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1. Tensor and torsion products for PID’s

Let R be a commutative ring. Given two R modules A and B, define

A⊗
R
B = A⊗ B/{ra⊗ b = a⊗ rb}

Show that A⊗
R
B is universal for R-bilinear maps A×B → L, L an R module. Typically for maps

and elementary tensors we do not write ⊗R since it should be obvious what ring we are taking the
tensor product over.

Often we will need to restrict to the case in which R is a PID. The key result we have used about
Z modules is that subgroups of free abelian groups are free abelian. For PID’s submodules of free
modules are free.

A big result for us was that torsion-free abelian groups are flat Z modules. Look over the proof in
Handout 16 and see that the key result was that every submodule of Z is either 0 or Z and in the Z
case the inclusion is just Z ·m−−→ Z. The same remark holds for any PID and hence R modules which
have no R torsion are R-flat. The definition of R-flat is that A is R-flat if and only if for every
injection 0→ M → N , 0→ A⊗

R
M → B ⊗

R
N is exact. It follows that 0→ M ⊗

R
A→ N ⊗

R
A

is also exact. Free R modules have no R torsion.
Just to be clear, Z torsion means torsion in the usual sense; R torsion means there exists some

r ∈ R, r 6= 0 such that multiplication by r kills the R-torsion element. So for example fields of
finite characteristic have Z-torsion but modules over them have no R torsion.

2. Tensor product of chain complexes

Given two chain complexes of R modules, A∗ and B∗, we would like to define their tensor product.
You might try defining the nth group as An ⊗R

Bn but then you quickly realize that the boundary
would lower dimension by 2. A better try is

(A∗ ⊗R
B∗)n = ⊕

i+j=n
Ai ⊗R

Bj

Then you can do a boundary map using something like ∂Ai ⊗ 1Bj
+ 1Ai

⊗ ∂Bj . Unfortunately, with
this precise definition boundary boundary is not zero.

We need to introduce a sign which will annoy us hereafter.

∂A⊗Bn = ⊕
i+j=n

∂Ai ⊗ 1Bj
+ (−1)i1Ai

⊗ ∂Bj

Now calculate boundary boundary: it suffices to do so on an elementary tensor a⊗ b where a has
dimension i and b has dimension j with i+ j = n.

∂
A⊗B
n−1

(
∂A⊗Bn (a⊗b)

)
= ∂

A⊗B
n−1

(
∂Ai (a)⊗b+(−1)ia⊗∂Bj (b)

)
= ∂

A⊗B
n−1

(
∂Ai (a)⊗b

)
+(−1)i∂

A⊗B
n−1

(
a⊗∂Bj (b)

)
1
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∂
A⊗B
n−1

(
∂Ai (a)⊗ b

)
= ∂Ai−1

(
∂Ai (a)

)
⊗ b
)

+ (−1)i−1∂Ai (a)⊗ ∂Bj (b) = (−1)i−1∂Ai (a)⊗ ∂Bj (b)

∂
A⊗B
n−1

(
a⊗ ∂Bj (b)

)
= ∂Ai (a)⊗ ∂Bj (b) + (−1)ia⊗ ∂Bj−1

(
∂Bj (b)

)
= ∂Ai (a)⊗ ∂Bj (b)

Suppose f∗ : A∗ → B∗ and g∗ : C∗ → D∗ are chain maps. Then

f∗ ⊗ g∗ : A∗ ⊗R
C∗ → B∗ ⊗R

D∗

defined by f∗ ⊗ g∗(a⊗ c) = f(a)⊗ g(c) is a chain map.
Theorem 1. If f∗ is chain homotopic to f̄∗ and g∗ is chain homotopic to ḡ∗ then f∗ ⊗ g∗ is chain
homotopic to f̄∗ ⊗ ḡ∗.

Proof. It suffices using compositions to prove f∗⊗ 1 is chain homotopic to f̄∗⊗ 1 and 1⊗ g∗ is chain
homotopic to 1⊗ ḡ∗. We do the second and leave the first to the reader.

Let K∗ : C∗ → D∗+1 be the chain homotopy. Define K̄n : Ai⊗R
Cj → Ai⊗R

Cj+1 by K̄n(a⊗ c) =
(−1)ia⊗ K̄j(c).

Compute

K̄n−1
(
∂A⊗Bn (a⊗b)

)
= K̄n−1

(
∂Ai (a)⊗b+(−1)ia⊗∂Bj (b)

)
= (−1)i−1∂Ai (a)⊗Kj(b)+(−1)i+ia⊗Kj−1

(
∂Bj (b)

)
∂
A⊗B
n+1

(
Kn(a⊗ b)

)
= (−1)i∂

A⊗B
n+1

(
a⊗ (Kj(b))

)
= (−1)i∂Ai (a)⊗ Kj(b) + (−1)i+ia⊗ ∂Bj+1

(
Kj(b)

)
so

K̄n−1
(
∂A⊗Bn (a⊗ b)

)
+ ∂

A⊗B
n+1

(
Kn(a⊗ b)

)
= a⊗ gj(b)− a⊗ ḡj(b)

�

Corollary 2. If A
[0]
∗ is chain homotopy equivalent to A

[1]
∗ and if B

[0]
∗ is chain homotopy equivalent

to B
[1]
∗ then A

[0]
∗ ⊗R

B
[0]
∗ is chain homotopy equivalent to A

[1]
∗ ⊗R

B
[1]
∗ .

Our very first annoyance comes when we try to compare A∗ ⊗R
B∗ and B∗ ⊗R

A∗. If we define
τ∗ : A∗ ⊗ B∗ → B∗ ⊗ A∗ by applying the flip map to the elementary tensors, we do not get a chain
map. The correct definition is to define

τ∗ : A∗ ⊗R
B∗ → B∗ ⊗R

A∗

by τn(a⊗ b) = (−1)ijb⊗ a where a has dimension i and b has dimension j with i+ j = n. To check
that this is a chain map it again suffices to check it on elementary tensors.

∂B⊗An

(
τn(a⊗ b)

)
=(−1)ij∂B⊗An (b⊗ a) = (−1)ij

(
∂Bj (b)⊗ a+ (−1)jb⊗ ∂Ai (a)

)
τn−1

(
∂A⊗Bn (a⊗ b)

)
=τn−1

(
∂Ai (a)⊗ b+ (−1)ia⊗ ∂Bj (b)

)
=

(−1)(i−1)jb⊗ ∂Ai (a) + (−1)i+i(j−1)∂Bj (b)⊗ a

It is still true that τ∗ is an involution.

3. A partial Künneth Formula

The goal of this section is to produce a formula for computing the homology of the tensor product
of a two short chain complexes.

Fix two abelian groups, or R modules, and pick resolutions by free R modules,

0→ F1

∂F1−−−→F0 → A→ 0

0→ G1

∂G1−−−→G0 → B → 0

Assume R is a PID so this can always be done. Form the tensor product chain complex but put an
ε on the boundary map where ε = ±1.

Call the tensor product complex T ε. The complex T−1 is the tensor product complex where F0 is
in some even dimension and T+1 is the tensor product complex where F0 is in some odd dimension.
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The dimension of G0 is irrelevant but the dimensions of F1 and G1 are one more than the dimensions
of F0 and G0.

Check that the next diagram commutes.

0

0

0

F0 ⊗R
G1

F0 ⊗R
G0

0

0

F1 ⊗R
G1

(F1 ⊗R
G0)⊕ (F0 ⊗R

G1)

F0 ⊗R
G0

0

0

F1 ⊗R
G1

F1 ⊗R
G0

0

0

0

�� ��

��

ε(1F1
⊗∂G1 )⊕(∂F1 ⊗1G1

)

��

ε(1F1
⊗∂G1 )

��

−ε(1F1
⊗∂G1 )

��

(∂F1 ⊗1G0
)−ε(1F0

⊗∂G1 )

�� ��

�� ��

// // //

// // // //

// // //

The horizontal rows are short exact so thinking of the columns as chain complexes, we have a
short exact sequence of chain complexes. For notation say 0→ A∗ → T ε∗ → B∗ → 0. Then

0 = H2(A∗)→ H2(T
ε
∗)→ H2(B∗)→ H1(A∗)→ H1(T

ε
∗)→ H1(B∗)→ H0(A∗)→ H0(T

ε
∗)→ H0(B∗) = 0

Since G1

∂G1−−−→ G0 is a free resolution of B, so is G1

±ε∂G1−−−→ G0.

Because F0 is free, Hk(A∗) =

{
0 k 6= 0

F0 ⊗R
B k = 0

. This needs a bit of an argument since the

result we proved earlier has the resolution on the right. But τ∗ is a chain isomorphism between the
resolution on the right complex and the resolution on the left complex.

Similarly, because F1 is free, Hk(B∗) =

{
0 k 6= 0

F1 ⊗R
B k = 1

.

Hence H2(T
ε
∗) = 0 and

0→ H1(T
ε
∗)→ F1 ⊗R

B → F0 ⊗R
B → H0(T

ε
∗)→ 0

The map F1 ⊗R
B → F0 ⊗R

B is ∂F1 ⊗ 1B.

The sequence 0→ F1

∂F1−−−→ F0 → A→ 0 is exact and so as we saw earlier

0→ A ∗R B → F1 ⊗R
B

∂F1 ⊗R
1B−−−−−−→ F0 ⊗R

B → A⊗
R
B → 0

is exact. Hence with either ε, Hk(T
ε
∗) = 0, k 6= 0 or 1. The natural maps

A⊗
R
B −→ H0(T

ε
∗)

H1(T
ε
∗) −→ A ∗R B

are isomorphisms.
This partial result has several useful consequences.

Corollary 3. A⊗B and B⊗A are naturally isomorphic (which we already knew). Moreover A∗B
and B ∗ A are naturally isomorphic.
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Proposition 4. Given a map of abelian groups f : A→ B and resolutions 0→ F1 → F0 → A→ 0
and 0 → G1 → G0 → B → 0 be free R modules, there exists a chain map f̂∗ : F∗ → G∗ such that
f̂∗ : H0(F∗) = A→ H0(G∗) = B is f . Any two such chain maps are chain homotopic

Corollary 5. Given f : A1 → A2 and g : B1 → B2. Then there is a chain map

(f, g)∗ : T
ε
∗(A1, B1)→ T ε∗(A2, B2)

such that

A1 ⊗B1 H0

(
T ε∗(A1, B1)

)
A2 ⊗B2 H0

(
T ε∗(A2, B2)

) and

//

�� ��
//

A1 ∗B1H1

(
T ε∗(A1, B1)

)
A2 ∗B2H1

(
T ε∗(A2, B2)

)
//

��
//

��

commute.



5

3.1. Direct sum of chain complexes. Given two chain complexes A∗ and B∗, there is a direct
sum chain complex (A ⊕ B)∗ defined in each dimension by (A ⊕ B)n = An ⊕ Bn and ∂A⊕Bn =
∂An ⊕ ∂Bn : (A⊕B)n → (A⊕B)n−1.

The boundary-boundary verification is routine. Chain maps respect direct sum as do chain
homotopy equivalences. Again the required verifications are routine. The flip map (A ⊕ B)∗ →
(B ⊕ A)∗ is a chain map.

The direct sum construction can be extended to an arbitrary set of chain complexes.

For any set of R modules Aα, α ∈ A, and any set of R modules Bβ, β ∈ B the natural map

⊕
(α,β)∈A×B

(Bβ ⊗R
Aα)→

(
⊕
β∈B

Bβ

)
⊗

R

(
⊕
α∈A

Aα
)

is an isomorphism. To describe the isomorphism precisely recall that to define a map out of a direct
sum, it is required to give a map from each summand to the range. The map

Bβ′ ⊗
R
Aα′ →

(
⊕
β∈B

Bβ

)
⊗

R

(
⊕
α∈A

Aα
)

is given by the tensor product of the inclusions Bβ′ → ⊕β∈B Bβ and Aα′ → ⊕α∈AAα.
There is also a map (

⊕
β∈B

Bβ

)
⊗

R

(
⊕
α∈A

Aα
)
→ ×

(α,β)∈A×B
(Bβ ⊗R

Aα)

where ×
(α,β)∈A×B

denotes the direct product. To describe a map into a direct product, it is necessary

to define a map from the domain into each summand of the range. The required maps(
⊕
β∈B

Bβ

)
⊗

R

(
⊕
α∈A

Aα
)
→ Bβ′ ⊗

R
Aα′

are given by the tensor product of the projections ⊕β∈B Bβ → Bβ′ and ⊕α∈AAα → Aα′ . By looking
at elementary tensors, we see that the image in the direct product has only finitely many non-zero
terms, or in other words it is onto the direct sum. By looking at elementary tensors the map

⊕
(α,β)∈A×B

(Bβ ⊗R
Aα)→

(
⊕
β∈B

Bβ

)
⊗

R

(
⊕
α∈A

Aα
)

is onto and hence split onto and hence is an isomorphism.
These isomorphisms induce isomorphisms of sums of chain complexes. Let Aα∗ and Bβ

∗ be sets of
chain complexes of R modules. Then

⊕
(α,β)∈A×B

(Bβ
∗ ⊗R

Aα∗ )→
(
⊕
β∈B

Bβ
∗
)
⊗

R

(
⊕
α∈A

Aα∗
)

is a chain isomorphism.

4. A decomposition result for chain complexes over a PID

Given a chain complex of R modules,
{
A∗, ∂

A
∗
}

it can be decomposed as follows. For each k ∈ Z,

resolve Hk(A∗) by two free r modules, 0 → A
[k]
k+1

∂A
[k]

k+1−−−→ A
[k]
k

ρk−−−→ Hk(A∗) → 0. Since A
[k]
k is free,

there exists a map A
[k]
k

ι
[k]
k−−−→ ker ∂Ak ⊂ Ak such that

A
[k]
k

ker ∂Ak ⊂Ak
ι
[k]
k //

Hk(A∗)
��

ρk ''

commutes. We can then find ι
[k]
k+1 : A

[k]
k+1 → Ak+1 such that
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A
[k]
k+1

A
[k]
k

Ak+1

Ak

ι
[k]
k+1 //

ι
[k]
k //

∂A
[k]

k+1

��
∂Ak+1

��

commutes. Make the A[k] into chain complexes by setting the remaining groups to 0. Then{
A

[k]
∗ , ∂A

[k]

∗
}

is a chain complex, ι
[k]
∗ is a chain map.

Define A
[r]
` = ⊕

k∈Z
A

[k]
` and ιk : A

[r]
k → Ak. It then follows that ι∗ : A

[r]
∗ → A∗ is a quasi-isomorphism.

If A∗ also consists of free R modules, then ι∗ is a chain homotopy equivalence if A∗ is bounded below.
Theorem 6. Let R be a PID. If A∗ consists of free R modules and is bounded below, then A∗ is
chain homotopy equivalent to a chain complex B∗ with Bk finitely-generated for all k if and only if
Hk(A∗) is finitely-generated for all k.

5. The full Künneth formula

The Künneth formula computes the homology of the tensor product of two chain complexes. The
version we will do is for two chain complexes of free R modules with R a PID.
Theorem 7. Suppose A∗ and B∗ are chain complexes of free R modules, R a PID. Suppose A∗ and
B∗ are bounded from below. Then there exists a natural short exact sequence

0→ ⊕
i+j=n

Hi(A∗)⊗Hj(B∗)→ Hn(A∗ ⊗B∗)→ ⊕
i+j=n−1

Hi(A∗) ∗Hj(B∗)→ 0

The sequence is split although not naturally.


	1. Tensor and torsion products for PID's
	2. Tensor product of chain complexes
	3. A partial Künneth Formula
	3.1. Direct sum of chain complexes

	4. A decomposition result for chain complexes over a PID
	5. The full Künneth formula

