $\mathbb{R}^{y>0}$ is the union of the yellow and blue regions, while $\mathbb{R}^{x>0}$ is the union of the green and blue regions.

Finally, let $T = \{(x, y) \in \mathbb{R}^2 \mid -\infty < x < 0\}.$

T

The union of the red and green regions is $R^{y<0} = \{(x,y) \in \mathbb{R}^2 \mid y < 0\}$. If $\theta < 0$, $\arctan(\theta) + \arctan\left(\frac{1}{\theta}\right) = -\frac{\pi}{2}$ so $\frac{\pi}{2} - \arctan\left(\frac{x}{y}\right) = \pi + \arctan\left(\frac{y}{x}\right)$ in $R_1^{>0}$. Hence $q_1(x,y) = \begin{cases} \arctan\left(\frac{y}{x}\right) & (x,y) \quad y > 0 \text{ and } -\infty < x < \infty \\ \frac{\pi}{2} - \arctan\left(\frac{x}{y}\right) & (x,y) \quad x > 0 \text{ and } -\infty < y < \infty \\ \pi + \arctan\left(\frac{y}{x}\right) & (x,y) \quad y < 0 \text{ and } -\infty < x < \infty \end{cases}$

is a potential function for \mathbf{v} on T. An equivalent way to define q_1 is

$$q_1(x,y) = \begin{cases} \arctan\left(\frac{y}{x}\right) & (x,y) \quad y > 0 \text{ and } -\infty < x < \infty \\ \frac{\pi}{2} & (x,0) \quad x > 0 \\ \pi + \arctan\left(\frac{y}{x}\right) & (x,y) \quad y < 0 \text{ and } -\infty < x < \infty \end{cases}$$

It is harder to see that q_1 is a differentiable function using the second definition.

For any x < 0, $\lim_{t\to 0^-} q_1(x,t) = \pi$ and $\lim_{t\to 0^+} q_1(x,t) = 0$ so there is no way to further extend q_1 to include part of x < 0.