MATH 20550 - Calculus III Notes 4 September 29, 2016

This notes include:

- Formulas for Implicit Differentiation
- Directional Derivative
- The Gradient
- Level Surfaces
- Tangent Planes to a Level Surface
- Normal Lines to a Level Surface

14.5 Formulas for Implicit Differentiation

1. Given F(x, y) = 0 defines y **implicitly** as a differentiable function of x (loosely speaking, that means y is a function of x but we don't have an explicit formula for y, but rather a complex expression involving x and y,) then

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

2. If z = z(x, y) is defined **implicitly** as a function of x, y by the equation F(x, y, z) = 0, then 2x = E

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

14.6 Directional Derivatives and the Gradient Vector

1. If f = f(x, y), then the **gradient** of f is the vector function ∇f defined by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$

If f = f(x, y, z), then the **gradient** of f is

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$$

2. The **directional derivative** of f = f(x, y) at the point (x_0, y_0) in the direction of a *unit vector* **u** is

$$D_{\mathbf{u}}f(x_0, y_0) = \nabla f(x_0, y_0) \cdot \mathbf{u}$$

Note that the directional derivative of f is computed in the same manner when f = f(x, y, z).

Remark: f changes (increasing) the fastest in the direction of the gradient vector ∇f . And the maximum rate of change of f is $|\nabla f|$, which is the magnitude of the gradient vector. And f decreases most rapidly in the direction of $-\nabla f$.

3. Recall that a surface S in \mathbb{R}^3 can be described using the equation

$$F(x, y, z) = k$$
, where k is a constant.

In this case, S is a **level surface** of a function F of three variables.

Example: The equation $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$ describes a surface in \mathbb{R}^3 , namely an ellipsoid. Here, $F(x, y, z) = \frac{x^2}{4} + y^2 + \frac{z^2}{9}$ and k = 3.

Aside: The equation z = f(x, y) also gives a surface in \mathbb{R}^3 . It can be considered as a special case of level surfaces. If we rewrite this equation into f(x, y) - z = 0, then we get a level surface of the function F(x, y, z) = f(x, y) - z with k = 0. We shall see that there are times we want to do such thing.

Example: $z = 4x^2 + y^2$ gives a paraboloid in the *xyz*-plane. This is exactly a level surface given by $F(x, y, z) = 4x^2 + y^2 - z = 0$.

4. The tangent plane to the level surface F(x, y, z) = k at $P(x_0, y_0, z_0)$ is the plane that passes through P and has normal vector $\nabla F(x_0, y_0, z_0)$.

Recall: The equation of a plane through a point (x_0, y_0, z_0) with <u>normal vector</u> $\mathbf{n} = \langle a, b, c \rangle$ is given by

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

or

$$\langle a, b, c \rangle \cdot \langle x, y, z \rangle = \langle a, b, c \rangle \cdot \langle x_0, y_0, z_0 \rangle$$

5. The normal line to the level surface F(x, y, z) = k at $P(x_0, y_0, z_0)$ is the line that passes through P and perpendicular to the tangent plane. So, a *parallel vector* of the normal line is given by $\nabla F(x_0, y_0, z_0)$.

Recall: The equation of a line through a point (x_0, y_0, z_0) with parallel vector $\mathbf{v} = \langle a, b, c \rangle$ is given by

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$