
1.(8pts) Let C be the curve parametrized by r(t) = 〈cos t, sin t, 1〉. Stokes’ theorem tells us
that for a differentiable vector field F∫

C

F • dr =

∫∫
S

(curlF) • dS

for any oriented smooth surface S. The surfaces below are possible choices for S where the
vectors indicate the direction of the normal field. Which of the following is an appropriate
choice for S? The curve C is drawn in bold in each picture and the positive directions on
the axes are labeled. Hint: Be mindful of the orientation of C !

(a) (b)

(c) (d)

(e)



Solution.Solution. This question boils down to figuring out whether the given surface has C as
its boundary and has orientation consistent with the orientation on C. Since the annulus
has both C and the inner circle as its boundary, it is immediately out. The sphere has
no boundary, so that is out. Now, for a surface to have orientation consistent with the
orientation of its boundary, if you walk around the boundary in the direction of its orientation
with your head pointing in the direction of the normal vector field, then the surface will be
on your left. This leaves the disk with upward normals as the correct answer.



2.(8pts) Let T be the surface r(u, θ) =
〈
u, u2 cos(θ), u2 sin(θ)

〉
for 0 6 u 6 1, 0 6 θ 6 2π. This

is the surface you get by rotating y = x2, 0 6 x 6 1, around the y axis. If the density at a
point on this surface is given by 24x5 + 4x3, find the mass.
Remark: The density has been chosen so that a simple substitution can be used to evaluate
the integral you should get.

(a)
4π

3
5

3
2 (b) 20π (c) π

(√
24− 2

)
(d) π

√
28 (e) π(24)

3
2

Solution.Solution.

ru = 〈1, 2u cos(θ), 2u sin(θ)〉
rθ =

〈
0,−u2 sin(θ), u2 cos(θ)

〉
ru × rθ = det

∣∣∣∣∣∣
i j k
1 2u cos(θ) 2u sin(θ)
0 −u2 sin(θ) u2 cos(θ)

∣∣∣∣∣∣ =
〈
2u3,−u2 cos(θ),−u2 sin(θ)

〉
|ru × rθ| =

√
4u6 + u4

Hence

Mass =

∫∫
T

(24x5 + 4x3) dS =

∫∫
06u61
06θ62π

(24u5 + 4u3)
√

4u6 + u4 dA =

 2π∫
0

dθ

 1∫
0

(24u5 + 4u3)
√

4u6 + u4 du


To do

1∫
0

(24u5+4u3)
√

4u6 + u4 du use the substitution v = 4u6+u4, dv = (24u5+4u3) du.

Now isn’t that handy.
1∫

0

(24u5 + 4u3)
√

4u6 + u4 du =

5∫
0

√
v dv =

3

2
v

2
3

∣∣∣∣∣
5

0

=
2

3
5

3
2

Hence the mass is 2π
2

3
5

3
2 =

4

3
π5

3
2 .



3.(8pts) Find

∫∫
T

F • dS where F =
〈
x+ yez

2

+ zey
2

, y + xez
2

+ zex
2

, z
〉

and where T is the

surface in the pictures. (The two pictures are two views of the same surface.) The boundary
of T is the unit circle in the xy plane. Let D be the unit disk in the xy plane. Then T ∪D
is the boundary of a solid E whose volume is 2π. The orientation on T is outward with
respect to E. You are looking at the picture from underneath. This problem will require
some thought since all you know about T and E are what you see in the picture plus the
volume of E.

(a) 6π (b) −6π (c) 2π (d) −2π (e) π(e2 − 2e)

Solution.Solution. divF = 3 so

∫∫∫
E

divF dV = 6π. Hence

∫∫
∂E

F • dS =

∫∫
T∪D

F • dS =

∫∫
T

F • dS +

∫∫
D

F • dS = 6π

T is oriented the way we want and D is oriented so that the normal vector points down: the
unit normal is 〈0, 0,−1〉 and the field restricted to D is 〈x+ y, y + x, 0〉 since this is what
we get when z = 0. Then∫∫

D

〈x+ y, y + x, 0〉 • 〈0, 0,−1〉 dS =

∫∫
x2+y261

0 dS = 0

Hence

∫∫
T

F • dS = 6π.



4.(7pts) Determine the surface area of the part of z = xy that lies inside the cylinder x2 +y2 =
1.

(a)
2π

3
(2

3
2 − 1) (b)

2π

3
(2

2
3 − 1)

(c)
2π

3
(2

3
2 + 1) (d)

2π

3
(2

2
3 + 1)

(e) 2π

Solution.Solution. The partial derivatives are given by fx = y and fy = x. The surface area

is given by S =

∫∫
D

√
x2 + y2 + 1 dA. After converting to polar coordinates we obtain

2π∫
0

1∫
0

r
√
r2 + 1 dr dθ =

2π∫
0

1

3
(2

3
2 − 1) dθ =

2π

3
(2

3
2 − 1).



5.(7pts) We are asked to find absolute maximum and minimum values of f(x, y, z) with respect
to the constraints g(x, y, z) = 10 and h(x, y, z) = e. We are given that the five points (1, 1, 1),
(0, 1, 1), (0, 1,−1), (1,−1, 1) and (−1, 1,−1) satisfy both constraint equations. Each of the
five points satisfies an additional condition:

∇f(1, 1, 1) = −2∇g(1, 1, 1) + 3∇h(1, 1, 1)

∇f(0, 1, 1) = 6∇g(0, 1, 1)

∇f(0, 1,−1) •
(
(∇g(0, 1,−1)×∇h(0, 1,−1)

)
= 0

∇f(−1, 1,−1) •
(
(∇g(−1, 1,−1)×∇h(−1, 1,−1)

)
6= 0

∇f(1,−1, 1) = 0

Which point can not be an absolute extremum?

(a) (−1, 1,−1). (b) (1,−1, 1). (c) (1, 1, 1). (d) (0, 1, 1). (e) (0, 1,−1).

Solution.Solution. The points where a possible absolute maximum and minimum can occur are
points on the two constraints such that ∇f is in the plane formed by ∇g and ∇h. So ∇f
is a linear combination of ∇g and ∇h ∇f •

(
∇g × ∇h

)
= 0, scalar triple product of ∇f ,

∇g, ∇h is zero, or the hessian of ∇f,∇g, ∇h is zero. All those occur expect for the point
(−1, 1,−1).



6.(7pts) Which of the following is a minimum of f(x, y) = x2 + 2y2 subject to the constraint
x2 + y2 = 1?

(a) (−1, 0) (b) (0, 1) (c)

(√
2

2
,−
√

2

2

)

(d)

(
1

2
,

√
3

2

)
(e) None of these points is a minimum.

Solution.Solution. Letting g(x, y) = x2 + y2, the equations to solve are:{
∇f = λ∇g
g(x, y) = 1

which, written out are: 
2x = 2λx

4y = 2λy

x2 + y2 = 1

The first equation says that either x = 0 or λ = 1. If x = 0, then the third equation gives
that y = ±1; so (0, 1) and (0,−1) are possible extrema. If λ = 1, then the second equation
gives that y = 0 which, by the third equation, gives that x = ±1. This gives (1, 0) and

(−1, 0) as two more possible extrema. This eliminates (0, 0),

(√
2

2
,−
√

2

2

)
, and

(
1

2
,

√
3

2

)
as possible answers. Plugging in the possible extrema, we find that

f(1, 0) = f(−1, 0) = 1

f(0, 1) = f(0,−1) = 2

and so (1, 0) and (−1, 0) are the minima of f subject to x2 + y2 = 1. Thus (−1, 0) is the
correct answer.



7.(7pts) Let f(x, y) = x2 + 6xy − 3y2. Find and classify all critical points.

(a) (0, 0), saddle point. (b) (0, 0) and (1, 1), both saddle points.

(c) (0, 0), local maximum. (d) (−1, 1), local minima, (0, 0), local maximum.

(e) (0, 0), local maximum.

Solution.Solution. We first compute fx = 2x+ 6y, fy = 6x− 6y, fxx = 2, fxy = 6, fyy = −6.
The critical points are the solutions to the equations

2x+ 6y = 0

6x− 6y = 0

The only solutions is x = y = 0. Thus (0, 0) is the only critical points. The value of the
Hessian −48 and we conclude that (0, 0) is a saddle point



8.(7pts) Find the curvature when t = 0 of r(t) =
〈
cos t, sin t, et

〉
.

(a)

√
3

2
√

2
(b)

1

2
(c)

1√
2

(d)

√
3√
2

(e)
3

2
√

2

Solution.Solution. κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3

. r′(t) =
〈
− sin t, cos t, et

〉
and r′(t) = 〈0, 1, 1〉. r′′(t) =

〈
− cos t,− sin t, et

〉
and r′′(t) = 〈−1, 0, 1〉. 〈0, 1, 1〉×〈−1, 0, 1〉 = det

∣∣∣∣∣∣
i j k
0 1 1
−1 0 1

∣∣∣∣∣∣ = 〈1,−1, 1〉.

|〈1,−1, 1〉| =
√

3 and |〈0, 1, 1〉| =
√

2. κ(0) =

√
3

2
√

2
.



9.(7pts) Find

∫∫
D

F • dS where F =
〈
x2,−2yz, z2

〉
and D is the surface of the cube E with

vertices: (0, 0, 0), (2, 0, 0), (2, 3, 0), (2, 0, 4), (0, 3, 0), (0, 3, 4), (0, 0, 4), and (2, 3, 4), so 0 6 x 6
2, 0 6 y 6 3 and 0 6 z 6 4.

(a) 48 (b) 36 (c) 24 (d) 0 (e) −24

Solution.Solution. Use the Divergence Theorem to converge this into a triple integral,

∫∫∫
E

2x dV .

This becomes

∫ 3

0

∫ 4

0

∫ 2

0

2x dx dz dy = 48.



10.(7pts) Find the equation of the tangent plane to the surface z = x+ ln(2x+ y) at the point
(−1, 3,−1).

(a) 3x+ y − z = 1 (b) 〈−1 + 3t, 3 + t,−1− t〉 (c) −x+ 3y − z = 11

(d) −x+ y − 3z = 1 (e) 3x− y + z = −7

Solution.Solution. Let f(x, y, z) = x + ln 2x+ y − z. Then ∇f =

〈
1 +

2

2x+ y
,

1

2x+ y
,−1

〉
so

that ∇f(−1, 3,−1) = 〈3, 1,−1〉. Since ∇f(−1, 3,−1) defines a normal vector to the surface,
an equation of the tangent plane is given by

〈3, 1,−1〉 • 〈x+ 1, y − 3, z + 1〉 = 0

or 3x+ y − z = 1.



11.(7pts) If f(x, y) = sin(xy) find the directional derivative Duf at the point (x, y), where

u =

〈
1√
2
,

1√
2

〉
.

(a)
x+ y√

2
cos(xy) (b) −x+ y√

2
cos(xy) (c)

x+ y√
2

sin(xy)

(d) −x+ y√
2

sin(xy) (e)
x− y√

2
cos(xy)

Solution.Solution. The gradient is given by ∇f = 〈y cos(xy), x cos(xy)〉 so Duf = ∇f • u =
x+ y√

2
cos(xy).



12.(7pts) Find

∫
C

F • dr where F = 〈x, z, y〉 and C is parametrized by

r(t) = 〈cos t, t, sin t〉, 0 6 t 6
π

2
.

(a)
π

2
− 1

2
(b)

π

2
(c)

1

2
(d) π − 2 (e) π + 2

Solution.Solution. F(r(t)) = 〈cos t, t, sin t〉
r′(t) = 〈− sin t, cos t, 1〉
F(r(t)) • r′(t) = − sin t cos t+ t cos t+ sin t∫
C

F • dr =

∫ π
2

0

F(r(t)) • r′(t) dt =

∫ π
2

0

(− sin t cos t+ t cos t+ sin t) dt∫ π
2

0

− sin t cos t dt = −
∫ 1

0

u du =
1

2
(where u = sin t)∫ π

2

0

t cos t+ sin t dt = t sin t
∣∣∣π2
0

=
π

2

Thus F • dr = −1

2
+
π

2
.



13.(7pts) Compute the flux

∫∫
S

F • dS, where F =
〈
4y2, xy, xz

〉
and S is the surface z = yex,

0 6 x 6 1, 0 6 y 6 1, with the upward orientation.

(a) 1− e (b) e− 1 (c) e (d) −e (e) 1 + 2e

Solution.Solution. The parametrization is r(x, y) = 〈x, y, yex〉, 0 6 x 6 1, 0 6 y 6 1. The normal
vector has positive z-coordinate so the orientation is up. Hence F

(
r(x, y)

)
=
〈
4y2, xy, xyex

〉
and dS = rx × ry dA = det

∣∣∣∣∣∣
i j k
1 0 yex

0 1 ex

∣∣∣∣∣∣ dA = 〈−yex,−ex, 1〉 dA.

Hence

Flux =

∫∫
06x61
06y61

〈
4y2, xy, xyex

〉
• 〈−yex,−ex, 1〉 dA =

∫∫
06x61
06y61

(−4y3ex − xyex + xyex) dA =

−4

1∫
0

1∫
0

y3ex dy dx = −4

1∫
0

y4

4

∣∣∣∣1
0

ex dx = −
1∫

0

ex dx = −e+ 1



14.(7pts) Compute

∫
x(t) dt where x(t) = sin(t)i + etk.

(a) (− cos t+ C1)i + C2j + (et + C3)k (b) (− cos t+ C)i + Cj + (et + C)k

(c) (− cos t+ C1)i + (et + C2)k (d) (− cos t)i + etk

(e) − cos t+ et + C

Solution.Solution.∫
x(t) dt =

∫ (
sin t)i + etk

)
dt

=

∫ 〈
sin t, 0, et

〉
dt

=

〈∫
sin t dt,

∫
0 dt,

∫
et dt

〉
=
〈
− cos t+ C1, C2, e

t + C3

〉
= (− cos t+ C1)i + C2j + (et + C3)k



15.(7pts) Find the center of mass of the thin plate D which has the shape of a half-disk consisting
of the region below the semicircle bounded by x2 + y2 = 9 and above the x-axis. Assume

that D has density ρ(x, y) =
√
x2 + y2 and mass 9π.

(a)

(
0,

9

2π

)
(b)

(
0,

3

2π

)
(c)

(
0,

2

3π

)
(d)

(
0,

2

9π

)
(e)

(
0,
π

3

)
Solution.Solution. The region and the density are symmetric about the y-axis, hence the x-
coordinate of the center of mass is 0. To find the y-coordinate, we compute the moment
about the x-axis. In polar coordinates,

Mx =

∫∫
x2+y269

√
x2 + y2 y dA =

∫ π

0

∫ 2

0

r(r sin(θ))r dr dθ =

(∫ π

0

sin(θ) dθ

)(∫ 3

0

r3 dr

)
=

(
− cos θ

∣∣∣∣π
0

)(
r4

4

∣∣∣∣3
0

)
= 2 · 81

4
=

81

2

The mass is

M =

∫∫
x2+y269

√
x2 + y2 dA =

π∫
0

2∫
0

rr dr dθ =

π∫
0

3∫
0

r2 dr dθ = 2π
r3

3

∣∣∣∣3
0

= 9π

Hence,

ȳ =
Mx

mass(D)
=

81

2
9π

=
9

2π



16.(7pts) Compute the curl of the vector field F(x, y, z) = 〈ex sin(2y), ey cos(2z), ex〉.

(a) 〈2ey sin(2z),−ex,−2ex cos(2y)〉 (b) 〈−2ey sin(2z), ex, 2ex cos(2y)〉

(c) 2 〈ey sin(2z),−ex,−ex cos(2y)〉 (d) 〈2ex sin(2z),−ex,−2ex cos(2y)〉

(e) 〈2ey sin(2z), ex,−2ey cos(2y)〉

Solution.Solution.

curlF = det

∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
ex sin(2y) ey cos(2z) ex

∣∣∣∣∣∣∣ = 〈2ey sin(2z),−ex, 2ex cos(2y)〉



17.(7pts) Compute the angle between the vectors 〈1, 1, 0〉 and 〈2,−1,−3〉.

(a) arccos

(
1√
28

)
(b) π (c) π/2 (d) arccos

(
1

28

)
(e) π/4

Solution.Solution. The desired angle is given by

θ = arccos
〈1, 1, 0〉√

2
•
〈2, 1,−3〉√

14
= arccos

(
1√
28

)
where • stands for the dot product.



18.(7pts) Which of the following is perpendicular to both a and b if a • b = 1 and a × b 6=
〈0, 0, 0〉.

(a) (a • b)(a× b) (b) a + b (c) (a + b) • (a× b)

(d) (a× b)× b (e) (a× b)× a

Solution.Solution. We’re looking for a vector which is parallel to a × b, and it’s obvious that
(a • b)(a× b) is parallel to (a× b). (because a • b 6= 0)

However, a+b, (a×b)×b and (a×b)×a are perpendicular to a×b, and (a+b) • (a×b)
is not a vector.



19.(7pts) Find the direction of fastest increase of the function f(x, y) = x2 − y3 at the point
(2, 1).

(a)

〈
4

5
,−3

5

〉
(b) 〈4,−1〉 (c)

〈
4√
5
,− 1√

5

〉

(d) 〈−3, 2, 1〉 (e)

〈
− 3√

14
,

2√
14
,

1√
14

〉
Solution.Solution. The gradient is ∇f =

〈
2x,−3y2

〉
which at (2, 1) is 〈4,−3〉. The direction is〈

4

5
,−3

5

〉



20.(7pts) Define a transformation x(u,w) = uw, y(u,w) = wu for 0 < u < ∞, 0 < w < ∞.

Compute the Jacobian
∂(x, y)

∂(u,w)
of this transformation.

Recall:
d ax

dx
= ax ln(a).

(a) uwwu
(
1− ln(u) ln(w)

)
(b) uw ln(u) + wu ln(w) (c) (u+ w)uw−1wu−1

(d) (u2 + w2)uw−1wu−1 (e) 0

Solution.Solution.

∂(x, y)

∂(u,w)
= det

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂w

∂y

∂u

∂y

∂w

∣∣∣∣∣∣∣∣ = det

∣∣∣∣∣∣∣∣
∂uw

∂u

∂uw

∂w

∂wu

∂u

∂wu

∂w

∣∣∣∣∣∣∣∣ = det

∣∣∣∣ wuw−1 uw ln(u)
wuln(w) uwu−1

∣∣∣∣ =

uwwu − uwwu ln(u) ln(w) = uwwu
(
1− ln(u) ln(w)

)



21.(7pts) Find the volume that lies inside the sphere x2 + y2 + z2 = 2 and outside the cone
z2 = x2 + y2.

(a)
8

3
π (b)

3

8
π (c) π (d) 2π (e)

π

2

Solution.Solution. In spherical coordinates the sphere becomes ρ =
√

2. To convert the cone
into spherical coordinates we add z2 to both sides of the equation defining the cone so that
2z2 = x2 + y2 + z2 which becomes

2ρ2 cos2 φ = ρ2

Therefore φ = arccos

(
1√
2

)
which gives φ =

π

4
or φ =

3π

4
.

To find the volume we compute V =

2π∫
0

3π
4∫

π
4

√
2∫

0

ρ2 sinφ dρ dφ dθ =
2
√

2

3

2π∫
0

3π
4∫

π
4

sinφ dφ dθ =

4

3

2π∫
0

dθ =
8

3
π


