Contents

1.	Tensor and torsion products for PID's	1
2.	Tensor product of chain complexes	1
3.	A partial Künneth Formula	2
3.1	. Direct sum of chain complexes	5
4.	A decomposition result for chain complexes over a PID	5
5.	The full Künneth formula	6

1. Tensor and torsion products for PID's

Let R be a commutative ring. Given two R modules A and B, define

 $A \otimes_{\scriptscriptstyle B} B = A \otimes B / \{ ra \otimes b = a \otimes rb \}$

Show that $A \otimes_R B$ is universal for *R*-bilinear maps $A \times B \to L$, *L* an *R* module. Typically for maps and elementary tensors we do not write \otimes_R since it should be obvious what ring we are taking the tensor product over.

Often we will need to restrict to the case in which R is a PID. The key result we have used about \mathbb{Z} modules is that subgroups of free abelian groups are free abelian. For PID's submodules of free modules are free.

A big result for us was that torsion-free abelian groups are flat \mathbb{Z} modules. Look over the proof in Handout 16 and see that the key result was that every submodule of \mathbb{Z} is either 0 or \mathbb{Z} and in the \mathbb{Z} case the inclusion is just $\mathbb{Z} \xrightarrow{m} \mathbb{Z}$. The same remark holds for any PID and hence R modules which have no R torsion are R-flat. The definition of R-flat is that A is R-flat if and only if for every injection $0 \to M \to N$, $0 \to A \otimes_R M \to B \otimes_R N$ is exact. It follows that $0 \to M \otimes_R A \to N \otimes_R A$ is also exact. Free R modules have no R torsion.

Just to be clear, \mathbb{Z} torsion means torsion in the usual sense; R torsion means there exists some $r \in R, r \neq 0$ such that multiplication by r kills the R-torsion element. So for example fields of finite characteristic have \mathbb{Z} -torsion but modules over them have no R torsion.

2. Tensor product of chain complexes

Given two chain complexes of R modules, A_* and B_* , we would like to define their tensor product. You might try defining the n^{th} group as $A_n \otimes_R B_n$ but then you quickly realize that the boundary would lower dimension by 2. A better try is

$$(A_* \otimes_R B_*)_n = \bigoplus_{i+j=n} A_i \otimes_R B_j$$

Then you can do a boundary map using something like $\partial_i^A \otimes 1_{B_j} + 1_{A_i} \otimes \partial_j^B$. Unfortunately, with this precise definition boundary boundary is not zero.

We need to introduce a sign which will annoy us hereafter.

$$\partial_n^{A\otimes B} = \bigoplus_{i+j=n} \partial_i^A \otimes \mathbf{1}_{B_j} + (-1)^i \mathbf{1}_{A_i} \otimes \partial_j^B$$

Now calculate boundary boundary: it suffices to do so on an elementary tensor $a \otimes b$ where a has dimension i and b has dimension j with i + j = n.

$$\partial_{n-1}^{A\otimes B} \left(\partial_n^{A\otimes B}(a\otimes b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b + (-1)^i a \otimes \partial_j^B(b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) + (-1)^i \partial_{n-1}^{A\otimes B} \left(a \otimes \partial_j^B(b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) + (-1)^i \partial_{n-1}^{A\otimes B} \left(a \otimes \partial_j^B(b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) + (-1)^i \partial_{n-1}^{A\otimes B} \left(a \otimes \partial_j^B(b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) + (-1)^i \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) + (-1)^i \partial_{n-1}^{A\otimes B} \left(\partial_i^B(b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) + (-1)^i \partial_{n-1}^{A\otimes B} \left(\partial_i^B(b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) + (-1)^i \partial_{n-1}^{A\otimes B} \left(\partial_i^B(b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) + (-1)^i \partial_{n-1}^{A\otimes B} \left(\partial_i^B(b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) + (-1)^i \partial_{n-1}^{A\otimes B} \left(\partial_i^B(b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) + (-1)^i \partial_{n-1}^{A\otimes B} \left(\partial_i^B(b) \right) = \partial_{n-1}^{A\otimes B} \left(\partial_i^B($$

$$\partial_{n-1}^{A\otimes B} \left(\partial_i^A(a) \otimes b \right) = \partial_{i-1}^A \left(\partial_i^A(a) \right) \otimes b \right) + (-1)^{i-1} \partial_i^A(a) \otimes \partial_j^B(b) = (-1)^{i-1} \partial_i^A(a) \otimes \partial_j^B(b) \\ \partial_{n-1}^{A\otimes B} \left(a \otimes \partial_j^B(b) \right) = \partial_i^A(a) \otimes \partial_j^B(b) + (-1)^i a \otimes \partial_{j-1}^B \left(\partial_j^B(b) \right) = \partial_i^A(a) \otimes \partial_j^B(b)$$

Suppose $f_*: A_* \to B_*$ and $g_*: C_* \to D_*$ are chain maps. Then

$$f_* \otimes g_* \colon A_* \otimes_R C_* \to B_* \otimes_R D_*$$

defined by $f_* \otimes g_*(a \otimes c) = f(a) \otimes g(c)$ is a chain map. **Theorem 1.** If f_* is chain homotopic to \bar{f}_* and g_* is chain homotopic to \bar{g}_* then $f_* \otimes g_*$ is chain homotopic to $\bar{f}_* \otimes \bar{g}_*$.

Proof. It suffices using compositions to prove $f_* \otimes 1$ is chain homotopic to $\bar{f}_* \otimes 1$ and $1 \otimes g_*$ is chain homotopic to $1 \otimes \bar{g}_*$. We do the second and leave the first to the reader.

Let $K_*: C_* \to D_{*+1}$ be the chain homotopy. Define $\bar{K}_n: A_i \otimes_R C_j \to A_i \otimes_R C_{j+1}$ by $\bar{K}_n(a \otimes c) = (-1)^i a \otimes \bar{K}_j(c)$.

Compute

$$\bar{K}_{n-1}\left(\partial_n^{A\otimes B}(a\otimes b)\right) = \bar{K}_{n-1}\left(\partial_i^A(a)\otimes b + (-1)^i a\otimes \partial_j^B(b)\right) = (-1)^{i-1}\partial_i^A(a)\otimes K_j(b) + (-1)^{i+i}a\otimes K_{j-1}\left(\partial_j^B(b)\right)$$

$$\partial_{n+1}^{A\otimes B} \left(K_n(a\otimes b) \right) = (-1)^i \partial_{n+1}^{A\otimes B} \left(a \otimes (K_j(b)) \right) = (-1)^i \partial_i^A(a) \otimes K_j(b) + (-1)^{i+i} a \otimes \partial_{j+1}^B \left(K_j(b) \right)$$

so
$$\bar{K}_{n-1} \left(\partial_n^{A\otimes B}(a\otimes b) \right) + \partial_{n+1}^{A\otimes B} \left(K_n(a\otimes b) \right) = a \otimes g_j(b) - a \otimes \bar{g}_j(b)$$

Corollary 2. If $A_*^{[0]}$ is chain homotopy equivalent to $A_*^{[1]}$ and if $B_*^{[0]}$ is chain homotopy equivalent to $B_*^{[1]}$ then $A_*^{[0]} \otimes_R B_*^{[0]}$ is chain homotopy equivalent to $A_*^{[1]} \otimes_R B_*^{[1]}$.

Our very first annoyance comes when we try to compare $A_* \otimes_R B_*$ and $B_* \otimes_R A_*$. If we define $\tau_* \colon A_* \otimes B_* \to B_* \otimes A_*$ by applying the flip map to the elementary tensors, we do not get a chain map. The correct definition is to define

$$\tau_* \colon A_* \otimes_{\scriptscriptstyle R} B_* \to B_* \otimes_{\scriptscriptstyle R} A_*$$

by $\tau_n(a \otimes b) = (-1)^{ij} b \otimes a$ where a has dimension i and b has dimension j with i + j = n. To check that this is a chain map it again suffices to check it on elementary tensors.

$$\partial_n^{B\otimes A} (\tau_n(a\otimes b)) = (-1)^{ij} \partial_n^{B\otimes A}(b\otimes a) = (-1)^{ij} (\partial_j^B(b)\otimes a + (-1)^{j}b\otimes \partial_i^A(a))$$

$$\tau_{n-1} (\partial_n^{A\otimes B}(a\otimes b)) = \tau_{n-1} (\partial_i^A(a)\otimes b + (-1)^{i}a\otimes \partial_j^B(b)) = (-1)^{(i-1)j}b\otimes \partial_i^A(a) + (-1)^{i+i(j-1)}\partial_j^B(b)\otimes a$$

It is still true that τ_* is an involution.

3. A partial Künneth Formula

The goal of this section is to produce a formula for computing the homology of the tensor product of a two short chain complexes.

Fix two abelian groups, or R modules, and pick resolutions by free R modules,

$$\begin{array}{c} 0 \to F_1 \xrightarrow{\partial_1^F} F_0 \to A \to 0\\ 0 \to G_1 \xrightarrow{\partial_1^G} G_0 \to B \to 0 \end{array}$$

Assume R is a PID so this can always be done. Form the tensor product chain complex but put an ϵ on the boundary map where $\epsilon = \pm 1$.

Call the tensor product complex T^{ϵ} . The complex T^{-1} is the tensor product complex where F_0 is in some even dimension and T^{+1} is the tensor product complex where F_0 is in some odd dimension. The dimension of G_0 is irrelevant but the dimensions of F_1 and G_1 are one more than the dimensions of F_0 and G_0 .

Check that the next diagram commutes.

The horizontal rows are short exact so thinking of the columns as chain complexes, we have a short exact sequence of chain complexes. For notation say $0 \to \mathfrak{A}_* \to T^{\epsilon}_* \to \mathfrak{B}_* \to 0$. Then $0 = H_2(\mathfrak{A}_*) \to H_2(T^{\epsilon}_*) \to H_2(\mathfrak{B}_*) \to H_1(\mathfrak{A}_*) \to H_1(T^{\epsilon}_*) \to H_1(\mathfrak{B}_*) \to H_0(\mathfrak{A}_*) \to H_0(T^{\epsilon}_*) \to H_0(\mathfrak{B}_*) = 0$ Since $G_1 \xrightarrow{\partial_1^G} G_0$ is a free resolution of B, so is $G_1 \xrightarrow{\pm \epsilon \partial_1^G} G_0$. Because F_0 is free, $H_k(\mathfrak{A}_*) = \begin{cases} 0 & k \neq 0 \\ F_0 \otimes_R B & k = 0 \end{cases}$. This needs a bit of an argument since the resolution on the right. But τ_* is a chain isomorphism between the resolution on the resolution on the left complex.

Similarly, because F_1 is free, $H_k(\mathfrak{B}_*) = \begin{cases} 0 & k \neq 0 \\ F_1 \otimes_R B & k = 1 \end{cases}$. Hence $H_2(T_*^{\epsilon}) = 0$ and

$$0 \to H_1(T^{\epsilon}_*) \to F_1 \otimes_R B \to F_0 \otimes_R B \to H_0(T^{\epsilon}_*) \to 0$$

The map $F_1 \otimes_R B \to F_0 \otimes_R B$ is $\partial_1^F \otimes 1_B$.

The sequence $0 \to F_1 \xrightarrow{\partial_1^F} F_0 \to A \to 0$ is exact and so as we saw earlier

$$0 \to A *_R B \to F_1 \otimes_R B \xrightarrow{\partial_1^F \otimes_R \mathbb{1}_B} F_0 \otimes_R B \to A \otimes_R B \to 0$$

is exact. Hence with either ϵ , $H_k(T^{\epsilon}_*) = 0$, $k \neq 0$ or 1. The natural maps

$$A \otimes_{R} B \longrightarrow H_{0}(T_{*}^{\epsilon})$$
$$H_{1}(T_{*}^{\epsilon}) \longrightarrow A *_{R} B$$

are isomorphisms.

This partial result has several useful consequences.

Corollary 3. $A \otimes B$ and $B \otimes A$ are naturally isomorphic (which we already knew). Moreover A * B and B * A are naturally isomorphic.

Proposition 4. Given a map of abelian groups $f: A \to B$ and resolutions $0 \to F_1 \to F_0 \to A \to 0$ and $0 \to G_1 \to G_0 \to B \to 0$ be free R modules, there exists a chain map $\hat{f}_*: F_* \to G_*$ such that $\hat{f}_*: H_0(F_*) = A \to H_0(G_*) = B$ is f. Any two such chain maps are chain homotopic

Corollary 5. Given $f: A_1 \to A_2$ and $g: B_1 \to B_2$. Then there is a chain map $(f,g)_*: T^{\epsilon}_*(A_1, B_1) \to T^{\epsilon}_*(A_2, B_2)$

such that

$$\begin{array}{ccc} A_1 \otimes B_1 \longrightarrow H_0 \big(T_*^{\epsilon}(A_1, B_1) \big) & H_1 \big(T_*^{\epsilon}(A_1, B_1) \big) \longrightarrow A_1 * B_1 \\ & & \downarrow & & \downarrow & \\ A_2 \otimes B_2 \longrightarrow H_0 \big(T_*^{\epsilon}(A_2, B_2) \big) & and & & \downarrow & & \downarrow \\ & & & H_1 \big(T_*^{\epsilon}(A_2, B_2) \big) \longrightarrow A_2 * B_2 \end{array}$$

commute.

3.1. Direct sum of chain complexes. Given two chain complexes A_* and B_* , there is a direct sum chain complex $(A \oplus B)_*$ defined in each dimension by $(A \oplus B)_n = A_n \oplus B_n$ and $\partial_n^{A \oplus B} = \partial_n^A \oplus \partial_n^B : (A \oplus B)_n \to (A \oplus B)_{n-1}$.

The boundary-boundary verification is routine. Chain maps respect direct sum as do chain homotopy equivalences. Again the required verifications are routine. The flip map $(A \oplus B)_* \to (B \oplus A)_*$ is a chain map.

The direct sum construction can be extended to an arbitrary set of chain complexes.

For any set of R modules A_{α} , $\alpha \in \mathcal{A}$, and any set of R modules B_{β} , $\beta \in \mathcal{B}$ the natural map

$$\bigoplus_{(\alpha,\beta)\in\mathcal{A}\times\mathcal{B}} (B_{\beta}\otimes_{R} A_{\alpha}) \to \left(\bigoplus_{\beta\in\mathcal{B}} B_{\beta}\right)\otimes_{R} \left(\bigoplus_{\alpha\in\mathcal{A}} A_{\alpha}\right)$$

is an isomorphism. To describe the isomorphism precisely recall that to define a map out of a direct sum, it is required to give a map from each summand to the range. The map

$$B_{\beta'} \otimes_R A_{\alpha'} \to \left(\bigoplus_{\beta \in \mathcal{B}} B_{\beta} \right) \otimes_R \left(\bigoplus_{\alpha \in \mathcal{A}} A_{\alpha} \right)$$

is given by the tensor product of the inclusions $B_{\beta'} \to \bigoplus_{\beta \in \mathcal{B}} B_{\beta}$ and $A_{\alpha'} \to \bigoplus_{\alpha \in \mathcal{A}} A_{\alpha}$.

There is also a map

$$\left(\bigoplus_{\beta\in\mathcal{B}}B_{\beta}\right)\otimes_{R}\left(\bigoplus_{\alpha\in\mathcal{A}}A_{\alpha}\right)\to\underset{(\alpha,\beta)\in\mathcal{A}\times\mathcal{B}}{\times}(B_{\beta}\otimes_{R}A_{\alpha})$$

where $\underset{(\alpha,\beta)\in\mathcal{A}\times\mathcal{B}}{\times}$ denotes the direct product. To describe a map into a direct product, it is necessary

to define a map from the domain into each summand of the range. The required maps

$$\left(\bigoplus_{\beta\in\mathcal{B}}B_{\beta}\right)\otimes_{R}\left(\bigoplus_{\alpha\in\mathcal{A}}A_{\alpha}\right)\to B_{\beta'}\otimes_{R}A_{\alpha'}$$

are given by the tensor product of the projections $\bigoplus_{\beta \in \mathcal{B}} B_{\beta} \to B_{\beta'}$ and $\bigoplus_{\alpha \in \mathcal{A}} A_{\alpha} \to A_{\alpha'}$. By looking at elementary tensors, we see that the image in the direct product has only finitely many non-zero terms, or in other words it is onto the direct sum. By looking at elementary tensors the map

$$\bigoplus_{(\alpha,\beta)\in\mathcal{A}\times\mathcal{B}} (B_{\beta}\otimes_{R}A_{\alpha}) \to \left(\bigoplus_{\beta\in\mathcal{B}}B_{\beta}\right)\otimes_{R} \left(\bigoplus_{\alpha\in\mathcal{A}}A_{\alpha}\right)$$

is onto and hence split onto and hence is an isomorphism.

These isomorphisms induce isomorphisms of sums of chain complexes. Let A_*^{α} and B_*^{β} be sets of chain complexes of R modules. Then

$$\bigoplus_{(\alpha,\beta)\in\mathcal{A}\times\mathcal{B}} (B_*^\beta\otimes_R A_*^\alpha) \to \left(\bigoplus_{\beta\in\mathcal{B}} B_*^\beta\right)\otimes_R \left(\bigoplus_{\alpha\in\mathcal{A}} A_*^\alpha\right)$$

is a chain isomorphism.

4. A decomposition result for chain complexes over a PID

Given a chain complex of R modules, $\{A_*, \partial_*^A\}$ it can be decomposed as follows. For each $k \in \mathbb{Z}$, resolve $H_k(A_*)$ by two free r modules, $0 \to A_{k+1}^{[k]} \xrightarrow{\partial_{k+1}^{A[k]}} A_k^{[k]} \xrightarrow{\rho_k} H_k(A_*) \to 0$. Since $A_k^{[k]}$ is free, there exists a map $A_k^{[k]} \xrightarrow{\iota_k^{[k]}} \ker \partial_k^A \subset A_k$ such that

commutes. We can then find $\iota_{k+1}^{[k]} \colon A_{k+1}^{[k]} \to A_{k+1}$ such that

commutes. Make the $A^{[k]}$ into chain complexes by setting the remaining groups to 0. Then

 $\{A_*^{[k]}, \partial_*^{A^{[k]}}\} \text{ is a chain complex, } \iota_*^{[k]} \text{ is a chain map.}$ Define $A_\ell^{[\mathfrak{r}]} = \bigoplus_{k \in \mathbb{Z}} A_\ell^{[k]} \text{ and } \iota_k \colon A_k^{[\mathfrak{r}]} \to A_k.$ It then follows that $\iota_* \colon A_*^{[\mathfrak{r}]} \to A_*$ is a quasi-isomorphism.

If A_* also consists of free R modules, then ι_* is a chain homotopy equivalence if A_* is bounded below. **Theorem 6.** Let R be a PID. If A_* consists of free R modules and is bounded below, then A_* is chain homotopy equivalent to a chain complex B_* with B_k finitely-generated for all k if and only if $H_k(A_*)$ is finitely-generated for all k.

5. The full Künneth formula

The Künneth formula computes the homology of the tensor product of two chain complexes. The version we will do is for two chain complexes of free R modules with R a PID.

Theorem 7. Suppose A_* and B_* are chain complexes of free R modules, R a PID. Suppose A_* and B_* are bounded from below. Then there exists a natural short exact sequence

$$0 \to \bigoplus_{i+j=n} H_i(A_*) \otimes H_j(B_*) \to H_n(A_* \otimes B_*) \to \bigoplus_{i+j=n-1} H_i(A_*) * H_j(B_*) \to 0$$

The sequence is split although not naturally.