
13 Chapter 13

13.1 Vector Valued Functions and Space Curves

A vector-valued function is a function whose output is a vector. We have already encountered one: the
vector equation for a line

l⃗ (t ) = P⃗0 + t v⃗

More generally, they will have the form

r⃗ (t ) = ⟨
f (t ), g (t ),h(t )

⟩
= f (t )î + g (t ) ĵ +h(t )k̂

The input variable (in this case it’s t ) is called the parameter. Since r⃗ is a function, we can ask about
its domain. The domain of a vector-valued function is the "intersection" of the domains of its compo-
nents functions, that is, the values common to the domains of each of f , g , and h.

Ex: What is the domain of r⃗ (t ) =
⟨p

4− t 2,e−3t , ln(t +1)
⟩

?

First, we find the domains of each of the component functions:

function f (t ) =
p

4− t 2 g (t ) = e−3t h(t ) = ln(t +1)
domain −2 ≤ t ≤ 2 −∞< t <∞ −1 < t <∞

The t-values in common to each of these are −1 < t ≤ 2. So the domain is (−1,2].

As with normal functions, we can take limits of vector-valued functions:
If r⃗ (t ) = ⟨

f (t ), g (t ),h(t )
⟩

, then

lim
t→a

r⃗ (t ) =
⟨

lim
t→a

f (t ), lim
t→a

g (t ), lim
t→a

h(t )
⟩

And this leads us to the definition of continuity for vector valued functions:

Definition 1. A vector valued function r⃗ (t ) is called continuous at a if

lim
t→a

r⃗ (t ) = r⃗ (a)

Let’s look at some exampls of vector-valued functions.
Ex:

i) r⃗ (t ) = 〈sin t , t〉 ii) r⃗ (t ) = 〈3cos t , sin t〉
iii) r⃗ (t ) = 〈cos t , sin t , t〉 iv) 〈t , sin t ,2cos t〉

v) r⃗ (t ) = 〈t cos t , t sin t , t〉
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i)

ii)
Notice that x = 3cos t and y = sin t satisfies x2

2 + y2 = 1 the equation of an ellipse!

iii) With 3D space curves, it’s often useful to find a surface that your curve sits on. In this case we have

r⃗ (t ) = ⟨
x(t ), y(t ), z(t )

⟩= 〈cos t , sin t , t〉

so [x(t )]2 + [y(t )]2 = 1. This means the curve sits on the cylinder and climbs up it as t increases:
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iv) Here, [y(t )]2 + [z(t )]2

4 = 1, so the curve sits on the elliptic cylinder y2 + z2

4 = 1 (it opens along the x-
axis).
v) This one satisfies

[x(t )]2 + [y(t )]2 = t 2(cos2 t + sin2 t ) = t 2 = [z(t )]2

meaning it sits on the cone x2 + y2 = z2

Often of importance is the intersection of surfaces. The result is generically a curve (i.e., the intersec-
tion of two planes is a line, as we know). It is important to be able to quantify these "curves of intersec-
tion" by parameterizing them (finding a vector-valued function whose image is the curve).

Ex. Find a vector function representing the intersection of z = x2 and x2 + y2 = 4.

We know that whatever the vector function r⃗ (t ) = ⟨
x(t ), y(t ), z(t )

⟩
is, it must satisfy the equations of the

surfaces since it lies on both of them, that is, we must have

z(t ) = [x(t )]2 and [x(t )]2 + [y(t )]2 = 4 .

The second equation suggests taking

x(t ) = 2cos t and y(t ) = 2sin t

and first then gives z(t ) = 4cos2 t .
Thus the vector equation is

r⃗ (t ) = ⟨
2cos t ,2sin t ,4cos2 t

⟩
.

13.2 Derivatives and Integrals

What were the main applications of limits back in Calc I? Differentiation and integration!

Definition 2. The derivative of a vector valued function r⃗ (t ) = ⟨
f (t ), g (t ),h(t )

⟩
is

d r⃗

d t
= r⃗ ′(t ) = lim

h→0

r⃗ (t +h)− r⃗ (t )h

h
= ⟨

f ′(t ), f ′(t ),h′(t )
⟩

Recall that the derivative of a function gave us the slope of its tangent line. For vector-valued func-
tions, the derivative gives us a tangent vector (pointing in the direction of increasing t-values). This
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vector can be used as a direction vector for the tangent line.

r⃗ ′(a) is the tangent vector to r⃗ (t ) at t = a (provided r⃗ ′(a) ̸= 0⃗). A very important variation of the
tangent vector is the unit tangent vector:

T⃗ (t ) = r⃗ ′(t )

||⃗r ′(t )||

This will be important in the next section.
Ex: Let r⃗ (t ) = 〈t cos t , t , t sin t〉. Find: i) r⃗ ′(t ) ii) T⃗ (t ) iii) an equation for the tangent line to r⃗ (t ) at t =π.

i) r⃗ ′(t ) = 〈cos t − t sin t ,1,sin t + t cos t〉
ii) First we need ||⃗r ′(t )||:

||⃗r ′(t )|| =
√

(cos t − t sin t )2 +1+ (sin t + t sin t )2

=
√

cos2 t −2t cos t sin t + t 2 sin2+1+ sin2 t +2t sin t cos t + t 2 cos2 t

=
√

1+ t 2 +1 =
√

t 2 +2

So,

T⃗ (t ) = r⃗ ′(t )

||⃗r ′(t )|| =
1p

t 2 +2
〈cos t − t sin t ,1,sin t + t cos t〉

iii) A direction vector for the tangent line at t =π is

r⃗ ′(π) = 〈cosπ−πsinπ,1,sinπ+πcosπ〉 = 〈−1,1,−π〉

(note that we could have also used T⃗ (π))
A point on the tangent line is r⃗ (π) = 〈−π,π,0〉, so an equation for the tangent line is

l⃗ (s) = r⃗ (π)+ sr⃗ ′(π) = 〈−π− s,π+ s,πs〉

13.2.1 Properties of Derivatives

Let u⃗(t ), v⃗(t ) be vector functions, c a constant, and f (t ) a scalar function. Then

1. d
d t [u⃗(t )+ v⃗(t )] = u⃗′(t )+ v⃗ ′(t )

2. d
d t [cu⃗(t )] = cu⃗′(t )
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3. d
d t [ f (t )u⃗(t )] = f ′(t )u⃗(t )+ f (t )u⃗′(t )

4. d
d t [u⃗(t ) · u⃗(t )] = u⃗′(t ) · v⃗(t )+ u⃗(t ) · v⃗ ′(t )

5. d
d t [u⃗(t )× v⃗(t )] = u⃗′(t )× v⃗(t )+ u⃗(t )× v⃗ ′(t )

6. d
d t [u⃗( f (t ))] = u⃗′( f (t )) f ′(t )

The first two of these establish the linearity of the derivative of vector functions. The next three are
product rules of vector functions. The final is the chain rule of vector functions. There is a useful
consequence of #4. Suppose r⃗ ′(t ) ̸= 0⃗ then

d

d t
||⃗r (t )|| = d

d t

√
r⃗ (t ) · r⃗ (t ) = 1

2

d
d t [⃗r (t ) · r⃗ (t )]√

r⃗ (t ) · r⃗ (t )

= 1

2

2⃗r (t ) · r⃗ ′(t )

||⃗r (t )|| = r⃗ (t ) · r⃗ (t )

||⃗r (t )||

Finally, integration:

Definition 3. The definite integral of r⃗ (t ) = ⟨
f (t ), g (t ),h(t )

⟩
is

∫ b

a
r⃗ (t )d = lim

n→∞

n∑
i=1

r⃗ (t∗i )∆ti

=
⟨∫ b

a
f (t )d t ,

∫ b

a
g (t )d t ,

∫ b

a
h(t )d t

⟩
The t∗i are chosen from the i t h piece of a partition of [a,b] into n pieces. One can also define indefinite integrals.∫

r⃗ (t )d t =
(∫

f (t )d t

)
î +

(∫
g (t )d t

)
ĵ +

(∫
h(t )d t

)
k̂

Ex: Find
∫

r⃗ (t )d t and
∫ 2

0 r⃗ (t )d t where r⃗ (t ) = t î − t 3k̂.

∫
r⃗ (t )d t =

(∫
t d t

)
î +

(∫
0d t

)
ĵ +

(∫
−t 3 d t

)
k̂

=
(

1

2
t 2 +C1

)
î +C2 ĵ +

(
−1

4
t 4 +C3

)
k̂

∫ 2

0
r⃗ (t )d t =

(
1

2
t 2

∣∣∣2

0

)
î +0

∣∣∣2

0
ĵ +

(
−1

4
t 4

∣∣∣2

0

)
k̂ = 2î −4k̂
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13.3 Arc Length and Curvature

In Calc II we found the arc length of a plane curve x(t ) = f (t ), y(t ) = g (t ), a ≤ t ≤ b as

L =
∫ b

a

√
[ f ′(t )]2 + [g ′(t )]2 d t

=
∫ b

a

√(
d x

d t

)2

+
(

d y

d t

)2

d t

=
∫ b

a

√
d x2 +d y2

This was done by approximating the curve by straight lines. We can do the same thing for curves in R3.
This leads to:

Definition 4. The arc length of the curve r⃗ (t ) = ⟨
f (t ), g (t ),h(t )

⟩
, a ≤ t ≤ b i

L =
∫ b

a

√
[ f ′(t )]2 + [g ′(t )]2 + [h′(t )]2 d t

There are some technical assumptions to this formula:

• r⃗ (t ) does not cross itself between t = a and t = b

• f ′, g ′, and h′ must be continuous (i.e. r⃗ is C 1)

Notice that because

||⃗r ′(t )|| =
√

[ f ′(t )]2 + [g ′(t )]2 + [h′(t )]2

we have that the arc length can be computed as

L =
∫ b

a
||⃗r ′(t )||d t

Ex: Find the arc length of
r⃗ (t ) = 〈t ,3cos t ,3sin t〉

where −5 ≤ t ≤ 5.

r⃗ ′(t ) = 〈1,−3sin t , sin t〉 ||⃗r ′(t )|| =
√

1+9sin2 t +9cos2 t =p
10

So L = ∫ 5
−5

p
10d t = 10

p
10

A curve C need not have a unique representation by a vector function, in fact, none do. For example
r⃗1(t ) = ⟨

t , t 2, t 3
⟩

, 1 ≤ t ≤ 2 is also represented by r⃗2(u) = ⟨
eu ,e2u ,e3u

⟩
, 0 ≤ u ≤ ln(2). r⃗1 and r⃗2 are called

parametrizations of C . There is one particular parametrization we care about, and it is found as fol-
lows:
Suppose C is given by r⃗ (t ), a ≤ t ≤ b, with r⃗ ′ continuous and r⃗ (t ) traverses C exactly once. We can
define the arc length function

s(t ) =
∫ t

a
||⃗r ′(u)||du

which tells us the distance traveled at time t . Now, suppose we can solve this equation for t in terms of
s. In other words invert s(t ) so that t = t (s). Then:
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Definition 5. The Arc Length Reparametrization of r⃗ (t ) is

r⃗ = r⃗ (t (s)), 0 ≤ s ≤ L

where L = arc length of r⃗ from t = a to t = b.

Ex: Reparametrize r⃗ (t ) = 〈t ,3cos t ,3sin t〉, −5 ≤ t ≤ 5 with respect to arc length.
Firs, find the arc length function:

s = s(t ) =
∫ t

−5
||⃗t ′(u)||d =

∫ t

−5

p
10du

=p
10t +5

p
10

Solving for t gives: t = s−5
p

10p
10

= t (s).

From the last example, L = 10
p

10, so the bounds on s are 0 ≤ s ≤ 10
p

10, so the bounds on s, thus the
reparametrization is:

r⃗ (t (s)) =
⟨

s −5
p

10p
10

,3cos

(
s −5

p
10p

10

)
,3sin

(
s −5

p
10p

10

)⟩
, 0 ≤ s ≤ 10

p
10 .

An interesting fact about arc length reparametrizations:

dr⃗

d s
= d

d s
(⃗r (t (s))) =

(
d t

d s

)
r⃗ ′(t (s)) = 1

||⃗r ′(t )|| r⃗
′(t (s))

So,
∣∣∣∣∣∣dr⃗

d s

∣∣∣∣∣∣= 1, that is, arc length reparametrizations always move with unit speed!

13.3.1 Curvature

Intuitively, curvature is a measure of how sharply a curve bends. Pictorally

has larger curvature at p than

does.

Definition 6. A parametrization r⃗ (t ) is called smooth on an interval I if r⃗ ′ is continuous on I and r⃗ ′(t ) ̸=
0⃗ for any t ∈ I . A curve C is called smooth if it has a smooth parametrization.

We quantify curvature as the rate of change of the unit tangent vector with respect to arc length. In
symbols, the curvature of r⃗ is

7



κ=
∣∣∣∣∣
∣∣∣∣∣dT⃗

d s

∣∣∣∣∣
∣∣∣∣∣

Now dT⃗
d s can often be messy to compute, however, we have a trick: by the chain rule

dT⃗

d t
= dT⃗

d s

d s

d t
= dT⃗

d s
||⃗r ′(t )||

So, a more convenient formula for curvature is

κ= ||T⃗ ′(t )||
||⃗r ′(t )||

Ex: Find the curvature of a circle of radius a.
Parametrize it: r⃗ (t ) = 〈−a sin t , a cos t〉 then r⃗ ′(t ) = 〈−a sin t , a cos t〉, ||⃗r ′(t )|| = a. So,

T⃗ (t ) = r⃗ ′(t )

||⃗r ′(t )|| = 〈−sin t ,cos t〉

Then T⃗ ′(t ) = 〈−cos t ,−sin t〉 and ||T⃗ ′(t )|| = 1, so

κ(t ) = 1

a
.

Even that formula is more effort than needed. Another is

κ(t ) = ||⃗r ′(t )× r⃗ ′′(t )||
||⃗r ′(t )||3

Find the curvature of r⃗ (t ) = ⟨p
2t ,e t ,e−t

⟩
at (0,1,1).
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First, find the relavent t value. Since r⃗ (0) = ⟨
0,e0,e−0

⟩= 〈0,1,1〉, the t value is t = 0. We need r⃗ ′(t ) and
r⃗ ′′(t ):

r⃗ ′(t ) =
⟨p

2,e t ,−e−t
⟩

r⃗ ′′(t ) = ⟨
0,e t ,e−t⟩

Now, we could either plug all of this into the formula for κ(t ) first, then plug in t = 0, or plug in t = 0
now, then compute κ(0). We’ll do the latter.

r⃗ ′(0) =
⟨p

2,1,−1
⟩

r⃗ ′′(0) = 〈0,1,1〉

So

r⃗ ′(0)× r⃗ ′′(0) =
∣∣∣∣∣∣

î ĵ k̂p
2 1 −1

0 1 1

∣∣∣∣∣∣=
⟨

2,−p2,
p

2
⟩

.

Then ||⃗r ′(0)|| =p
2+1+1 =p

4 and ||⃗r ′(0)× r⃗ ′′(0)|| =p
4+2+2 =p

8 = 2
p

2. So

κ(0) = 2
p

2

23
=

p
2

4

In the special case of a plane curve y = f (x), by parametrizing it as r⃗ (x) = ⟨
x, f (x)

⟩
we get

κ(x) = | f ′′(x)|
(1+ [ f ′(x)]2)3/2

.

13.3.2 Frenet-Serret Frame "T −N −B Frame"

This consists of 3 vectors derived from a parametrization, r⃗ (t ): T⃗ (t ), N⃗ (t ), and B⃗(t ). We already know
one of them, the other two are

Unit Normal Vector (Requiring ||T⃗ ′(t )|| ̸= 0, equivalently κ(t ) ̸= 0)

N⃗ (t ) = T⃗ ′(t )

||T⃗ ′(t )||
Binormal Vector

B⃗(t ) = T⃗ (t )× N⃗ (t )

Since ||T⃗ (t )|| = 1, we have T⃗ (t ) · T⃗ ′(t ) = 0, so T⃗⊥N⃗ . By definition of ×, B⃗⊥T⃗ , N⃗ , so the three vectors are
all orthogonal to each other. Thus since ||T⃗ || = ||N⃗ || = 1, we have ||B⃗ || = ||T⃗ × N⃗ || = ||T⃗ || ||N⃗ ||sin π

2 = 1,

thus all of T⃗ , N⃗ , and B⃗ and hard to compute, so here’s an alternate way:

B⃗(t ) = r⃗ ′(t )× r⃗ ′′(t )

||⃗r ′(t )× r⃗ ′′(t )|| N⃗ (t ) = B⃗(t )× T⃗ (t ) .

N⃗ always points in the direction the curve is bending and B⃗ points orthoganal to the motion of the
curve.
We can create some planes using T⃗ , N⃗ , and B⃗ .
Normal Plane: This plane is perpendicular to r⃗ (t ). It is determined by N⃗ and B⃗ , and so has T⃗ as a vector
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orthogonal to it.
Osculating Plane: This plane best captures the motion of the curve. It is determined by T⃗ and N⃗ , and

so has B⃗ as a vector perpendicular to it.
Rectifying Plane: This plane determined by T⃗ and B⃗ . We won’t bother with this one.

Ex: Find T⃗ (t ), N⃗ (t ), and B⃗(t ) for r⃗ (t ) = 〈t ,3cos t ,3sin t〉 and find equations for the normal and os-
culating planes at (π/2,0,3).
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Let’s begin with computing T⃗ (t ): r⃗ ′(t ) = 〈1,−3sin t ,3cos t〉, ||⃗r ′(t )|| =
√

1+9sin2 t +9cos2 t =p
10. So

T⃗ (t ) = r⃗ ′(t )

||⃗r ′(t )|| =
1p
10

〈1,−3sin t ,3cos t〉 .

This is pretty tame, so we can differentiate it:

T⃗ ′(t ) = 1p
10

〈0,−3cos t ,−3sin t〉

So

||T⃗ ′(t )|| =
√

02 + 9cos2 t

10
+ 9sin2 t

10
=

√
9

10
= 3p

10

Thus,

N⃗ (t ) = T⃗ ′(t )

||T⃗ ′(t )|| =
1p
10

〈0,−3cos t ,−3sin t〉
3p
10

= 〈0,−cos t ,−sin t〉

Finally

B⃗(t ) = T⃗ (t )× N⃗ (t ) =

∣∣∣∣∣∣∣
î ĵ k̂
1p
10

− 3p
10

sin t 3p
10

cos t

0 −cos t −sin t

∣∣∣∣∣∣∣
=

⟨
3p
10

sin2 t + 3p
10

cos2 t ,
1p
10

sin t ,− 1p
10

cos t

⟩
= 1p

10
〈3,sin t ,−cos t〉

The t-value corresponding to (π/2,0,3) is t =π/2. So, we have:

T⃗
(π

2

)
=

⟨
1p
10

,− 3p
10

,0

⟩
and B⃗

(π
2

)
=

⟨
3p
10

,
1p
10

,0

⟩
Normal Plane: Use T⃗ (π/2): ⟨

1p
10

,− 3p
10

,0

⟩
·
⟨

x − π

2
, y −0, z −3

⟩
= 0

Osculating Plane: Use B⃗(π/2): ⟨
3p
10

,
1p
10

,0

⟩
·
⟨

x − π

2
, y −0, z −3

⟩
= 0

A comment on the normal and osculating planes:
Recall that we only need a vector which is perpendicular to the plane to find an equation for it, in
particular, the length of the vector doesn’t matter. So, easier vectors to use are:
Normal Plane: use r⃗ ′(t )
Osculating Plane: use r⃗ ′(t )× r⃗ ′′(t )
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13.4 Motion in Space

Suppose a particle moves along a trajectory r⃗ (t ).
It’s velocity is v⃗(t ) = r⃗ ′(t )

acceleration is a⃗(t ) = v⃗ ′(t ) = r⃗ ′′(t )
and speed is ||v⃗(t )||, which I wil denote by ν.
Ex: A particle has acceleration function

a⃗(t ) = 4t î +6sin t ĵ +e t k̂ .

If its initial velocity is v⃗(0) = 3 ĵ and its initial position is r⃗ (0) = 0⃗, find its position function.

v⃗(t ) =
∫

a⃗(t )d t = (2t 2 +C1)î + (−6cos t +C2) ĵ + (e t +C3)k̂

v⃗(0) =C1î + (−6+C2) ĵ + (1+C3)k̂ = 3 ĵ meaning C1 = 0, C2 = 9, C3 =−1 so

v⃗(t ) =
∫

a⃗(t )d t = 2t 2î + (9−6cos t ) ĵ + (e t −1)k̂

Now

r⃗ (t ) =
∫

v⃗(t )d t =
(

2

3
t 3 +D1

)
î + (9t −6sin t +D2) ĵ + (e t − t +D3)k̂

r⃗ (0) = D1î +D2 ĵ + (1+D3)k̂ = 0̂ meaning D1 = D2 = 0 and D3 =−1 so

r⃗ (t ) = 2

3
t 3î + (9t −6sin t ) ĵ + (e t − t −1)k̂ .

If the particle has mass m and acceleration a⃗(t ), the force it experiences is given by Newton’s second law:

F⃗ (t ) = ma⃗(t ) .

Ex: A projectile is fired with a muzzle speed 200 m/s and angle of elevation 60◦. If the projectile is fired
from a distance of 10m above ground level, what is the distance covered by the projectile? (All forces,
except gravity, are assumed negligible.)
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The only force acting on the projectile is gravity, so F⃗ (t ) = ma⃗(t ) =−mg ĵ . This means â(t ) =−g ĵ . So

v⃗(t ) =
∫

a⃗(t ) =−mg ĵ .

This means a⃗(t ) = −g ĵ . So, v⃗(t ) = ∫
a⃗(t )d t = C1î + (−g t +C2) ĵ . To get the initial velocity, we use the

given information ν= 200 = ||v⃗(0)||. So

v⃗0 = (200cos60◦)î + (200sin60◦) ĵ = 100î +100
p

3 ĵ

meaning C1 = 100 and C2 = 100
p

3. Thus the velocity function is

v⃗(t ) = 100î + (100
p

3− g t ) ĵ

The position function is

r⃗ (t ) =
∫

v⃗(t )d t = (100t +D1)î + (100
p

3t − 1

2
g t 2 +D2) ĵ .

The initial position is r⃗ (0) = 10 ĵ , so D1 = 0, D2 = 10. Thus

r⃗ (t ) = 100t î + (100
p

3t − 1

2
g t 2 +10) ĵ .

The particle hits the ground when the ĵ -component is 0: 100
p

3t − 1
2 g t 2 +10 = 0 meaning

t = −100
p

3±√
30000+20g

−g

We take the positive value of t

t = −100
p

3−√
30000+20g

−g
≈ 35.4

Plugging this in the î -component gives the distance traveld: dist ≈ 100(35.4)m ≈ 3540m.

Recall that the motion of a curve is best captured by the osculating plane at any point. (After all,
B⃗(t )⊥r⃗ ′(t ), r⃗ ′′(t ).) We aim to write the acceleration in terms of T⃗ (t ) and N⃗ (t ). Let’s start with T⃗

T⃗ (t ) = r⃗ ′(t )

||⃗r ′(t )|| =
v⃗(t )

ν(t )

So v⃗(t ) = ν(t )T⃗ (t ).
Take a derivative:

v⃗ ′′(t ) = ν′(t )]T⃗ (t )+ν(t )T⃗ ′(t ) = a⃗(t )

Now κ(t ) = ||T⃗ ′(t )||
||⃗r ′(t )|| = ||T⃗ ′(t )||

ν(t ) so ||T⃗ ′(t )|| = ν(t )κ(t ).
This allows us to write:

N⃗ (t ) = T⃗ ′(t )

||T⃗ ′(t )|| =
T⃗ ′(t )

ν(t )κ(t )

So
T⃗ ′(t ) = ν(t )κ(t )N⃗ (t ) .
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Finally: a⃗(t ) = ν′(t )T⃗ (t )+ (ν(t ))2κ(t )N⃗ (t ).
This motivates the definitions: tangential component of acceleration aT = ν′ and

normal component of acceleration aN = ν2κ.
With a little work we see

aT = r⃗ ′(t ) · r⃗ ′′(t )

||⃗r ′(t )|| aN = ||⃗r ′(t )× r⃗ ′′(t )||
||⃗r ′(t )||

A convenient fact:
a⃗ = aT T⃗ +aN N⃗ Since T⃗ · N⃗ = 0 and T⃗ · T⃗ = N⃗ · N⃗ = 1.

||a⃗||2 = a⃗ · a⃗ = (aT T⃗ +aN N⃗ ) · (aT T⃗ +aN N⃗ ) = a2
T +a2

N

So, ||a⃗|| =
√

a2
T +a2

N
Ex: Find the normal and tengential components of acceleration for a particle moving along the trajec-
tory r⃗ (t ) = 〈cos t , sin t , t〉

r⃗ ′(t ) = 〈−sin t ,cos t ,1〉
r⃗ ′′(t ) = 〈−cos t ,−sin t ,0〉

r⃗ ′(t ) · r⃗ ′′(t ) = sin t cos t −cos t sin t +0 = 0

So aT = 0 meaning ||a⃗|| =
√

a2
T +a2

N =
√

a2
N = aN

aN = ||a⃗(t )|| = ||⃗r ′′(t )|| =
√

cos2 t + sin2 t +02 = 1
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