Contents

1. Tensor and torsion products for PID's 1
2. Tensor product of chain complexes 1
3. A partial Künneth Formula 2
3.1. Direct sum of chain complexes 5
4. A decomposition result for chain complexes over a PID 5
5. The full Künneth formula 6

1. Tensor and torsion products for PID's

Let R be a commutative ring. Given two R modules A and B, define

$$
A \otimes_{R} B=A \otimes B /\{r a \otimes b=a \otimes r b\}
$$

Show that $A \otimes_{R} B$ is universal for R-bilinear maps $A \times B \rightarrow L, L$ an R module. Typically for maps and elementary tensors we do not write \otimes_{R} since it should be obvious what ring we are taking the tensor product over.

Often we will need to restrict to the case in which R is a PID. The key result we have used about \mathbb{Z} modules is that subgroups of free abelian groups are free abelian. For PID's submodules of free modules are free.

A big result for us was that torsion-free abelian groups are flat \mathbb{Z} modules. Look over the proof in Handout 16 and see that the key result was that every submodule of \mathbb{Z} is either 0 or \mathbb{Z} and in the \mathbb{Z} case the inclusion is just $\mathbb{Z} \xrightarrow{\cdot m} \mathbb{Z}$. The same remark holds for any PID and hence R modules which have no R torsion are R-flat. The definition of R-flat is that A is R-flat if and only if for every injection $0 \rightarrow M \rightarrow N, 0 \rightarrow A \otimes_{R} M \rightarrow B \otimes_{R} N$ is exact. It follows that $0 \rightarrow M \otimes_{R} A \rightarrow N \otimes_{R} A$ is also exact. Free R modules have no R torsion.

Just to be clear, \mathbb{Z} torsion means torsion in the usual sense; R torsion means there exists some $r \in R, r \neq 0$ such that multiplication by r kills the R-torsion element. So for example fields of finite characteristic have \mathbb{Z}-torsion but modules over them have no R torsion.

2. Tensor product of chain complexes

Given two chain complexes of R modules, A_{*} and B_{*}, we would like to define their tensor product. You might try defining the $n^{\text {th }}$ group as $A_{n} \otimes_{R} B_{n}$ but then you quickly realize that the boundary would lower dimension by 2 . A better try is

$$
\left(A_{*} \otimes_{R} B_{*}\right)_{n}=\underset{i+j=n}{\oplus} A_{i} \otimes_{R} B_{j}
$$

Then you can do a boundary map using something like $\partial_{i}^{A} \otimes 1_{B_{j}}+1_{A_{i}} \otimes \partial_{j}^{B}$. Unfortunately, with this precise definition boundary boundary is not zero.

We need to introduce a sign which will annoy us hereafter.

$$
\partial_{n}^{A \otimes B}=\underset{i+j=n}{\oplus} \partial_{i}^{A} \otimes 1_{B_{j}}+(-1)^{i} 1_{A_{i}} \otimes \partial_{j}^{B}
$$

Now calculate boundary boundary: it suffices to do so on an elementary tensor $a \otimes b$ where a has dimension i and b has dimension j with $i+j=n$.
$\partial_{n-1}^{A \otimes B}\left(\partial_{n}^{A \otimes B}(a \otimes b)\right)=\partial_{n-1}^{A \otimes B}\left(\partial_{i}^{A}(a) \otimes b+(-1)^{i} a \otimes \partial_{j}^{B}(b)\right)=\partial_{n-1}^{A \otimes B}\left(\partial_{i}^{A}(a) \otimes b\right)+(-1)^{i} \partial_{n-1}^{A \otimes B}\left(a \otimes \partial_{j}^{B}(b)\right)$

$$
\begin{aligned}
& \left.\partial_{n-1}^{A \otimes B}\left(\partial_{i}^{A}(a) \otimes b\right)=\partial_{i-1}^{A}\left(\partial_{i}^{A}(a)\right) \otimes b\right)+(-1)^{i-1} \partial_{i}^{A}(a) \otimes \partial_{j}^{B}(b)=(-1)^{i-1} \partial_{i}^{A}(a) \otimes \partial_{j}^{B}(b) \\
& \partial_{n-1}^{A \otimes B}\left(a \otimes \partial_{j}^{B}(b)\right)=\partial_{i}^{A}(a) \otimes \partial_{j}^{B}(b)+(-1)^{i} a \otimes \partial_{j-1}^{B}\left(\partial_{j}^{B}(b)\right)=\partial_{i}^{A}(a) \otimes \partial_{j}^{B}(b)
\end{aligned}
$$

Suppose $f_{*}: A_{*} \rightarrow B_{*}$ and $g_{*}: C_{*} \rightarrow D_{*}$ are chain maps. Then

$$
f_{*} \otimes g_{*}: A_{*} \otimes_{R} C_{*} \rightarrow B_{*} \otimes_{R} D_{*}
$$

defined by $f_{*} \otimes g_{*}(a \otimes c)=f(a) \otimes g(c)$ is a chain map.
Theorem 1. If f_{*} is chain homotopic to \bar{f}_{*} and g_{*} is chain homotopic to \bar{g}_{*} then $f_{*} \otimes g_{*}$ is chain homotopic to $\bar{f}_{*} \otimes \bar{g}_{*}$.

Proof. It suffices using compositions to prove $f_{*} \otimes 1$ is chain homotopic to $\bar{f}_{*} \otimes 1$ and $1 \otimes g_{*}$ is chain homotopic to $1 \otimes \bar{g}_{*}$. We do the second and leave the first to the reader.

Let $K_{*}: C_{*} \rightarrow D_{*+1}$ be the chain homotopy. Define $\bar{K}_{n}: A_{i} \otimes_{R} C_{j} \rightarrow A_{i} \otimes_{R} C_{j+1}$ by $\bar{K}_{n}(a \otimes c)=$ $(-1)^{i} a \otimes \bar{K}_{j}(c)$.

Compute

$$
\begin{gathered}
\bar{K}_{n-1}\left(\partial_{n}^{A \otimes B}(a \otimes b)\right)=\bar{K}_{n-1}\left(\partial_{i}^{A}(a) \otimes b+(-1)^{i} a \otimes \partial_{j}^{B}(b)\right)=(-1)^{i-1} \partial_{i}^{A}(a) \otimes K_{j}(b)+(-1)^{i+i} a \otimes K_{j-1}\left(\partial_{j}^{B}(b)\right) \\
\partial_{n+1}^{A \otimes B}\left(K_{n}(a \otimes b)\right)=(-1)^{i} \partial_{n+1}^{A \otimes B}\left(a \otimes\left(K_{j}(b)\right)\right)=(-1)^{i} \partial_{i}^{A}(a) \otimes K_{j}(b)+(-1)^{i+i} a \otimes \partial_{j+1}^{B}\left(K_{j}(b)\right)
\end{gathered}
$$

so

$$
\bar{K}_{n-1}\left(\partial_{n}^{A \otimes B}(a \otimes b)\right)+\partial_{n+1}^{A \otimes B}\left(K_{n}(a \otimes b)\right)=a \otimes g_{j}(b)-a \otimes \bar{g}_{j}(b)
$$

Corollary 2. If $A_{*}^{[0]}$ is chain homotopy equivalent to $A_{*}^{[1]}$ and if $B_{*}^{[0]}$ is chain homotopy equivalent to $B_{*}^{[1]}$ then $A_{*}^{[0]} \otimes_{R} B_{*}^{[0]}$ is chain homotopy equivalent to $A_{*}^{[1]} \otimes_{R} B_{*}^{[1]}$.

Our very first annoyance comes when we try to compare $A_{*} \otimes_{R} B_{*}$ and $B_{*} \otimes_{R} A_{*}$. If we define $\tau_{*}: A_{*} \otimes B_{*} \rightarrow B_{*} \otimes A_{*}$ by applying the flip map to the elementary tensors, we do not get a chain map. The correct definition is to define

$$
\tau_{*}: A_{*} \otimes_{R} B_{*} \rightarrow B_{*} \otimes_{R} A_{*}
$$

by $\tau_{n}(a \otimes b)=(-1)^{i j} b \otimes a$ where a has dimension i and b has dimension j with $i+j=n$. To check that this is a chain map it again suffices to check it on elementary tensors.

$$
\begin{aligned}
\partial_{n}^{B \otimes A}\left(\tau_{n}(a \otimes b)\right)= & (-1)^{i j} \partial_{n}^{B \otimes A}(b \otimes a)=(-1)^{i j}\left(\partial_{j}^{B}(b) \otimes a+(-1)^{j} b \otimes \partial_{i}^{A}(a)\right) \\
\tau_{n-1}\left(\partial_{n}^{A \otimes B}(a \otimes b)\right)== & \tau_{n-1}\left(\partial_{i}^{A}(a) \otimes b+(-1)^{i} a \otimes \partial_{j}^{B}(b)\right)= \\
& (-1)^{(i-1) j} b \otimes \partial_{i}^{A}(a)+(-1)^{i+i(j-1)} \partial_{j}^{B}(b) \otimes a
\end{aligned}
$$

It is still true that τ_{*} is an involution.

3. A partial Künneth Formula

The goal of this section is to produce a formula for computing the homology of the tensor product of a two short chain complexes.

Fix two abelian groups, or R modules, and pick resolutions by free R modules,

$$
\begin{array}{r}
0 \rightarrow F_{1} \xrightarrow[\partial_{1}^{F}]{\longrightarrow} F_{0} \rightarrow A \rightarrow 0 \\
0 \rightarrow G_{1} \xrightarrow{\partial_{1}^{G}} G_{0} \rightarrow B \rightarrow 0
\end{array}
$$

Assume R is a PID so this can always be done. Form the tensor product chain complex but put an ϵ on the boundary map where $\epsilon= \pm 1$.

Call the tensor product complex T^{ϵ}. The complex T^{-1} is the tensor product complex where F_{0} is in some even dimension and T^{+1} is the tensor product complex where F_{0} is in some odd dimension.

The dimension of G_{0} is irrelevant but the dimensions of F_{1} and G_{1} are one more than the dimensions of F_{0} and G_{0}.

Check that the next diagram commutes.

The horizontal rows are short exact so thinking of the columns as chain complexes, we have a short exact sequence of chain complexes. For notation say $0 \rightarrow \mathfrak{A}_{*} \rightarrow T_{*}^{\epsilon} \rightarrow \mathfrak{B}_{*} \rightarrow 0$. Then
$0=H_{2}\left(\mathfrak{A}_{*}\right) \rightarrow H_{2}\left(T_{*}^{\epsilon}\right) \rightarrow H_{2}\left(\mathfrak{B}_{*}\right) \rightarrow H_{1}\left(\mathfrak{A}_{*}\right) \rightarrow H_{1}\left(T_{*}^{\epsilon}\right) \rightarrow H_{1}\left(\mathfrak{B}_{*}\right) \rightarrow H_{0}\left(\mathfrak{A}_{*}\right) \rightarrow H_{0}\left(T_{*}^{\epsilon}\right) \rightarrow H_{0}\left(\mathfrak{B}_{*}\right)=0$
Since $G_{1} \xrightarrow{\partial_{1}^{G}} G_{0}$ is a free resolution of B, so is $G_{1} \xrightarrow{ \pm \epsilon \partial_{G}^{G}} G_{0}$.
Because F_{0} is free, $H_{k}\left(\mathfrak{A}_{*}\right)=\left\{\begin{array}{ll}0 & k \neq 0 \\ F_{0} \otimes_{R} B & k=0\end{array}\right.$. This needs a bit of an argument since the result we proved earlier has the resolution on the right. But τ_{*} is a chain isomorphism between the resolution on the right complex and the resolution on the left complex.

Similarly, because F_{1} is free, $H_{k}\left(\mathfrak{B}_{*}\right)=\left\{\begin{array}{ll}0 & k \neq 0 \\ F_{1} \otimes_{R} B & k=1\end{array}\right.$.
Hence $H_{2}\left(T_{*}^{\epsilon}\right)=0$ and

$$
0 \rightarrow H_{1}\left(T_{*}^{\epsilon}\right) \rightarrow F_{1} \otimes_{R} B \rightarrow F_{0} \otimes_{R} B \rightarrow H_{0}\left(T_{*}^{\epsilon}\right) \rightarrow 0
$$

The map $F_{1} \otimes_{R} B \rightarrow F_{0} \otimes_{R} B$ is $\partial_{1}^{F} \otimes 1_{B}$.
The sequence $0 \rightarrow F_{1} \xrightarrow{\partial_{1}^{F}} F_{0} \rightarrow A \rightarrow 0$ is exact and so as we saw earlier

$$
0 \rightarrow A *_{R} B \rightarrow F_{1} \otimes_{R} B \xrightarrow{\partial_{1}^{F} \otimes_{R} 1_{B}} F_{0} \otimes_{R} B \rightarrow A \otimes_{R} B \rightarrow 0
$$

is exact. Hence with either $\epsilon, H_{k}\left(T_{*}^{\epsilon}\right)=0, k \neq 0$ or 1 . The natural maps

$$
\begin{array}{r}
A \otimes_{R} B \longrightarrow H_{0}\left(T_{*}^{\epsilon}\right) \\
H_{1}\left(T_{*}^{\epsilon}\right) \longrightarrow A *_{R} B
\end{array}
$$

are isomorphisms.
This partial result has several useful consequences.
Corollary 3. $A \otimes B$ and $B \otimes A$ are naturally isomorphic (which we already knew). Moreover $A * B$ and $B * A$ are naturally isomorphic.

Proposition 4. Given a map of abelian groups $f: A \rightarrow B$ and resolutions $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow A \rightarrow 0$ and $0 \rightarrow G_{1} \rightarrow G_{0} \rightarrow B \rightarrow 0$ be free R modules, there exists a chain map $\hat{f}_{*}: F_{*} \rightarrow G_{*}$ such that $\hat{f}_{*}: H_{0}\left(F_{*}\right)=A \rightarrow H_{0}\left(G_{*}\right)=B$ is f. Any two such chain maps are chain homotopic

Corollary 5. Given $f: A_{1} \rightarrow A_{2}$ and $g: B_{1} \rightarrow B_{2}$. Then there is a chain map

$$
(f, g)_{*}: T_{*}^{\epsilon}\left(A_{1}, B_{1}\right) \rightarrow T_{*}^{\epsilon}\left(A_{2}, B_{2}\right)
$$

such that

commute.
3.1. Direct sum of chain complexes. Given two chain complexes A_{*} and B_{*}, there is a direct sum chain complex $(A \oplus B)_{*}$ defined in each dimension by $(A \oplus B)_{n}=A_{n} \oplus B_{n}$ and $\partial_{n}^{A \oplus B}=$ $\partial_{n}^{A} \oplus \partial_{n}^{B}:(A \oplus B)_{n} \rightarrow(A \oplus B)_{n-1}$.

The boundary-boundary verification is routine. Chain maps respect direct sum as do chain homotopy equivalences. Again the required verifications are routine. The flip map $(A \oplus B)_{*} \rightarrow$ $(B \oplus A)_{*}$ is a chain map.

The direct sum construction can be extended to an arbitrary set of chain complexes.

For any set of R modules $A_{\alpha}, \alpha \in \mathcal{A}$, and any set of R modules $B_{\beta}, \beta \in \mathcal{B}$ the natural map

$$
\underset{(\alpha, \beta) \in \mathcal{A} \times \mathcal{B}}{\oplus}\left(B_{\beta} \otimes_{R} A_{\alpha}\right) \rightarrow\left(\underset{\beta \in \mathcal{B}}{\oplus} B_{\beta}\right) \otimes_{R}\left(\underset{\alpha \in \mathcal{A}}{\oplus} A_{\alpha}\right)
$$

is an isomorphism. To describe the isomorphism precisely recall that to define a map out of a direct sum, it is required to give a map from each summand to the range. The map

$$
B_{\beta^{\prime}} \otimes_{R} A_{\alpha^{\prime}} \rightarrow\left(\underset{\beta \in \mathcal{B}}{\oplus} B_{\beta}\right) \otimes_{R}\left(\underset{\alpha \in \mathcal{A}}{\oplus} A_{\alpha}\right)
$$

is given by the tensor product of the inclusions $B_{\beta^{\prime}} \rightarrow \oplus_{\beta \in \mathcal{B}} B_{\beta}$ and $A_{\alpha^{\prime}} \rightarrow \oplus_{\alpha \in \mathcal{A}} A_{\alpha}$.
There is also a map

$$
\left(\underset{\beta \in \mathcal{B}}{\oplus} B_{\beta}\right) \otimes_{R}\left(\underset{\alpha \in \mathcal{A}}{\oplus} A_{\alpha}\right) \rightarrow \underset{(\alpha, \beta) \in \mathcal{A} \times \mathcal{B}}{\times}\left(B_{\beta} \otimes_{R} A_{\alpha}\right)
$$

where $\underset{(\alpha, \beta) \in \mathcal{A} \times \mathcal{B}}{\times}$ denotes the direct product. To describe a map into a direct product, it is necessary to define a map from the domain into each summand of the range. The required maps

$$
\left(\underset{\beta \in \mathcal{B}}{\oplus} B_{\beta}\right) \otimes_{R}\left(\underset{\alpha \in \mathcal{A}}{\oplus} A_{\alpha}\right) \rightarrow B_{\beta^{\prime}} \otimes_{R} A_{\alpha^{\prime}}
$$

are given by the tensor product of the projections $\oplus_{\beta \in \mathcal{B}} B_{\beta} \rightarrow B_{\beta^{\prime}}$ and $\oplus_{\alpha \in \mathcal{A}} A_{\alpha} \rightarrow A_{\alpha^{\prime}}$. By looking at elementary tensors, we see that the image in the direct product has only finitely many non-zero terms, or in other words it is onto the direct sum. By looking at elementary tensors the map

$$
\underset{(\alpha, \beta) \in \mathcal{A} \times \mathcal{B}}{\oplus}\left(B_{\beta} \otimes_{R} A_{\alpha}\right) \rightarrow\left(\underset{\beta \in \mathcal{B}}{\oplus} B_{\beta}\right) \otimes_{R}\left(\underset{\alpha \in \mathcal{A}}{\oplus} A_{\alpha}\right)
$$

is onto and hence split onto and hence is an isomorphism.
These isomorphisms induce isomorphisms of sums of chain complexes. Let A_{*}^{α} and B_{*}^{β} be sets of chain complexes of R modules. Then

$$
\underset{(\alpha, \beta) \in \mathcal{A} \times \mathcal{B}}{\oplus}\left(B_{*}^{\beta} \otimes_{R} A_{*}^{\alpha}\right) \rightarrow\left(\underset{\beta \in \mathcal{B}}{\oplus} B_{*}^{\beta}\right) \otimes_{R}\left(\underset{\alpha \in \mathcal{A}}{\oplus} A_{*}^{\alpha}\right)
$$

is a chain isomorphism.

4. A Decomposition result for chain complexes over a PID

Given a chain complex of R modules, $\left\{A_{*}, \partial_{*}^{A}\right\}$ it can be decomposed as follows. For each $k \in \mathbb{Z}$, resolve $H_{k}\left(A_{*}\right)$ by two free r modules, $0 \rightarrow A_{k+1}^{[k]} \xrightarrow{\partial_{k+1}^{4[k]}} A_{k}^{[k]} \xrightarrow{\rho_{k}} H_{k}\left(A_{*}\right) \rightarrow 0$. Since $A_{k}^{[k]}$ is free, there exists a map $A_{k}^{[k]} \xrightarrow{t_{k}^{[k]}} \operatorname{ker} \partial_{k}^{A} \subset A_{k}$ such that

commutes. We can then find $\iota_{k+1}^{[k]}: A_{k+1}^{[k]} \rightarrow A_{k+1}$ such that

commutes. Make the $A^{[k]}$ into chain complexes by setting the remaining groups to 0 . Then $\left\{A_{*}^{[k]}, \partial_{*}^{A^{[k]}}\right\}$ is a chain complex, $\iota_{*}^{[k]}$ is a chain map.

Define $A_{\ell}^{[r]}=\underset{k \in \mathbb{Z}}{\oplus} A_{\ell}^{[k]}$ and $\iota_{k}: A_{k}^{[r]} \rightarrow A_{k}$. It then follows that $\iota_{*}: A_{*}^{[r]} \rightarrow A_{*}$ is a quasi-isomorphism. If A_{*} also consists of free R modules, then ι_{*} is a chain homotopy equivalence if A_{*} is bounded below. Theorem 6. Let R be a PID. If A_{*} consists of free R modules and is bounded below, then A_{*} is chain homotopy equivalent to a chain complex B_{*} with B_{k} finitely-generated for all k if and only if $H_{k}\left(A_{*}\right)$ is finitely-generated for all k.

5. The full Künneth formula

The Künneth formula computes the homology of the tensor product of two chain complexes. The version we will do is for two chain complexes of free R modules with R a PID.
Theorem 7. Suppose A_{*} and B_{*} are chain complexes of free R modules, R a PID. Suppose A_{*} and B_{*} are bounded from below. Then there exists a natural short exact sequence

$$
0 \rightarrow \underset{i+j=n}{\oplus} H_{i}\left(A_{*}\right) \otimes H_{j}\left(B_{*}\right) \rightarrow H_{n}\left(A_{*} \otimes B_{*}\right) \rightarrow \underset{i+j=n-1}{\oplus} H_{i}\left(A_{*}\right) * H_{j}\left(B_{*}\right) \rightarrow 0
$$

The sequence is split although not naturally.

