
MATH 20550 Max-min Theory Fall 2016

1. Definitions and main theorems

Max-min theory starts with a function f of a vector variable x and
a subset D of the domain of f . So far when we have worked with
functions we just use the entire domain of f , but often in max-min
theory we want to restrict to some subset of the domain.

1.1. Domains. We need a bit of terminology related to the domain
D. A point a ∈ D is an interior point of D provided there exists an
ε > 0 such that b ∈ D for all b satisfying |b− a| < ε. Otherwise a is
a boundary point of D.

The yellow part of the plane is the region D. The green dots are
interior points because we have drawn a small circle around each one
which is entirely contained in D, the yellow part. The black points are
boundary points because no matter how small a circle we try to draw
around either of them, the circle will contain points not in D. The
circles around the interior points proves that they are interior points.
The circles around the black points suggests that they are boundary
points but does not prove it: maybe there is a smaller circle we could
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draw that is entirely in the yellow region. From the picture we can see
this does not happen so they are boundary points.

You can also proceed as follows. A point a ∈ D is an interior point
if and only if there exists an ε > 0 such that the curve ut+ a ∈ D for
all t with |t| < ε for all unit vectors u.

1.2. Extrema. Given a function of a vector variable f(x), we say that
a point a ∈ D is a local maxima for f on D provided there exists an
ε > 0 such that for every b with |b− a| < ε and b ∈ D, f(b) 6 f(a).

Informally we say that a is a local maxima for f provided
for all b near a, f(b) 6 f(a).

We say that a point a ∈ D is a local minima for f on D provided there
exists an ε > 0 such that for every b with |b− a| < ε and b in the
domain of f , f(b) > f(a). We also say that in this case, f has a local
minima at a.

A number M is a maximum value for a function on a subset D of its
domain provided f(x) 6M for all x ∈ D.

A number m is a minimum value for a function on a subset D of its
domain provided f(x) > m for all x ∈ D.

An absolute maxima on a subset D of the domain of f is a local
maxima for f on D a such that f(a) is a maximum for f on D.

An absolute minima on a subset D of the domain of f is a local
minima for f on D a such that f(a) is a minimum for f on D.

This may seem like a lot of definitions, but a couple of observations
may help. Maxima/minima are points (aka vectors) so that the value
of f at the point has either a maximum or minimum value. The adjec-
tive local means that the property holds for all nearby points (in D):
absolute means that the property holds for all points (in D).

Because our techniques for locating maxima and minima are the
same, it will be convenient to say that a point is a local extrema pro-
vided it is either a local maxima or a local minima.

Note that any absolute extrema is automatically a local extrema but
not conversely. Hence if a is an absolute extrema we will rarely mention
that it is also a local extrema.



3

In the graphs below, the z-axis is missing and the red axis is the y-axis.

z = 3(10−x
2+(y−1)2+10−(x−1)

2+y2)
Two maxima, both absolute.
Maximum value is the value
of the function at either max-
ima.

z = 3(2·10−x
2+(y−1)2+10−(x−1)

2+y2)
Two maxima, one absolute,
one local. Maximum value
is the value of the function
at the taller of the the local
maxima.

z = 3(−10−x
2+(y−1)2+10−(x−1)

2+y2)
Two extrema, both absolute.
One maxima, one minima. Max-
imum value is the value of
the function at the maxima:
Minimum value is the value
of the function at the min-
ima.
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2. Locating local extrema

2.1. The one variable case. Recall that a differentiable function of
one variable, g(t), on an open interval (a, b) can have a local extrema
only at a point where g′(t) = 0, a so called critical point.

The converse is not true. The function g(t) = t2 has a minima at
t = 0, the function g(t) = −t2 has a maxima at t = 0 and the function
g(t) = t3 has a critical point at t = 0 which is neither a maxima nor a
minima.

The First Derivative Test for a critical point to be an extrema is the
following. If a is a critical point (ie. g′(a) = 0) and if, for all small
positive t,

• g′(a− t) > 0 and g′(a+ t) < 0, then a is a local maxima.
• g′(a− t) < 0 and g′(a+ t) > 0, then a is a local minima.
• Otherwise a is a critical point which is not a local extrema.

The Second Derivative Test for a critical point to be an extrema is
the following. If a is a critical point (ie. g′(a) = 0) and if

• g′′(a) < 0 then a is a local maxima.
• g′′(a) > 0, then a is a local minima.
• g′′(a) = 0 then a can be either a local maxima, a local minima,

or not be a local extrema at all.

2.2. The multi-variable case.
Suppose that a is an interior point of D and that f is differentiable

on D. If a is a local extrema, then ∇f(a) = 0.
Points in the interior of D where ∇f(a) = 0 are called critical points

and the general strategy in the multi-variable case is the same as the
one variable case.

(1) Find the critical points.
(2) Determine if a critical point is a local maxima, a local minima,

or neither.

2.3. Examples of finding critical points.
Example. Find the critical point(s) of f(x, y) = x3 + y3 − 3xy.
∇f = 〈3x2 − 3y, 3y2 − 3x〉 so

(1) 3x2 − 3y = 0
(2) 3y2 − 3x = 0

Solve one equation for one of the variables, say using (1), y = x2.
Plug into (2) to get x4 = x. Then x = 0, or 1 and the corresponding
points are (0, 0), (1, 1).
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Example. f(x, y) = y3 + 3x2y − 6x2 − 6y2.
∇f = 〈6xy − 12x, 3y2 + 3x2 − 12y〉

6xy − 12x =0(1)

3y2 + 3x2 − 12y =0(2)

From (1), x(y − 2) = 0 so x = 0 or y = 2.
If x = 0, (2) becomes 3y2 − 12y = 0 or y(y − 4) = 0 so points are

(0, 0) and (0, 4).
If y = 2, 12 + 3x2− 24 = 0 or 3x2 = 12, x2 = 4 or x = ±2 so critical

points are (2, 2) and (−2, 2).

3. What kind of extrema is a particular critical point?

Some theory is needed to identify the type of the critical point. Here
is a two-variable version of the Second Derivative Test.

Given any point, define the determinant of the Hessian of f , at least
in the two variable case. as follows.

H(f) = det

∣∣∣∣∣∣∣∣
∂2f

∂2 x

∂2f

∂ y ∂ x

∂2f

∂ x ∂ y

∂2f

∂2 y

∣∣∣∣∣∣∣∣ =
∂2f

∂2 x

∂2f

∂2 y
−
(

∂2f

∂ x ∂ y

)2

At a critical point, a we have the Second Derivative Test. Suppose f
has continuous second partials.

(1) If H(f)(a) > 0 then a is a local extrema.

(a) If
∂2f

∂2x
(a) > 0, a is a local minima.

(b) If
∂2f

∂2x
(a) < 0, a is a local maxima.

(2) If H(f)(a) < 0 then a is called a saddle point.

(3) If H(f)(a) = 0 then the type of a is undetermined.

Notice that if H(f)(a) > 0,
∂2f

∂2 x
and

∂2f

∂2 y
have the same sign and

neither is 0, so we could have used
∂2f

∂2 y
in (1).

Put another way

(1): det > 0 local extrema, sign of the diagonal entries tells which sort.
(2): det < 0 not a local extrema but a saddle point.
(3): det = 0 no idea.
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Example. f(x, y) = y3 + 3x2y − 6x2 − 6y2.
∇f = 〈6xy − 12x, 3y2 + 3x2 − 12y〉

6xy − 12x =0(1)

3y2 + 3x2 − 12y =0(2)

H(f) = det

∣∣∣∣ 6y − 12 6x
6x 6y − 12

∣∣∣∣
Critical points are (0, 0), (0, 4), (2, 2) and (−2, 2).

(0, 0): H(f)(0, 0) = det

∣∣∣∣−12 0
0 −12

∣∣∣∣ = 144 > 0 and −12 < 0, so local

maxima.

(0, 4): H(f)(0, 4) = det

∣∣∣∣ 12 0
0 12

∣∣∣∣ = 144 > 0 and 12 > 0, so local

minima.

(2, 2): H(f)(2, 2) = det

∣∣∣∣ 0 12
12 0

∣∣∣∣ = −144 < 0, so saddle point.

(−2, 2): H(f)(−2, 2) = det

∣∣∣∣ 0 −12
−12 0

∣∣∣∣ = −144 < 0, so saddle point.
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4. No easy First Derivative Test

Consider the function f(x, y) = (y − 4x2)(y − x2). This function is
a polynomial and so is as nice as it gets in terms of differentiability,
continuity, etc..
∂ f

∂ x
= (−8x)(y − x2) + (y − 4x2)(−2x) = −10xy + 16x3

∂ f

∂ y
= 1(y − x2) + (y − 4x2)1 = 2y − 5x2

Critical point(s):
0 = −10xy + 16x3 AND 0 = 2y − 5x2.
Clearly (0, 0) is a critical point and it is the only critical point with

x = 0.
If x 6= 0, then 0 = −10y+ 16x2 and still 0 = 2y− 5x2 so eliminating

y, 0 = −9x2 so x = 0 which is a contradiction and so there are no
solutions with x 6= 0.

Hessian: 
∂ 2f

∂x2
∂ 2f

∂x∂y

∂ 2f

∂y∂x

∂ 2f

∂y2


=

(
−10y + 48x2 −10x
−10x 2

)

At the critical point, the Hessian is(
0 0
0 2

)
which has determinant 0.

Consider what happens as the critical point is approached along the
line r(t) = 〈a, b〉t where |〈a, b〉| > 0. Let g(t) = f

(
r(t)
)

= f(at, bt) =
(bt− 4a2t2)(bt− at2) = t2(b− 4a2t)(b− a2t) = t2(b2 − 5ba2t+ 4a4t2).

Check
g′(t) = 2b2t− 15a2bt2 + 16a4t3

so g has a critical point at t = 0.
Check

g′′(t) = 2b2 − 30a2bt+ 48a4t2

If b = 0 then a 6= 0 and g(t) = 4a4t4 has a minimum at t = 0. If b 6= 0,
g′′(0) > 0 so g(t) also has a minimum at t = 0.

Hence along any line through the critical point, the function has a
minimum.
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Here is a view of the picture when a = 1, b = 2.

The green shaded surface is the graph of f(x, y) = (y− 4x2)(y−x2).
The gray shaded plane is 〈t, 2t, z〉 and the intersection is the curve g(t)
for a = 1, b = 2.
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Now consider the family of parabolas, r(t) = 〈t, bt2〉. This time
g(t) = f

(
r(t)
)

= f(t, bt2) = (bt2 − 4t2)(bt2 − t2) = t4(b − 4)(b − 1).
Along the parabola b = 1 or b = 4, the paths look level as you approach
the origin. For b > 4 or b < 1, the path still has the critical point as a
minimum.

BUT for 1 < b < 4, the path to the critical point has a maximum!

This time the gray surface is the parabolic-cylinder 〈t, 2t2, z〉 and the
intersection is the curve g(t) = −2t4.

You can sometimes draw conclusions from looking at lines through
the critical point.

If you can find one direction for which the curve through
the critical point in that direction has a local maxima
at the critical point and another direction for which the
curve through the critical point in that direction has a lo-
cal minima at the critical point, then for sure the critical
point is a saddle point.
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5. More weird examples

Example. f(x, y) = −(x2 − 1)2 − (x2y − x − 1)2 is an example of
a polynomial which has two local maxima but no local minima. For
functions of one variable this is impossible as long as the derivative is
continuous.

∇f = 〈−2(x2 − 1)(2x)− 2(x2y − x− 1)(2xy − 1),−2(x2y − x− 1)(x2)〉

−2(x2 − 1)(2x)− 2(x2y − x− 1)(2xy − 1) =0(1)

−2(x2y − x− 1)x2 =0(2)

Hence x = 0 or x2y−x− 1 = 0. If x = 0, (1) has no solution. Hence
x 6= 0 and y = x+1

x2 . Then (1) becomes

−2(x2 − 1)(2x)− 2(x2
x+ 1

x2
− x− 1)(2x

x+ 1

x2
− 1) = 0

−2(x2 − 1)(2x) = 0

Since x 6= 0, x = ±1 and there are two critical points

(1, 2) and (−1, 0)

I will leave it to you to calculate that the Hessian is

H(f) = det

∣∣∣∣−12x2 − 12x2y2 + 12xy + 4y + 2 −8x3y + 6x2 + 4x
−8x3y + 6x2 + 4x −2x4

∣∣∣∣
(1, 2): H(f)(1, 2) = det

∣∣∣∣−26 −6
−6 −2

∣∣∣∣ = 26 > 0 and −26 < 0 so local

maxima.

(−1, 0): H(f)(−1, 0) = det

∣∣∣∣−10 2
2 −2

∣∣∣∣ = 16 > 0 and −10 < 0 so local

maxima.
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Example. f(x, y) = 3xey − x3 − e3y is an example of a function
which has one local maxima, no absolute maxima and no local minima.
Again, this can not happen in one variable as long as the derivative is
continuous.

∇f = 〈3ey − 3x2, 3xey − 3e3y〉
3ey − 3x2 =0(1)

3xey − 3e3y =0(2)

Since ey 6= 0, (2) shows x = e2y and (1) becomes ey = e4y. Hence y = 0
and (1, 0) is the only critical point.

H(f) = det

∣∣∣∣−6x 3ey

3ey 3xey − 9e3y

∣∣∣∣
so H(f)(1, 0) = det

∣∣∣∣−6 3
3 −6

∣∣∣∣ = 27 > 0 and −6 < 0 so local maxima.
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Here is a tip for minimizing your work and maximizing your accuracy
with the Second Derivative Test. When you compute the determinant
of the Hessian,

H(f) = det

∣∣∣∣∣∣∣∣∣
∂2f

∂x2
∂2f

∂y ∂x

∂2f

∂y ∂x

∂2f

∂y2

∣∣∣∣∣∣∣∣∣
DO NOT multiply it out! It is relatively easy to plug the critical

point values into each piece of the matrix and only then should you
take the determinant. It is much easier to take the determinant of
a matrix of four numbers than a matrix of four functions and, if the
determinant happens to be positive you will see the diagonal entries
which are what you need to decide if you have a local maxima or a
local minima.

Try multiplying out the determinant of the Hessian in the example
on page 10 before you plug in if you want to add five or ten minutes
to the time needed to find the types of the critical points.

6. Absolute extrema on closed regions

There is a theorem from one variable calculus which says that a
continuous function on a closed interval has a maxima and a minima.
The extrema occur either at a local extrema in the interior of the
interval or at the endpoints of the interval. Something similar is true
in more than one variable.

A region D is closed if given any curve r(t) : (0, 1) → D such that
lim
t→0+

r(t) exits, then lim
t→0+

r(t) ∈ D. In practice it is usually easy to see

if a region in the plane is closed or not.
A region D is compact or bounded if it is contained in a disk of some

radius.

Any continuous function on a closed, bounded region
has an absolute maxima and an absolute minima.

As a matter of logic it follows that the extrema are either at interior
points or along the boundary of D. This means there is a different
procedure for locating absolute extrema.
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To locate the absolute extrema of a function f on a closed
bounded region D.

Make a list of points where an absolute extrema might occur. It
is not important if you have too many points on your list but it is
vital that you do not miss any where an extrema might occur. The
technique below almost always produces a list with points on it that
are not absolute extrema.

(1) Locate the critical points of f in the interior. You do not need
to do the Second Derivative Test at these points when doing
this problem. Add these points to your list.

(2) Locate points on the boundary of D which are potential points
where an absolute extrema of f might occur. We will discuss
one way to do this today and introduce another method next
time.

(3) Evaluate the function at each of the points on your list and see
which value is biggest and which is smallest.

One way to do (2) is to parametrize the boundary by
r(t), a 6 t 6 b. The value of f along the boundary is
g(t) = f

(
r(t)

)
which is a one variable problem. Solve

g′(t) = 0. If t0 is a critical point in (a, b) then r(t0) goes
on the list as do r(a) and r(b).

Example. Consider again the function f(x, y) = x3 + y3 − 3xy and
find the absolute extrema of f on the region D which is the inside of
the triangle with vertices (0, 3), (3, 3) and (0, 0).

(1) We found the critical points of f above (0, 0) and (1, 1). Neither of
these points is in the interior of D

(2) In chapter 13 we found out how to parametrize a line segment. Hence
the boundary of D, which is the triangle, can be parametrized in 3
pieces

(a) r1(t) = t 〈0, 0〉+ (1− t) 〈0, 3〉 = 〈0, 3− 3t〉 0 6 t 6 1.
(b) r2(t) = t 〈0, 3〉+ (1− t) 〈3, 3〉 = 〈3− 3t, 3〉 0 6 t 6 1.
(c) r3(t) = t 〈3, 3〉+ (1− t) 〈0, 0〉 = 〈3t, 3t〉 0 6 t 6 1.

(a): g1(t) = f
(
r1(t)

)
= 03 + (3 − 3t)3 − 3 · 0 · (3 − 3t) = 27(1 − t)3.

Critical points are g′1(t) = 0 or 81(1 − t)2(−1) = 0 or t = 1. This
is an endpoint and the general theory says we need to consider both
endpoints, t = 0, 1 or (0, 0) and (0, 3).

(b): g2(t) = f
(
r2(t)

)
= 27(1− t)3 + 27− 27 · (1− t). Critical points

are g′2(t) = 0 or 81(1− t)2(−1)+27 = 0 or (1− t)2 = 1/3 or t = 1± 1√
3
.
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We are looking for solutions between 0 and 1 and only t = 1 − 1√
3

is

in this range. The corresponding point is (
√

3, 3). The general theory
says we still need to consider both endpoints, t = 0, 1 or (0, 3) and
(3, 3).

(c): g3(t) = f
(
r3(t)

)
= (3t)3 + (3t)3 − 27t2 = 27(2t3 − t2). Critical

points are g′3(t) = 0 or 27(6t2− 2t) = 0 or 54t(3t− 1) = 0 so t = 0 and
t = 1/3. When t = 0 we are at an endpoint. When t = 1/3 we are
at (1, 1) The general theory says to include both endpoints endpoints,
(0, 0) and (3, 3). Indeed, if a critical point of f is on the boundary, it
will be a critical point of the parametrized boundary function.

(3)
point (0, 0) (1, 1) (3, 3) (

√
3, 3) (0, 3)

value 0 −1 27 27− 6
√

3 27

Hence the minimum value is −1 and the corresponding minima is at
(1, 1). The maximum value is 27 and the corresponding maxima is at
(0, 3) and (3, 3).
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Example. Find the max/min values of f(x, y) = xy2 on the disk
x2 + y2 = 3 in the first quadrant.

Critical Points: ∇f = 〈y2, 2xy〉 so there are infinitely many critical
points, all of the form (x, 0). These are boundary points for D so there
are no critical points in the interior of D.

Along either axis, f is 0 so all points on both axis are on the list from
the origin out to

√
3. The remaining part of the boundary is the circle

of radius
√

3 in the first quadrant. There are two ways to parametrize
this.

r1(t) =
√

3 〈cos t, sin t〉, 0 6 t 6 π/2 and
r2(t) =

〈
t,
√

3− t2
〉
, 0 6 t 6

√
3.

g1(t) = 3
√

3 cos t sin2 t = 3
√

3(cos t− cos3 t)
g2(t) = t(3− t2) = 3t− t3

g′1(t) = 3
√

3(− sin t+3 cos2 t sin t) = 3
√

3
(
− sin t+3(1−sin2 t) sin t

)
= 3
√

3
(
2 sin t−3 sin3 t

)
g′2(t) = 3− 3t2

Critical points are at sin t = 0 and sin t =

√
2

3
. These points are

(
√

3, 0) and
√

3

(√
1

3
,

√
2

3

)
= (1,

√
2). t = 0 is one endpoint but we

should include the other as well, t = π/2 and the point is (0,
√

3).
OR
Critical point is at t = 1 and the point is (1,

√
2) and the endpoints

are (
√

3, 0) and (0,
√

3).
Hence the minimum value is 0 and it occurs along both axes. The

maximum value must occur at (1,
√

2) and the value is 2.



16

Example. Again consider the function f(x, y) = x3 + y3 − 3xy. Find
the absolute extrema of f on the region D which is the disk centered
at the origin of radius 5.

(1) The critical points of f (0, 0) and (1, 1) and both these points are in
the interior of D.

(2) r(t) = 5 〈cos(t), sin(t)〉, 0 6 t 6 2π.

g(t) = 53 cos3 t+ 53 sin3 t− 3 · 52 cos t sin t

g′(t) = −3 · 53 cos2 t sin t+ 3 · 53 sin2 t cos t+ 3 · 52 sin2 t− 3 · 52 cos2 t =

3 · 52
(
5 sin t cos t(sin t− cos t) + sin2 t− cos2 t

)
=

3 · 52(sin t− cos t)(5 sin t cos t+ sin t+ cos t)

Hence the critical points are at π/4, 5π/4 and the four angles you
see in this picture of the intersection of two graphs, 5xy + x + y = 0
and x2 + y2 = 1.

Label them θ1, θ2, θ3, θ4 going counterclockwise from (1, 0).
You should also include the end points t = 0, 2π but since they both

give the same point in the plane you only need one of them.
The list of points on the boundary is

(3) The values at the two interior critical points (0, 0) and (1, 1) are 0
and −1. By symmetry, if (5, 0) were an absolute extrema, (0, 5) would
also be one and it is not on the list. Hence the maximum value must
be greater than 53 and therefore it occurs at θ1 and θ4. Solve for θi to
as many places as you need and plug into f .
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t = π/4 5π/4 0 θ1 θ2 θ3 θ4

point

(
5
√

2

2
,
5
√

2

2

) (
−5
√

2

2
,−5
√

2

2

)
(5, 0) (x1, y1) (x2, y2) (y2, x2) (y1, x2)

value
52

2

(
5
√

2− 3
)

−52

2

(
5
√

2 + 3
)

53 ? ? ? ?

To find the minimum value is more difficult. Note −52

2

(
5
√

2 + 3
)
<

−53 so it is hard to decide if the minimum value occurs at 5π/4 or at
θ2 and θ3, or perhaps at all three.


