Department of Mathematics
University of Notre Dame
MATH 20550 - Calculus III
Summer 2015

Name \qquad

Final Exam

July 24, 2015

This exam has 13 problems worth a total of $\mathbf{1 4 5}$ points. You will have 105 minutes to work on it. All answers should be given as exact, closed form numbers as opposed to decimal approximations. For full credit, you must show all work. Calculators and all other electronic devices are strictly forbidden.

Please read and sign the Honor Pledge:

Honor Pledge: As a member of the Notre Dame community, I will not participate in or tolerate academic dishonesty.

Signature:

\qquad

Question	Points	Score
1	10	
2	10	
3	10	
4	15	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	15	
12	10	
13	15	
Total:	145	

1. (10 points) Find the Jacobian of the transformation

$$
x=\frac{u}{v} \quad y=\frac{v}{w} \quad \frac{w}{u}
$$

2. (10 points) Is the vector field

$$
\vec{F}=\left(3 x^{2}-2 y^{2}\right) \hat{i}+(4 x y+3) \hat{j}
$$

conservative? If so, find a potential function.
3. (10 points) Compute

$$
\iint \operatorname{curl} \vec{F} \cdot d \vec{S}
$$

where S is the sphere of radius 16 oriented outward, and $\vec{F}=\left\langle x y z, x^{2} y^{2} z^{2}, x^{3} y^{3} z^{3}\right\rangle$.
4. (15 points) Compute the flux of $\vec{F}=\left\langle x y e^{z}, x y^{2} z^{3},-y e^{z}\right\rangle$ through the box bound by the coordinate planes and the planes $x=3, y=2, z=1$, where the box has outward orientation.
5. (10 points) Find and classify all the critical points of

$$
f(x, y)=x y-2 x-2 y-x^{2}-y^{2}
$$

6. (10 points) Give a vector function which represents the curve of intersection between the hyperboloid $z=x^{2}-y^{2}$ and the cylinder $x^{2}+y^{2}=1$.
7. (10 points) Is there a vector field \vec{G} on \mathbb{R}^{3} such that

$$
\operatorname{curl} \vec{G}=\left\langle x y z,-y^{2} z, y z^{2}\right\rangle
$$

? Explain.
8. (10 points) The plane $2 x+y+2 z=9$ intersects the sphere $x^{2}+y^{2}+z^{2}=9$ tangentially at exactly one point. Find the point of intersection.
9. (10 points) Find an equation for the sphere which has $(2,1,4)$ and $(4,3,10)$ as antipodal points (the are connected by a line through the center of the sphere).
10. Compute the limits or show they do not exist
(a) (5 points)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+2 y^{2}}{x y}
$$

(b) (5 points)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y+\cos (x)}{\frac{x+e^{y}}{x^{2} y+\cos (x) e^{y}}}
$$

11. (15 points) Compute the line integral

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

where $\vec{F}=\langle y-\cos y, x \sin y\rangle$ and C is the circle $(x-3)^{2}+(y+4)^{2}=4$, oriented clockwise.
12. (10 points) Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ where $z=x^{2}-3 y^{2}, x=s t, y=s+t^{2}$.
13. (15 points) Compute

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}
$$

where S is the top and four sides of the faces of the box with verticies ($\pm 1, \pm 1 \pm 1$) (the box without the bottom), given outward orientation, and $\vec{F}(x, y, z)=\left\langle x y z, x y, x^{2} y z\right\rangle$.

