
MATH 20550 Partial derivatives and differentiable functions Fall 2016

1. Basic idea and definition

If f(x1, · · · , xn) takes real numbers as values we are interested in how the values of f change
when we change one of the variables, say xi at a fixed location, say a = (a1, · · · , an). From
first year calculus, this suggests considering

lim
xi→ai

f(a1, · · · , ai−1, xi, ai+1, · · · , an)− f(a1, · · · , an)

xi − ai
Note that this is a one variable limit and we are just computing an ordinary derivative
from first year calculus. We denote this value in a couple of ways. Sometimes one is more
convenient than the other but they mean the same thing.

∂ f

∂ xi
fxi fi Terrible! Dif Dxif

Just as in first year calculus, the partial derivative measures the instantaneous rate of change
of the function with respect to one of the variables.

EXAMPLES

(1) f(x, y) = xy2. Find
∂ f

∂ x
and

∂ f

∂ y
at (2, 3). For

∂ f

∂ x
(2, 3) consider f(x, 3) = 9x. Then

∂ f

∂ x
(2, 3) =

d 9x

d x
(2) = 9. For

∂ f

∂ y
(2, 3) consider f(2, y) = 2y2. Then

∂ f

∂ y
(2, 3) =

d 2y2

d y
(3) = 4y|y=3 = 12.

(2) h(x, y, z) = x2 + y2 + z2. Find
∂ h

∂ x
(2, 3, 5),

∂ h

∂ y
(2, 3, 5) and

∂ h

∂ x
(2, 3, 5).

∂ h

∂ x
(2, 3, 5) =

d (x2 + 36)

d x
(2) = 2x|x=2 = 4.

∂ h

∂ y
(2, 3, 5) =

d (y2 + 20)

d y
(3) = 2y|y=3 = 6.

∂ h

∂ z
(2, 3, 5) =

d (z2 + 13)

d z
(5) = 2z|z=5 = 10.

(3) g(r, t, θ) = sin(r t θ). Find
∂ g

∂ r
(2, 3, π),

∂ g

∂ t
(2, 3, π) and

∂ g

∂ θ
(2, 3, π).

∂ g

∂ r
(2, 3, π) =

d (sin(3πr)

d r
(2) = 3π cos(3πr)|r=2 = 3π cos(6π) = 3π.

∂ g

∂ t
(2, 3, π) =

d (sin(2πt)

d t
(3) = 2π cos(2πt)|t=3 = 2π cos(6π) = 2π.

∂ g

∂ θ
(2, 3, π) =

d sin(6θ)

d θ
(π) = 6 cos(6θ)|θ=π = 6 cos(6π) = 6.
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For all three of these functions at the point where we did the calculation, the function is
increasing as we increase any of the variables.

Another basic interpretations of the derivative in first year calculus is as a slope. That works

here as well. For example, look at the graph of z = f(x, y). Then
∂ f

∂ x
(2, 3) is the slope of the

following graph at x = 2. Intersect the plane y = 3 with the 2-dimensional graph z = f(x, y).
This gives a 2-dimensional graph z = f(x, 3) = 9x. This graph is a straight line with slope

9 =
∂ f

∂ x
(2, 3).

The slope interpretation in more than two variables is difficult to visualize. Given three
variables the graph lies in four space, we intersect it with the two space given by fixing two
of the variables and in that two space we will see a curve. The slope of that curve at the
given point is given by the partial derivative.

2. The gradient

Since we often want to know all the partials it is convenient to write them out as a vec-
tor. This vector will be extremely important for us! The definition is simple. Suppose
f(x1, · · · , xn) is a function of n variables. Then the gradient of f at the point a is

∇f(a) =

〈
∂ f

∂ x1
(a), · · · , ∂ f

∂ xn
(a)

〉
Hence from the examples above

• ∇f(2, 3) = 〈9, 12〉
• ∇h(2, 3, 5) = 〈4, 6, 10〉
• ∇g(2, 3, π) = 〈3π, 2π, 6〉

For now this is all there is to it. You calculate it by calculating the partial derivatives. In a
few lectures we will explore further and see that the gradient is telling us many things and
comes up in the solution of many important problems.

3. Partial derivatives as functions

Just as in first year calculus, once we have the definition of a partial derivative at a point,
we can consider what happens as we change the point. This is the definition of a function.

EXAMPLES

(1) f(x, y) = xy2. Find
∂ f

∂ x
and

∂ f

∂ y
as functions of (x, y).

• ∂ f
∂ x

=
∂ xy2

∂ x
= y2

• ∂ f
∂ y

=
∂ xy2

∂ y
= 2xy

• ∇f = 〈y2, 2xy〉



(2)
∂ h

∂ x
=
d (x2 + y2 + z2)

d x
= 2x

∂ h

∂ y
=
d (x2 + y2 + z2)

d y
= 2y

∂ h

∂ z
=
d (x2 + y2 + z2)

d z
= 2z

• ∇h = 2 〈x, y, z〉

(3) g(r, t, θ) = sin(r t θ).

∂ g

∂ r
=
d sin(r t θ)

d r
= t θ cos(r t θ)

∂ g

∂ t
=
d sin(r t θ)

d t
= r θ cos(r t θ).

∂ g

∂ θ
=
d sin(r t θ)

d θ
= r t cos(r t θ).

• ∇g = cos(r t θ) 〈t θ, r θ, r t〉

4. Higher partial derivatives

Since a partial derivative of a function is itself a function, one can take the partial derivatives
of a partial derivative. In one variable the derivative of the derivative is called the second
derivative and is very important since one of its interpretations is acceleration and another
is convexity.

As in first year calculus, the only technique you will have to compute a higher partial
derivative is to keep iterating the partial derivative. For f(x, y) = xy2,

∂

∂ x

(
∂ f

∂ x

)
=
∂ y2

∂ x
= 0

∂

∂ y

(
∂ f

∂ x

)
=
∂ y2

∂ y
= 2y

∂

∂ x

(
∂ f

∂ y

)
=
∂ 2xy

∂ x
= 2y

∂

∂ y

(
∂ f

∂ y

)
=
∂ 2xy

∂ y
= 2x

As long as the problem is posed with parentheses it is clear which partial should be taken
when. There is shorter notation which allows you to drop the parentheses. In fact there are
two versions. Using the ∂ symbol,



∂

∂ y

(
∂ f

∂ x

)
=

∂ 2f

∂y ∂x

and we read the bottom from right to left. Hence

∂ 4h

∂x ∂y ∂x ∂z
=

∂

∂ x

(
∂

∂ y

(
∂

∂ x

(
∂ h

∂ z

)))
The exponent on the ∂ in the numerator is equal to the number of ∂’s in the denominator.
If two or more adjacent ∂’s have the same variable, we just write one of them an stick an
exponent on it to indicate how many times it is to be repeated. Hence

∂ 4h

∂x ∂x ∂x ∂z
=

∂ 4h

∂ 3x ∂z

an now the exponent on the ∂ in the numerator is equal to the sum of the exponents in the
denominator where ∂ with no exponent is as usual ∂ 1.

The second version uses the fxi notation.

fxy = (fx)y =
∂ 2f

∂y ∂x

where now we read from left to right and there is no shortening of the notation for repeated

partials,
∂ 4h

∂ 3x ∂z
= hzxxx.

These two notations could be annoying were it not for Clairaut’s Theorem. This says that
provided two higher partials differentiate the same number of times with respect to each
variable and if both answers are continuous in a neighborhood of a point, then the two
higher partials are equal at that point.

So it was no accident that
∂ 2f

∂x ∂y
=

∂ 2f

∂y ∂x
in the example above.

5. Reprise

Let xi = ai + h and then notice

lim
xi→ai

f(a1, · · · , ai−1, xi, ai+1, · · · , an)− f(a1, · · · , an)

xi − ai
=

∂ f

∂ xi

∣∣∣∣
x=a

= lim
h→0

f(a + h · ei)− f(a)

h

where ei = 〈0, 0, · · · , 0, 1, 0 · · · , 0〉 where the 1 is in the ith position.

If we rewriting the formula as above,it suggests reinterpret the partial derivative as the
instantaneous rate of change of f in the direction of ei. Given any direction u, we can think
about the instantaneous rate of change of f in the direction of u as

lim
h→0

f(a + h · u)− f(a)

h

In general, why restrict to unit vectors? Why not think about

lim
h→0

f(a + h · v)− f(a)

h

for any vector v?



As h→ 0, h · v→ 0 which suggests that we might want to understand

f(a + v)− f(a)

as v→ 0.

A function f is differentiable at a point a provided

lim
v→0

∣∣(f(a + v)− f(a)
)
−∇f(a) • v

∣∣
|v|

= 0

A vector function F(x) = 〈F1(x), · · · , Fm(x)〉 is defined to be differentiable at a point a if
and only if each function Fi is differentiable in the above sense.

In general, it is difficult to tell if a function is differentiable. Fortunately there is a theorem
which handles the cases we care about.

Theorem: If ∇f exists and is continuous in a neighborhood of a then f is differentiable in
a neighborhood of a.

This is good since many theorems coming up depend on knowing if a function is differentiable.

Corollary: If f is differentiable in a neighborhood of a then

lim
h→0

f(a + h · v)− f(a)

h
= ∇f(a) • v

A really big corollary is the Chain Rule which is discussed in the next handout.
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