
MATH 20550 Parametric surfaces Fall 2016

1. Parametric surfaces

A parametrized surface is, roughly speaking, a vector function of a vector variable

r(u,w) = 〈x(u,w), y(u,w), z(u,w)〉 : D → R3

defined over some subset D ⊂ R2. The “roughly speaking” comes from the fact that we want to
impose conditions on r so that the image is 2 dimensional and so really a surface. We will do this
below but your informal ideas will suffice to get us through some examples.

Example. The plane through a point 〈a, b, c〉 containing two vectors v1 and v2. Then

r(u,w) = 〈a, b, c〉+ uv1 + wv2

is one equation for that plane. It is also easy to describe the normal form of the plane. A normal
vector is given by N = v1 × v2 and so the equation is N • 〈x, y, z〉 = N • 〈a, b, c〉. Review how to
get a plane through 3 points, a plane containing a line and a point, . . . .

Example. The graph of z = f(x, y) lying over D in the xy plane can be parametrized as

r(u,w) = 〈u,w, f(u,w)〉
There are similar parametrizations for y = g(x, z), r(u,w) = 〈u, g(u,w), w〉 and x = h(y, z),
r(u,w) = 〈u, h(u,w), u, w〉.

Example. The sphere of radius a > 0

r(u,w) = 〈a cos(u) sin(w), a sin(u) sin(w), a cos(w)〉 0 6 u 6 2π; 0 6 w 6 π

This is just spherical coordinates.

Example. If 〈x(t), y(t)〉 a 6 t 6 b is a parametrized curve in the xy plane then

r(u,w) = 〈x(u), y(u), w〉 a 6 u 6 b; −∞ < w <∞
is the cylinder along that curve.

Example. If 〈x(t), y(t)〉 a 6 t 6 b is a parametrized curve in the xy plane then we can rotate about
the x-axis to get a surface of revolution

r(u,w) = 〈x(u), y(u) cos(w), y(u) sin(w)〉 a 6 u 6 b; 0 6 w 6 2π

We can also rotate about the y-axis to get a different surface of revolution

r(u,w) = 〈x(u) cos(w), y(u), x(u) sin(w)〉 a 6 u 6 b; 0 6 w 6 2π
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Example. Here is a picture of a surface.

A surface of Dini

r(u,w) =
〈

2 cos(u) sin(w), 2 sin(u) sin(w), 2
(

cos(w) + ln
(

tan
(w

2

))
+ 0.4u

)〉
−2π 6 u 6 2π; 0.1 < w < 2

The surface does not determine a parametrized surface any more than a line determines a paramet-
ric equation for it. Nevertheless, in order to do calculations we will need to have a parametrization.

Example. Consider the surface z = x2 + y2 + 1. It can be parametrized as

r(u,w) =
〈
u,w, u2 + w2 + 1

〉
−∞ < u <∞; −∞ < w <∞

Using cylindrical coordinates it can also be parametrized as

r(u,w) =
〈
u cos(w), u sin(w), u2 + 1

〉
0 6 u <∞; 0 6 w 6 2π

Here is a link to a list of surfaces.

One common example of a surface which does not have an obvious parametrization is a level
surface, f(x, y, z) = const. There is a theorem, called the Implicit Function Theorem which says
that a level surface f(x, y, z) = const has a parametrization in a neighborhood of a point 〈a, b, c〉
provided one of the partial derivatives is non-zero at the point. This is useful for theoretical work
since in deriving an equation we can usually assume a surface is parametrized even if we can’t write
a parametrization down.

1.1. Grid lines. In the picture of the Dini surface you can see two colors of greens and some lines
called grid lines. These are curves obtained by setting u = const. or w = const.

Each grid line is a curve. For example, if we fix w = b, then the parametrized curve is

ρ(t) = 〈x(t, b), y(t, b), z(t, b)〉

It turns out that the tangent lines to the grid lines are important. The calculation is easy. Define

http://en.wikipedia.org/wiki/Dini's_surface
http://en.wikipedia.org/wiki/List_of_surfaces
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ru(u,w) =

〈
∂ x

∂ u
,
∂ y

∂ u
,
∂ z

∂ u

〉
rw(u,w) =

〈
∂ x

∂ w
,
∂ y

∂ w
,
∂ z

∂ w

〉
• The vector ru(u,w) evaluated at (a, b) is a tangent vector to the grid line
ρ(t) = 〈x(t, b), y(t, b), z(t, b)〉 at t = a.
• The vector rw(u,w) evaluated at (a, b) is a tangent vector to the grid line
ρ(t) = 〈x(a, t), y(a, t), z(a, t)〉 at t = b.

A vector function r(u,w) is a smooth surface provided ru(u,w) and rw(u,w) are
continuous and not parallel at any point in D, except maybe along the boundary of
D. This means that the image of r is 2 dimensional.

One can also speak of a point the image of r(u,w) as being smooth which means that ru(u,w)
and rw(u,w) are not parallel at the point.

The reason for the name “grid lines” comes from looking at Figure 5 from the book:

Figure 5 from the book
The surface in Figure 5 is given by

r(u, v) = 〈(2 + sin v) cosu, (2 + sin v) sinu, u+ cos v〉
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Each little square in the plane on the left goes over to a piece on the right. Each grid line in the
plane goes over to one of the curves on the surface. Most graphics programs draw some grid lines
for you. You can see some in the picture of the surface of Dini from above.
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2. Tangent planes

At a smooth point on a surface, the tangent plane to the surface at the point is the plane which
contains the point and the two vectors ru(u,w) and rw(u,w).

Then the normal vector to the tangent plane is

ru(u,w)× rw(u,w)

so a point is smooth if and only if ru(u,w)× rw(u,w) 6= 〈0, 0, 0〉 or |ru(u,w)× rw(u,w)| 6= 0.
The parametric equation for the tangent plane at the point r(a, b) is

r(a, b) + uru(a, b) + wrw(a, b)

OR (
ru(a, b)× rw(a, b)

)
• 〈x, y, z〉 =

(
ru(a, b)× rw(a, b)

)
• r(a, b)

The normal line to a surface through a point on the surface is the line perpendicular to the
tangent plane. If the point is r(a, b), the equation is

r(a, b) +
(
ru(a, b)× rw(a, b)

)
t

Example. The sphere of radius a > 0 centered at the origin. One description is the level surface
x2 + y2 + z2 = a2. A normal vector is the gradient 〈2x, 2y, 2z〉. A unit normal vector is

n1(x, y, z) =
〈x
a
,
y

a
,
z

a

〉
A parametrization of the upper half of this sphere is given by

r(u,w) =
〈
u,w,

√
a2 − u2 − w2

〉
; u2 + w2 6 a2

ru =

〈
1, 0,

−u√
a2 − u2 − w2

〉
rw =

〈
0, 1,

−w√
a2 − u2 − w2

〉

ru × rw = det

∣∣∣∣∣∣∣∣∣
i j k

1 0
−u√

a2 − u2 − w2

0 1
−w√

a2 − u2 − w2

∣∣∣∣∣∣∣∣∣ =

〈
u√

a2 − u2 − w2
,

w√
a2 − u2 − w2

, 1

〉

|ru × rw| =
a√

a2 − u2 − w2

A unit normal vector is

n2(u,w) =

〈
u

a
,
w

a
,

√
a2 − u2 − w2

a

〉
This unit normal vector at a given point is equal to the unit normal we got from the gradient. At
any point (x0, y0, z0) with z0 > 0, r(x0, y0) = 〈x0, y0, z0〉. Then

n2(x0, y0) =

〈
x0
a
,
y0
a
,

√
a2 − x20 − y20

a

〉
=
〈x0
a
,
y0
a
,
z0
a

〉
= n1(x0, y0, z0)

We can parametrize the sphere using spherical coordinates.

r(θ, φ) = 〈a cos(θ) sin(φ), a sin(θ) sin(φ), a cos(φ)〉 ; 0 6 θ 6 2π, 0 6 φ 6 π
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rθ = 〈−a sin(θ) sin(φ), a cos(θ) sin(φ), 0〉
rφ = 〈a cos(θ) cos(φ), a sin(θ) cos(φ),−a sin(φ)〉

rθ × rφ =

∣∣∣∣∣∣
i j k

−a sin(θ) sin(φ) a cos(θ) sin(φ) 0
a cos(θ) cos(φ) a sin(θ) cos(φ) −a sin(φ)

∣∣∣∣∣∣ =

〈
−a2 cos(θ) sin2(φ),−a2 sin(θ) sin2(φ),−a2 sin(φ) cos(φ)

〉
=

− a2 sin(φ) 〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉
|rθ × rφ| = a2 sin(φ)

A unit normal vector is

n3(θ, φ) = −〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉
This unit normal vector at a given point is the negative of the unit normal we got from the gra-
dient. At any point (x0, y0, z0) find θ0 and φ0 so that r(θ0, φ0) = 〈x0, y0, z0〉. The parametrization
guarantees that this can be done. Then

n3(θ0, φ0) = −〈cos(θ0) sin(φ0), sin(θ0) sin(φ0), cos(φ0)〉 =

−
〈
a cos(θ0) sin(φ0)

a
,
a sin(θ0) sin(φ0)

a
,
a cos(φ0)

a

〉
= −

〈x0
a
,
y0
a
,
z0
a

〉
= −n1(x0, y0, z0)

If we parametrize the sphere using cylindrical coordinates,

r(θ, z) =
〈√

a2 − z2 cos(θ),
√
a2 − z2 sin(θ), z

〉
; 0 6 θ 6 2π, −a 6 z 6 a

rθ =
〈
−
(√

a2 − z2
)

sin(θ),
(√

a2 − z2
)

cos(θ), 0
〉

rz =

〈
− z√

a2 − z2
cos(θ),− z√

a2 − z2
sin(θ), 1

〉

rθ × rz =

∣∣∣∣∣∣∣
i j k

−
(√

a2 − z2
)

sin(θ)
(√

a2 − z2
)

cos(θ) 0

− z√
a2 − z2

cos(θ) − z√
a2 − z2

sin(θ) 1

∣∣∣∣∣∣∣ =
〈(√

a2 − z2
)

cos(θ),
(√

a2 − z2
)

sin(θ), z
〉

|rθ × rz| = a

A unit normal vector is

n4(θ, φ) =

〈√
a2 − z2
a

cos(θ),

√
a2 − z2
a

sin(θ),
z

a

〉
This unit normal vector at a given point is equal to the unit normal we got from the gradient.

At any point (x0, y0, z0) find θ0 so that r(θ0, z0) = 〈x0, y0, z0〉. Then

n4(θ0, z0) =

〈√
a2 − z20
a

cos(θ0),

√
a2 − z20
a

sin(θ0),
z0
a

〉
=
〈x0
a
,
y0
a
,
z0
a

〉
= n1(x0, y0, z0)
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3. Orientation

An orientation for a surface is a continuous choice of unit normal vector for the surface. Every
surface which can be parametrized has two choices of a unit normal vector at every point.

The boundary of a solid E in three space has orientations. By ∂E we mean the boundary of E
with the orientation for which the normal vector points out of E.
Example: If E is the ball of radius a centered at the origin then ∂E is the sphere of radius a
centered at the origin. The gradient vector of the level curve x2 + y2 + z2 = a2, namely 2 〈x, y, z〉
points out. Hence the normal vectors we computed in rectangular and cylindrical coordinates point
out, and the normal vector we computed in spherical coordinates points inward.

An important skill is to be able to decide if a given continuous normal field on the boundary of
a solid is outward or inward. To do this, pick a point on the boundary. The easiest way to do this
is to pick a point in the parameter space. Then compute the normal vector you calculated at that
point. Then check if it points the way you want.
Example: The sphere bounds the ball. Let us use spherical coordinates so

r(θ, φ) = 〈a cos(θ) sin(φ), a sin(θ) sin(φ), a cos(φ)〉
rθ × rφ = −a2 sin(φ) 〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉

Pick a point, say
(
0, π

2

)
in θφ space. Then r

(
0, π

2

)
= 〈a, 0, 0〉. At this point rθ × rφ

(
0, π

2

)
=

−a2 〈1, 0, 0〉 so the normal vector points inward. If the outward normal is required, which it often
is, just use a2 sin(φ) 〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉.

The moral of this last example is to calculate one normal field and check at a convenient point
whether it is the one you need. If it is not, the negative of it will be.
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Surprisingly, not all surfaces are orientable. The German mathematician Möbius realized that
the Möbius strip was such a surface. One parametrization is

r(u,w) =
〈(
a+ bw cos

(u
2

))
cos(u),

(
a+ bw cos

(u
2

)
)
)

sin(u), bw sin
(u

2

)〉
; 0 6 u 6 2π, −1 6 w 6 1

with a > b > 0.
If

A(u) = 〈cos(u), sin(u), 0〉

then

r(u,w) =
(
a+ bw cos

(u
2

))
A(u) + bw sin

(u
2

)
k

and A(u) has z-coordinate 0. Note A has length 1 (as of course does k) and A • k = 0.

a = 1 and b = 0.5

The z axis is red, the x axis is green and the y axis is yellow.

The parametrization is “mostly” one-to-one. Note first that since a > b, a + bw cos
(u

2

)
> 0. If

r(u1, w1) = r(u0, w0) we may also assume u0 6 u1. Then A(u1) = A(u0), w1 sin
(u1

2

)
= w0 sin

(u0
2

)
and a+ bw1 cos

(u1
2

)
= a+ bw0 cos

(u0
2

)
.

From A(u1) = A(u0) it follows that u1 = u0 or u0 = 0 and u1 = π.

If u0 = 0, u1 = π it follows from w1 sin
(u1

2

)
= w0 sin

(u0
2

)
that w1 = −w0.

Hereafter we need only discuss the case u1 = u1. From a + bw0 cos
(u0

2

)
= a + bw1 cos

(u1
2

)
it

follows that w1 cos
(u1

2

)
= w0 cos

(u0
2

)
and since w1 sin

(u1
2

)
= w0 sin

(u0
2

)
, w1 = w0.

Hence r is one-to-one except for

r(0, w) = r(2π,−w)

Example. A torus

r(u,w) =
〈(
a+ b cos(w)

)
cos(u),

(
a+ b cos(w)

)
sin(u), b sin(w)

〉
; 0 6 u 6 2π, 0 6 w 6 2π

with a > b > 0.
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Torus is a = 2, b = 1
Note

ru(u,w) =
〈
−
(
a+ b cos(w)

)
sin(u),

(
a+ b cos(w)

)
cos(u), 0

〉
rw(u,w) = 〈−b sin(w) cos(u),−b sin(w) sin(u), b cos(w)〉

ru × rw = det

∣∣∣∣∣∣
i j k

−
(
a+ b cos(w)

)
sin(u)

(
a+ b cos(w)

)
cos(u) 0

−b sin(w) cos(u) −b sin(w) sin(u) b cos(w)

∣∣∣∣∣∣ =

〈
b cos(w) cos(u)

(
a+ b cos(w)

)
, b cos(w) sin(u)

(
a+ b cos(w)

)
, b sin(w)

(
a+ b cos(w)

)〉
=

ru × rw = b
(
a+ b cos(w)

)
〈cos(w) cos(u), cos(w) sin(u), sin(w)〉

|ru × rw| = b
(
a+ b cos(w)

)
The torus is the boundary of a solid and so is orientable. At (0, 0) the point is r(0, 0) = 〈a+ b, 0, 0〉

which is the largest of the four points on the x-axis. (The other three are 〈a− b, 0, 0〉, 〈−a+ b, 0, 0〉
and 〈−a− b, 0, 0〉.)

At (0, 0), ru × rw(0, 0) = b(a+ b) 〈1, 0, 0〉 and since b(a+ b) > 0, this normal field points out.

There is no need to check additional points but suppose you were asked to check the direction
at 〈a− b, 0, 0〉. Now the first problem is to find (u,w) so that r(u,w) = 〈a− b, 0, 0〉. To get the
z-coordinate right, w = 0 or π or 2π. w = 0 or 2π gives an a+ b factor in the other two coordinates
so w = π looks like the right way to go. To get the y-coordinate right, take u = 0 and we see
r(0, π) = 〈a− b, 0, 0〉. At this point, ru × rw(0, π) = a(a − b) 〈−1, 0, 0〉. Since a(a − b) > 0, this
points towards the origin, which is outward from the solid!

4. Surface integrals

Let T be a surface in R3. Let f : T → R be a function defined on T . Define∫∫
T

f dS = lim
mesh(P)→0

∑
P

f(pi)Area(Ti)
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as a limit of Riemann sums over sampled-partitions. A sampled-partition of T , P , is a division of
the surface T into pieces, Ti, followed by a choice of sample point, pi, in each Ti. By a division of a
surface into pieces we mean ∪i Ti = T and Ti ∩ Tj lies in the boundary of each piece.

The associated Riemann sum is
∑

i f(pi)Area(Ti). The mesh of the sampled-partition is ≤ ε
provided every Ti is contained in the ball of radius ε centered at pi.

If f is continuous,

∫∫
T

f dS is well-defined, and hence a number.

•
∫∫
T

1 dS is the area.

•
∫∫
T

µ dS is the mass if µ is the density.

•
∫∫
T

q dS is the total charge if q is the charge density.

•
∫∫
T

zµ dS is the moment about the Mxy plane where µ is the density. z̄ =

∫∫
T

zµ dS∫∫
T

µ dS
.

•
∫∫
T

xµ dS is the moment about the Myz plane where µ is the density. x̄ =

∫∫
T

xµ dS∫∫
T

µ dS
.

•
∫∫
T

yµ dS is the moment about the Mxz plane where µ is the density. ȳ =

∫∫
T

yµ dS∫∫
T

µ dS
.

I’ll leave it to you to work out the formulas for moments of inertia.

5. Surface integrals as double integrals

Parametrize S as r(u,w) : D → R3 where D is some bounded region in the plane. We can evaluate
f at points in S as f

(
r(u,w)

)
. The remaining issue is to figure out Area(Ti).

At a point r(u0, w0) we can look at the tangent plane to S at the point. It is

r(u0, w0) + rru(u0, w0) + trw(u0, w0)

In the tangent plane we have the parallelogram with vertices r(u0, w0), r(u0, w0) + ru(u0, w0) du,
r(u0, w0) + rw(u0, w0) dw and r(u0, w0) + (ru(u0, w0) du + rw(u0, w0) dw). The area of this paral-
lelogram is |ru(u0, w0)× rw(u0, w0)| du dw = |ru(u0, w0)× rw(u0, w0)| dA and we use this as the
approximation to Area(Ti) and

(∗)
∫∫
T

f dS =

∫∫
D

f
(
r(u,w)

)
|ru × rw| dA

Remark: If the third coordinate of r is 0, note |ru(u0, w0)× rw(u0, w0)| is just the absolute value
of the Jacobian of the coordinate transformation.
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6. Area examples

Surface area of a sphere 1: The upper hemisphere was parametrized above and we saw

|ru × rw| =
a√

a2 − u2 − w2
with u2 + w2 6 a2. Hence

Surface area =

∫∫
u2+w26a2

a√
a2 − u2 − w2

dA =

a∫
0

2π∫
0

ar√
a2 − r2

dθ dr = −2πa
√
a2 − r2

∣∣∣∣a
0

= 2πa2

The surface area of the full sphere is 4πa2.
Surface area of a sphere 2: Using spherical coordinates, |rθ × rφ| = a2 sin(φ) with 0 6 θ 6 2π,
0 6 φ 6 π. Hence

Surface area =

∫∫
06θ62π

06φ6π

a2 sin(φ) dA =

π∫
0

2π∫
0

a2 sin(φ) dθ dφ = −2πa2 cos(φ)
∣∣∣π
0

= 4πa2

Surface area of a sphere 3: Using cylindrical coordinates, |rθ × rz| = a with 0 6 θ 6 2π,
−a 6 z 6 a. Hence

Surface area =

∫∫
06θ62π
−a6z6a

a dA =

a∫
−a

2π∫
0

a dz dθ = a(2a)(2π) = 4πa2

Surface area of a torus: |ru × rw| = b
(
a+ b cos(w)

)
with 0 6 u 6 2π, 0 6 w 6 2π.

Hence

Surface area =

∫∫
06u62π
06w62π

b
(
a+ b cos(w)

)
dA =

2π∫
0

2π∫
0

b
(
a+ b cos(w)

)
dw du =

b

2π∫
0

aw + b sin(w)
∣∣∣2π
0
du = b

2π∫
0

2πa du = 4π2ab

Surface area of a cone: Parametrize the cone in spherical coordinates as

r(ρ, θ) = 〈ρ cos(θ) sin(c), ρ sin(θ) sin(c), ρ cos(c)〉

with 0 6 ρ 6 s, 0 6 θ 6 2π. Here s is the slant height of the cone and c is the angle the cone makes
down from the z-axis. The height is h = s cos(c) and the radius is r = s sin(c).

Cone with s = 3, c = π
3
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rρ = 〈cos(θ) sin(c), sin(θ) sin(c), cos(c)〉
rθ = 〈−ρ sin(θ) sin(c), ρ cos(θ) sin(c), 0〉

rρ × rθ = det

∣∣∣∣∣∣
i j k

cos(θ) sin(c) sin(θ) sin(c) cos(c)
−ρ sin(θ) sin(c) ρ cos(θ) sin(c) 0

∣∣∣∣∣∣ = ρ
〈
cos(θ) sin(c) cos(c), sin(θ) sin(c) cos(c), sin2(c)

〉
|rρ × rθ| = ρ sin(c)

Hence

Surface area =

∫∫
06ρ6s

06θ62π

ρ sin(c) dA =

s∫
0

2π∫
0

ρ sin(c) dθ dρ = 2π sin(c)

s∫
0

ρ dρ = πs2 sin(c) = πsr = πrh sec(c)

Surface area of a cone: Parametrize the cone in cylindrical coordinates.

r(r, θ) = 〈r cos(θ), r sin(θ), r cot(c)〉
with 0 6 r 6 R, 0 6 θ 6 2π.

rr = 〈cos(θ), sin(θ), cot(c)〉
rθ = 〈−r sin(θ), r cos(θ), 0〉

rr × rθ = det

∣∣∣∣∣∣
i j k

cos(θ) sin(θ) cot(c)
−r sin(θ) r cos(θ) 0

∣∣∣∣∣∣ = 〈−r cos(θ) cot(c),−r sin(θ) cot(c), r〉

|rρ × rθ| =
√
r2 cot2(c) + r2 =

√
r2 csc2(c) = r csc(c)

Hence

Surface area =

∫∫
06r6R
06θ62π

r csc(c) dA =

R∫
0

2π∫
0

r csc(c) dθ dρ = 2π csc(c)

R∫
0

r dr = πR2 csc(c) = πsR = πRh sec c
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7. Appendix: More about Möbius strip

Here is a picture with some normal vectors drawn.

Notice that as you move around the Möbius strip starting with the outer right side you end up
with the normal pointing the other way.

To compute normal vectors, recall

r(u,w) =
(
a+ bw cos

(u
2

))
A(u) + bw sin

(u
2

)
k

ru = −bw
2

sin
(u

2

)
A(u) +

(
a+ bw cos

(u
2

))
Au(u) +

bw

2
cos
(u

2

)
k

rw =
b

2
cos
(u

2

)
A(u) +

b

2
sin
(u

2

)
k

Let

Au(u) = 〈− sin(u), cos(u), 0〉 = B(u)

Note A, B and k are all unit length and mutually orthogonal. Moreover

ru = −bw
2

sin
(u

2

)
A(u) +

(
a+ bw cos

(u
2

))
B(u) +

bw

2
cos
(u

2

)
k

rw =
b

2
cos
(u

2

)
A(u) + 0 B(u) +

b

2
sin
(u

2

)
k

A(u)× k = det

∣∣∣∣∣∣
i j k

cos(u) sin(u) 0
0 0 1

∣∣∣∣∣∣ = 〈sin(u),− cos(u), 0〉 = −B(u)

A(u)×B(u) = det

∣∣∣∣∣∣
i j k

cos(u) sin(u) 0
− sin(u) cos(u) 0

∣∣∣∣∣∣ = k

B(u)× k = det

∣∣∣∣∣∣
i j k

− sin(u) cos(u) 0
0 0 1

∣∣∣∣∣∣ = 〈cos(u), sin(u), 0〉 = A(u)

ru • rw = 0

It is a good exercise for you to verify that
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ru × rw = det

∣∣∣∣∣∣∣∣∣
A B k

− bw
2

sin
(u

2

) (
a+ bw cos

(u
2

))
bw
2

cos
(u

2

)
b
2

cos
(u

2

)
0 b

2
sin
(u

2

)
∣∣∣∣∣∣∣∣∣

ru × rw =
b

2
sin
(u

2

)(
a+ bw cos

(u
2

))
A(u) +

b2w

4
B(u)− b

2
cos
(u

2

)(
a+ bw cos

(u
2

))
k

Hence

|ru × rw|2 =
b2

4
sin2

(u
2

)(
a+ bw cos

(u
2

))2
+
b4w2

16
+
b2

4
cos2

(u
2

)(
a+ bw cos

(u
2

))2
=

b2

4

(
a+ bw cos

(u
2

))2
+
b4w2

16
Therefore the surface area is

b

2

2π∫
0

1∫
−1

√(
a+ bw cos

(u
2

))2
+
b2w2

4
dw du

By substitution and algebra this is

a2

2

2π∫
0

b
a∫

− b
a

√(
1 + v cos

(u
2

))2
+
v2

4
dv du

To see the non-orientable nature of the Möbius strip, consider the grid line w = 0. The curve is
the circle of radius a centered at the origin in the xy plane. Note r(0, 0) = r(2π, 0), but

ru × rw(0, 0) = −ab
2
〈0, 0, 1〉

ru × rw(0, 2π) =
ab

2
〈0, 0, 1〉

The full level curve at w = 0 is c(t) = aA(t), 0 6 t 6 2π. The normal vector field at the point
c(t) is

n(t) =
ab

2
sin

(
t

2

)
A(t)− ab

2
cos

(
t

2

)
k; 0 6 t 6 2π

On the interval [0, π), n(t) points up and on (π, 2π] it points down. It is the fact that r(0, 0) =
r(2π, 0) that prevents the Möbius strip from having a continuous normal field.
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8. Gauss curvature

The great German mathematician Gauss worked out what the analogue of the curvature of a
surface ought to be. At each point on the surface the curvature is a number which measures how
“curved” the surface is.

K =

det

∣∣∣∣ruu • (ru × rw) ruw • (ru × rw)
rwu • (ru × rw) rww • (ru × rw)

∣∣∣∣
|ru × rw|4

r(u,w) =
〈
u,w,

√
a2 − u2 − w2

〉
, a > 0.

ru =

〈
1, 0,

−u√
a2 − u2 − w2

〉
rw =

〈
0, 1,

−w√
a2 − u2 − w2

〉

ru × rw = det

∣∣∣∣∣∣∣∣∣
i j k

1 0
−u√

a2 − u2 − w2

0 1
−w√

a2 − u2 − w2

∣∣∣∣∣∣∣∣∣ =

〈
u√

a2 − u2 − w2
,

w√
a2 − u2 − w2

, 1

〉

|ru × rw| =
a√

a2 − u2 − w2

ruu =

〈
0, 0,

−1√
a2 − u2 − w2

− u2(√
a2 − u2 − w2

)3
〉

=

〈
0, 0,− a2 − w2(√

a2 − u2 − w2
)3
〉

ruw =

〈
0, 0,− uw(√

a2 − u2 − w2
)3
〉

rww =

〈
0, 0,− a2 − u2(√

a2 − u2 − w2
)3
〉

K =

det

∣∣∣∣∣∣∣∣∣
− a2 − w2(√

a2 − u2 − w2
)3 − uw(√

a2 − u2 − w2
)3

− uw(√
a2 − u2 − w2

)3 − a2 − u2(√
a2 − u2 − w2

)3
∣∣∣∣∣∣∣∣∣

a4

(a2 − u2 − w2)2

=

(a2 − w2)(a2 − u2)− u2w2

(a2 − u2 − w2)3

a4

(a2 − u2 − w2)2

=

(a4 − a2u2 − a2w2 + u2w2)− u2w2

a4(a2 − u2 − w2)
=
a4 − a2(u2 + w2)

a4(a2 − u2 − w2)
=

1

a2

In spherical coordinates:

rθ = 〈−a sin(θ) sin(φ), a cos(θ) sin(φ), 0〉
rφ = 〈a cos(θ) cos(φ), a sin(θ) cos(φ),−a sin(φ)〉

rθ × rφ = −a2 sin(φ) 〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉
|rθ × rφ| = a2 sin(φ)

rθθ = 〈−a cos(θ) sin(φ),−a sin(θ) sin(φ), 0〉 = −a sin(φ) 〈cos(θ), sin(θ), 0〉
rθφ = 〈−a sin(θ) cos(φ), a cos(θ) cos(φ), 0〉 = −a cos(φ) 〈sin(θ),− cos(θ), 0〉
rφφ = 〈−a cos(θ) sin(φ),−a sin(θ) sin(φ),−a cos(φ)〉
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rθθ • (rθ × rφ) = −a3 sin3(φ)

rθφ • (rθ × rφ) = 0

rφφ • (rθ × rφ) = −a3 sin(φ)

so

K =
a6 sin4(φ)(
a2 sin(φ)

)4 =
1

a2

It is a very unpleasant calculation to see that the surface of Dini given above has curvature
1

22 + (0.4)2
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