MATH 20550-Calculus III Notes 4

September 29, 2016

This notes include:

- Formulas for Implicit Differentiation
- Directional Derivative
- The Gradient
- Level Surfaces
- Tangent Planes to a Level Surface
- Normal Lines to a Level Surface

14.5 Formulas for Implicit Differentiation

1. Given $F(x, y)=0$ defines y implicitly as a differentiable function of x (loosely speaking, that means y is a function of x but we don't have an explicit formula for y, but rather a complex expression involving x and y,) then

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

2. If $z=z(x, y)$ is defined implicitly as a function of x, y by the equation $F(x, y, z)=0$, then

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}, \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
$$

14.6 Directional Derivatives and the Gradient Vector

1. If $f=f(x, y)$, then the gradient of f is the vector function ∇f defined by

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle
$$

If $f=f(x, y, z)$, then the gradient of f is

$$
\nabla f(x, y, z)=\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle
$$

2. The directional derivative of $f=f(x, y)$ at the point $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector \mathbf{u} is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \mathbf{u}
$$

Note that the directional derivative of f is computed in the same manner when $f=$ $f(x, y, z)$.
Remark: f changes (increasing) the fastest in the direction of the gradient vector ∇f. And the maximum rate of change of f is $|\nabla f|$, which is the magnitude of the gradient vector. And f decreases most rapidly in the direction of $-\nabla f$.
3. Recall that a surface S in \mathbb{R}^{3} can be described using the equation

$$
F(x, y, z)=k, \quad \text { where } k \text { is a constant. }
$$

In this case, S is a level surface of a function F of three variables.
Example: The equation $\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3$ describes a surface in \mathbb{R}^{3}, namely an ellipsoid. Here, $F(x, y, z)=\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}$ and $k=3$.
Aside: The equation $z=f(x, y)$ also gives a surface in \mathbb{R}^{3}. It can be considered as a special case of level surfaces. If we rewrite this equation into $f(x, y)-z=0$, then we get a level surface of the function $F(x, y, z)=f(x, y)-z$ with $k=0$. We shall see that there are times we want to do such thing.
Example: $z=4 x^{2}+y^{2}$ gives a paraboloid in the $x y z$-plane. This is exactly a level surface given by $F(x, y, z)=4 x^{2}+y^{2}-z=0$.
4. The tangent plane to the level surface $F(x, y, z)=k$ at $P\left(x_{0}, y_{0}, z_{0}\right)$ is the plane that passes through P and has normal vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$.
Recall: The equation of a plane through a point $\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\mathbf{n}=$ $\langle a, b, c\rangle$ is given by

$$
\langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0
$$

or

$$
\langle a, b, c\rangle \cdot\langle x, y, z\rangle=\langle a, b, c\rangle \cdot\left\langle x_{0}, y_{0}, z_{0}\right\rangle
$$

5. The normal line to the level surface $F(x, y, z)=k$ at $P\left(x_{0}, y_{0}, z_{0}\right)$ is the line that passes through P and perpendicular to the tangent plane. So, a parallel vector of the normal line is given by $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$.
Recall: The equation of a line through a point $\left(x_{0}, y_{0}, z_{0}\right)$ with parallel vector $\mathbf{v}=\langle a, b, c\rangle$ is given by

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

