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Introduction

Pin structures on vector bundles are the natural generalization of Spin structures to the case of non-
oriented bundles. Spin(n) is the central Z/2Z extension (or double cover) of SO(n) and Pin−(n) and
Pin+(n) are two different central extensions of O(n), although they are topologically the same. The ob-
struction to putting a Spin structure on a bundle ξ (= Rn → E → B) is w2(ξ)εH

2(B;Z/2Z); for Pin+ it
is still w2(ξ), and for Pin− it is w2(ξ) + w2

1(ξ). In all three cases, the set of structures on ξ is acted on by
H1(B;Z/2Z) and if we choose a structure, this choice and the action sets up a one–to–one correspondence
between the set of structures and the cohomology group.

Perhaps the most useful characterization (Lemma 1.7) of Pin± structures is that Pin− structures on
ξ correspond to Spin structures on ξ ⊕ det ξ and Pin+ to Spin structures on ξ ⊕ 3 det ξ where det ξ is the
determinant line bundle. This is useful for a variety of “descent” theorems of the type: a Pin± structure on
ξ ⊕ η descends to a Pin+ (or Pin− or Spin) structure on ξ when dim η = 1 or 2 and various conditions on
η are satisfied.

For example, if η is a trivialized line bundle, then Pin± structures descend to ξ (Corollary 1.12), which
enables us to define Pin± bordism groups. In the Spin case, Spin structures on two of ξ, η and ξ ⊕ η
determine a Spin structure on the third. This fails, for example, for Pin− structures on η and ξ ⊕ η and ξ
orientable, but versions of it hold in some cases (Corollary 1.15), adding to the intricacies of the subject.

Another kind of descent theorem puts a Pin± structure on a submanifold which is dual to a characteristic
class. Thus, if V m−1 is dual to w1(TM ) and Mm is Pin±, then V ∩| V gets a Pin± structure and we have a
homomorphism of bordism groups (Theorem 2.5),

[∩w2
1] : ΩPin

±

m −→ ΩPin
∓

m−2

that proved useful in [K–T]. Or, if Fm−2 is the obstruction to extending a Pin− structure on Mm − F
over M , then F gets a Pin− structure if M is oriented (Lemma 6.2) or M is not orientable but F ∩| V has
a trivialized normal bundle in V (Theorem 6.9). These results give generalizations of the Guillou-Marin
formula [G-M], Theorem 6.3,

2β(F ) ≡ F · F − sign M (mod 16)

to any characterized pair (M4, F 2) with no condition on H1(M
4;Z/2Z).

Here, β(F ) is the Z/8Z Brown invariant of a Z/4Z quadratic enhancement of the Z/2Z intersection
form on H1(F ;Z/2Z); given a Pin− structure on F , the enhancement counts half-twists, mod 4, in imbedded
circles representing elements of H1(F ;Z/2ZZ). This is developed in §3, where it is shown that

β : ΩPin
−

2 −→ Z/8Z

gives the isomorphism in the following table.

ΩSpin1 = Z/2Z ΩSpin2 = Z/2Z ΩSpin3 = 0 ΩSpin4 = Z

ΩPin
−

1 = Z/2Z ΩPin
−

2 = Z/8Z ΩPin
−

3 = 0 ΩPin
−

4 = 0

ΩPin
+

1 = 0 ΩPin
+

2 = Z/2Z ΩPin
+

3 = Z/2Z ΩPin
+

4 = Z/16Z

In §2 we calculate the 1 and 2 dimensional groups and show that the non–zero one dimensional groups are
generated by the circle with its Lie group framing, S1

Lie, (note the Möbius band is a Pin+ boundary for S1
Lie);

RP2 generates ΩPin
−

2 ; the Klein bottle, the twisted S1
Lie bundle over S1, generates ΩPin

+

2 ; and T 2
Lie, the

torus with its Lie group framing generates Ω
Spin
2 . By §5 enough technique exists to calculate the remaining

1 Partially supported by the N.S.F.



values and show that ΩPin
+

3 is generated by the twisted T 2 bundle over S1 with Lie group framing on the

fiber torus; ΩPin
+

4 is generated by RP4. The Cappell–Shaneson fake RP 4 represents ±9 ∈ Z/16Z [Stolz];
the Kummer surface represents 8 ∈ Z/16Z and in fact, a Spin 4–manifold bounds a Pin+ 5-manifold iff its

index is zero mod 32. The Kummer surface also generates ΩSpin4 .

Section 4 contains a digression on Spin structures on 3–manifolds and a geometric interpretation of
Turaev’s work [Tu] on trilinear intersection forms

H2

(
M3;Z/2Z

)
⊗H2

(
M3;Z/2Z

)
⊗H2

(
M3;Z/2Z

)
−→ Z/2Z .

This is used in calculating the µ–invariant: let µ(M,Θ1) be the µ–invariant of M3 with Spin structure Θ1.
The group H1

(
M3;Z/2Z

)
acts on Spin structures, so let α ∈ H1

(
M3;Z/2Z

)
determine Θ2. Then α is

dual to an imbedded surface F 2 in M which gains a Pin− structure from Θ1 and

µ(Θ2) = µ(Θ1) − 2β(F ) (mod 16)

Four dimensional characteristic bordism Ω!
4 is studied in §6 with generalizations of [F-K] and [G-M]. We

calculate, in Theorem 6.5, the µ–invariant of circle bundles over surfaces, S(η), whose disk bundle, D(η),
has orientable total space. Fix a Spin structure on S(η), Θ. Then

µ(S(η),Θ) = sign (D(η)) − Euler class(η) + 2 · b(F ) (mod 16)

where b(F ) = 0 if the Spin structure Θ extends across D(η) and is β of a Pin− structure on F induced on
F from Θ otherwise.

The characteristic bordism groups are calculated geometrically in §7, in particular,

Ω!
4 = Z/8Z⊕ Z/4Z⊕ Z/2Z .

Just as Robertello was able to use Rochlin’s Theorem to describe the Arf invariant of a knot [R], so we

can use β : ΩPin
−

2 −→ Z/8Z to give a Z/8Z invariant to a characterized link L in a Spin 3–manifold M with
a given set of even longitudes for L (Definition 8.1). This invariant is a concordance invariant (Corollary
8.4), and if each component of L is torsion in H1(M ;Z), then L has a natural choice of even longitudes
(Definition 8.5).

Section 9 contains a brief discussion of the topological case of some of our 4-manifold results. In par-
ticular, the formula above must now contain the triangulation obstruction κ(M) for an oriented, topological
4–manifold M4:

2β(F ) ≡ F · F − sign (M) + 8κ(M) (mod 16)

(recall that (M,F ) is a characterized pair).

§1. Pin Structures and generalities on bundles.

The purpose of this section is to define the Pin groups and to discuss the notion of a Pin structure on
a bundle.

Recall that rotations of Rn are products of reflections across (n− 1)–planes through the origin, an even
number for orientation preserving rotations and an odd number for orientation reversing rotations. These
(n− 1)–planes are not oriented so they can equally well be described by either unit normal vector. Indeed,
if u is the unit vector, and if x is any point in Rn, then the reflection is given by x− 2(x · u)u. Thus an
element of O(n) can be given as (±v1)(±v2) · · · (±vk) where each vi is a unit vector in Rn and k is even
for SO(n). Then elements of Pin(n), a double cover of O(n), are obtained by choosing an orientation for
the (n − 1)–planes or equivalently choosing one of the two unit normals, so that an element of Pin(n) is
v1 · · ·vk; if k is even we get elements of Spin(n). With this intuitive description as motivation, we proceed
more formally to define Pin (see [ABS]).



Let V be a real vector space of dimension n with a positive definite inner product, ( , ). The Clifford
algebra, Cliff±(V ), is the universal algebra generated by V with the relations

vw + wv =
2(v,w) for Cliff+(V )

−2(v,w) for Cliff−(V )

If e1, · · · en is an orthonormal basis for V , then the relations imply that eiej = −eiej , i �= j and
eiei = ±1 in Cliff±(V ). The elements eI = ei1 · · · eik , I = {1 ≤ i1 < i2 · · · < ik ≤ n} form a (eIeJ = 0,
eIeI = ±1) basis for Cliff±(V ). So dimCliff±(V ) = 2n; note that as vector spaces, Cliff±(V ) is isomorphic
to the exterior algebra generated by V , but the multiplications are different, e.g. eiei = ±1 �= 0 = ei ∧ ei.

Let Pin±(V ) be the set of elements of Cliff±(V ) which can be written in the form v1v2 · · ·vk where
each vi is a unit vector in V ; under multiplication, Pin±(V ) is a compact Lie group. Those elements
v1v2 · · ·vk ∈ Pin±(V ) for which k is even form Spin(V ).

Define a “transpose” etI = eik · · · ei1 = (−1)k−1eI and an algebra homomorphism α(eI) = (−1)keI =
(−1)|I|eI and extend linearly to Cliff±(V ). We have a Z/2Z–grading on Cliff±(V ): Cliff±(V )0 is the
+1 eigenspace of α and Cliff±(V )1 is the −1 eigenspace. For w ∈ Cliff±(V ), define an automorphism
ρ(w):Cliff±(V ) → Cliff±(V ) by

ρ(w)(v) =

{
wvwt for Cliff−(V )

α(w)vwt for Cliff+(V )

We can define a norm in the Clifford algebra, N :Cliff± → R+ by N(x) = α(x)x for all x ∈ Cliff±(V ). Then
we can define Pin±(V ) to be {w ∈ Cliff±(V ) | ρ(w)(V ) = V and N(w) = 1 }. Hence if w ∈ Pin±(v), ρ(w) is
an automorphism of V so ρ is a representation ρ:Pin±(V ) → O(V ) and by restriction ρ:Spin(V ) → SO(V ).

It is easy to verify that ρ(w) acts on V by reflection across the hyperplane w⊥, e.g. for Pin−(V ),

ρ(e1)ei = e1eie1 =

{
−e2

1ei = ei i �= 1
e2
1ei = −ei i = 1

If r and I are basepoints in the components of O(V ), where r is reflection across e⊥1 , then ρ−1{r, I} =
{±e1,±1} and

ρ−1{r, I} ∼=
{

Z/2Z⊕ Z/2Z for Pin+(V )
Z/4Z for Pin−(V )

.

The Z/2Z = {−1, 1} ∈ Pin± is central and Pin±(V )/{±1} = O(V ). If n > 1, this Z/2Z is the center
of Pin±(V ) and, since O(V ) has a non–trivial center, for n > 1, the Z/2Z central extensions Pin± → O(V )
are non–trivial.

Thus Pin±(V ) is a double cover of O(V ). As spaces, Pin±(V ) = Spin(V ) ⊥⊥ Spin(V ) but the group
structure is different in the two cases. We can think of −1 ∈ ρ−1(I) as rotation of V ( about any axis ) by
2π and +1 ∈ ρ−1(I) as the identity. More precisely, an arc in Pin±(V ) from 1 to −1 maps by ρ to a loop
in O(V ) which generates π1(O(V )); in fact, for θ ∈ [0, π], the arc θ → ±e1 · (cos θe1 + sin θe2) is one such.
Even better, we may think of Pin± as scheme for distinguishing an odd number of full twists from an even
number.

We use Pin±(n) to denote Pin±(V ) where V is Rn.

Remark. The tangent bundle of RP2, TRP2 , has a Pin−(2)–structure.

We can “see” the Pin−(2) structure on TRP2 as follows: decompose RP2 into a 2–cell, B2, and a Möbius
band, MB, with core circle RP1. Then TRP2 |MB can be described using two coordinate charts, U1 and
U2, with local trivializations (e1, e2), in which e1 is parallel to RP1 and e2 is normal, and with transition
function U1 ∩ U2 → Pin−(2) which sends the two components of U1 ∩ U2 to 1 and e2. Then TRP2 |∂MB is
a trivial R2–bundle over S1 = ∂MB which is trivialized by the transition function 1 and e2

2 = −1. Now
e1 would be tangent to S1 but the e2

2 = −1 adds a rotation by 2π as S1 = ∂MB is traversed. But this



trivialization on TRP2 |S1 is exactly the one which extends over the 2–cell B2. Thus RP2 is Pin−. Note that
this process fails if e2

2 = +1, and, in fact, RP2 does not support a Pin+ structure (see Lemma 1.3 below).

We now review the theory of G bundles, for G a topological group, and the theory of H structures on a
G bundle. A principal G bundle is a space E with a left G action, E×G → E such that no point in E is fixed
by any non–identity element of G. We let B = E/G be the orbit space and p:E → B be the projection. We
call B the base of the bundle and say that E is a bundle over B. We also require a local triviality condition.
Explicitly, we require a numerable cover, {Ui }, of B and G maps ri:Ui × G → E such that the composite

Ui ×G
ri−→E

p
−→B is just projection onto Ui followed by inclusion into B. Such a collection is called an atlas

for the bundle and it is convenient to describe bundles in terms of some atlas. The functions r−1
j
◦ ri are G

maps, Ui∩Uj×G → Ui∩Uj×G, which commute with the projection. Hence they can be given as transition
functions gij :Ui ∩Uj → G. Note gii = id, g−1

ij = gji and gik = gij◦gjk on Ui ∩Uj ∩Uk. Conversely, given any
numerable cover of a space B and a set of maps satisfying these three conditions, we can find a principal G
bundle and an atlas for it so the base space is B and the transitions functions are our given functions.

Suppose E0 and E1 are two G bundles over B0 and B1 respectively. Let f :E0 → E1 be a map. A
bundle map covering f is a G map F :E0 → E1 so that p1◦F = f◦p0, where pi is the projection in the i-th
bundle. We say two bundles over B are equivalent iff there exists a bundle map between them covering the
identity.

Given a bundle over B, say E, with atlas Ui and gij , and a map f :B0 → B, the pull–back of E along
f is the bundle over B0 with numerable cover f−1(Ui) and transition functions gij◦f . The pull–backs of
equivalent bundles are equivalent. A bundle map between E0 and E1 covering f :B0 → B1 is equivalent to a
bundle equivalence between E0 and the pull–back of E1 along f . Hence we mostly discuss the case of bundle
equivalence.

Given any atlas for a bundle, say Ui; gij , and a subcover Vα of Ui we can restrict the gij to get a
new family of transition functions gαβ . Clearly these two atlases represent the same bundle. Given two
numerable covers, it is possible to find a third numerable cover which refines them both, so it is never any
loss of generality when considering two bundles over the same base to assume the transition functions are
defined on a common cover.

A bundle equivalence between bundles given by transition functions gij and g′ij for the same cover is

given by maps hi:Ui → G such that g′ij(u) = hi(u) gij(u)
(
hj(u)

)−1
for all i and j and all u ∈ Ui ∩ Uj .

Given a continuous homomorphism ψ:H → G, we can form a principal G bundle from a principal H
bundle by applying ψ to any atlas for the H bundle. If p:E → B is the H bundle, we let pψ:E ×H G → B
denote the associated G bundle. Equivalent H bundles go to equivalent G bundles. We say that a G bundle,
p:E → B, had an H structure provided that there exists an H bundle, p1:E1 → B so that the associated G
bundle, (p1)ψ:E1 ×H G → B is equivalent to the G bundle. More correctly one should say that we have a ψ
structure on our G bundle, but we won’t. An H structure for a G bundle, p:E → B consists of a pair: an H
bundle, p1:E1 → B, and a G equivalence, γ from (p1)ψ:E1 ×H G → B to the original G bundle, p:E → B.
Two structures p1:E1 → B, γ1 and p2:E2 → B, γ2 on p:E → B are equivalent if there exists an equivalence
of H bundles f :E1 → E2 such that, if fψ denotes the corresponding equivalence of G bundles, γ1 = γ2◦fψ.

We assume the reader is familiar with this next result.

Theorem 1.1. For any topological group, G, there exists a space BG such that equivalence classes of G
bundles over B are in 1–1 correspondence with homotopy classes of maps B → BG. (A map B → BG
corresponding to a bundle is called a classifying map for the bundle.) Given ψ:H → G we get an induced
map Bψ:BH → BG. If this map is not a fibration, we may make it into one without changing BG or the
homotopy type of BH , so assume Bψ is a Hurewicz fibration. Given a G bundle with a classifying map
B → BG, H structures on this bundle are in 1–1 correspondence with lifts of the classifying map for the G
bundle to BH .

Example. Let p:E → B be a trivial O(n) bundle, and suppose the atlas has one open set, namely B, and
one transition function, the identity. One SO(n) structure on this bundle consists of the same transition
function but thought of as taking values in SO(n) together with the bundle equivalence which maps B to the
identity in O(n). Another SO(n) structure is obtained by using the same transition functions but taking as



the bundle equivalence a map B to O(n) which lands in the orientation reversing component of O(n). Indeed
any map B → O(n) gives an SO(n) structure on our bundle. It is not difficult to see that any two maps into
the same component of O(n) give equivalent structures and that two maps into different components give
structures that are not equivalent as structures. Clearly the SO(n) bundle in all cases is the same. One gets
from here to the more traditional notion of orientation for the associated vector bundle as follows. Since the
transition functions are in O(n), O(n) acts on the vector space fibre. But for matrices to act on a vector
space a basis needs to be chosen. This basis orients the SO(n) bundle: in the first case the equivalence
orients the underlying O(n) bundle one way and in the second case the equivalence orients the bundle the
other way.

Finally recall that an O(n) bundle has an orientation iff the first Stiefel–Whitney class, w1 of the bundle
vanishes. If there is an SO(n) structure then H0 (B;Z/2Z) acts in a simply transitive manner on the set of
structures.

The Lie group Spin(n) comes equipped with a standard double cover map Spin(n) → SO(n), and
this is the map ψ we mean when we speak of an SO(n) bundle, or an oriented vector bundle, having a
Spin structure. There is a fibration sequence BSpin(n) → BSO(n) → K(Z/2Z, 2), so the obstruction to

the existence of a Spin structure is a 2–dimensional cohomology class which is known to be the second
Stiefel–Whitney class w2. If the set of Spin structures is non–empty, then H1 (B;Z/2Z) acts on it in a
simply transitive manner.

The action can be seen explicitly as follows. Fix one Spin structure, say gij . An element in H1 (B;Z/2Z)
can be represented by a Cech cocycle: i.e. a collection of maps cij :Ui∩Uj → ±1 satisfying the same conditions
as the transition functions for a bundle. The new Spin structure consists of the transition functions gij · cij
with the same SO(n) bundle equivalence, where we think of ±1 as a subgroup of Spin(n) and · denotes
group multiplication. It is not hard to check that cohomologous cocycles give equivalent structures.

We now explore the relation between Spin structures on an oriented vector bundle and framings of that
bundle. A framing of a bundle is the same thing as an H structure where H is the trivial subgroup. Hence H
is naturally a subgroup of Spin(n) and an equivalence class of framings of a bundle gives rise to an equivalence
class of Spin structures. Consider first the case n = 1. Recall SO(1) is trivial and Spin(1) = Z/2Z. Hence
an SO(1) bundle already has a unique trivialization, and hence a “canonical” Spin structure. There are often
other Spin structures, but, none of these come from framings. In case n = 2, Spin(2) = S1, SO(2) = S1

and the map is the double cover. If an SO(2) bundle is trivial, framings are acted on simply transitively by
H1 (B;Z). The corresponding Spin structures are equivalent iff the class in H1 (B;Z/2Z) is trivial. If B is
a circle the bundle is trivial iff it has a Spin structure and both Spin structures come from framings. The
Spin structure determines the framing up to an action by an even element in Z, so we often say that the
Spin structure determines an even framing. If n > 2 and B is still a circle, then the bundle is framed iff it
has a Spin structure and now framings and Spin structures are in 1–1 correspondence.

Of course, given any Spin structure on a bundle over B, and any map f :S1 → B, we can pull the bundle
back via f and apply the above discussion. Since Spin structures on the bundle are in 1–1 correspondence
with H1 (B;Z/2Z), which is detected by mapping in circles, we can recover the Spin structure by describing
how the bundle is framed when restricted to each circle (with a little care if n = 1 or 2). Moreover, if
an SO(n) bundle over a CW complex is trivial when restricted to the 2–skeleton, then w2 vanishes, so the
bundle has a Spin structure. If n �= 2 and the bundle has a Spin structure then, restricted to the 2– skeleton,
it is trivial. If n = 2 this last remark is false as the tangent bundle to S2 shows.

Finally, we need to discuss stabilization. All our groups come in families indexed by the natural numbers
and there are inclusions of one in the next. An example is the family O(n) with O(n) → O(n+1) by adding
a 1 in the bottom right, and all our other families have similar patterns. This is of course a special case of
our general discussion of H structures on G bundles. Given a vector bundle, ξ, and an oriented line bundle,
ε1, the O(n) transition functions for ξ extend naturally to a set of O(n + 1) transition functions for ξ ⊕ ε1

using the above homomorphism, and any of our structures on ξ will extend naturally to a similar structure
on ξ ⊕ ε1. We call the structure on ξ ⊕ ε1 the stabilization of the structure on ξ.

A particular case of great interest to us is the relation between tangent bundles in a manifold with
boundary. Suppose M is a codimension 0 subset of the boundary of W . We can consider the tangent bundle



of W , say TW , restricted to M . It is naturally identified with TM ⊕ νM⊂W where ν denotes the normal
bundle. This normal bundle is framed by the “inward–pointing” normal, so we can compare structures on
M with structures on W using stabilization.

Since both Pin±(n) are Lie groups and have homomorphisms into O(n), the above discussion applies.

Remarks. With this definition it is clear that, if there is a Pin± structure on a bundle ξ over a space B
then H1 (B;Z/2Z) acts on the set of Pin± structures in a simply transitive manner. It is also clear that the
obstruction to existence of such a structure must be a 2–dimensional cohomology class in H2

(
BO(n);Z/2Z

)
that restricts to w2 ∈ H2

(
BSO(n);Z/2Z

)
and hence is either w2(ξ) or w2(ξ) + w2

1(ξ). Here wi denotes the
i–th Stiefel–Whitney class of the bundle.

We sort out the obstructions next.

Lemma 1.2. Let λ be a line bundle over a CW complex B. Then λ has a Pin+ structure and λ ⊕ λ ⊕ λ
has a Pin− structure.

Proof : Since Pin+(1) → O(1) is just a projection, Z/2Z⊕Z/2Z → Z/2Z, there is a group homomorphism,
O(1) → Pin+(1), splitting the projection. If we compose transition functions for λ with this homomorphism,
we get a set of Pin+ transition functions for λ. If we have an equivalent O(1) bundle, the two Pin+(1)
bundles are also equivalent.

Transition functions for 3λ are given by taking transition functions for λ and composing with the

homomorphism O(1) → O(3) which sends ±1 to the matrix


±1 0 0

0 ±1 0
0 0 ±1


. It is easy to check that this

homomorphism lifts through a homomorphism O(1) → Pin−(3). If we have an equivalent O(1) bundle, the
two Pin−(3) bundles are also equivalent.

Addendum to 1.2. Notice that we have proved a bit more. The homomorphisms we chose are not unique,
but can be chosen once and for all. Hence a line bundle has a “canonical” Pin+ structure and 3 times a line
bundle has a “canonical” Pin− structure.

Remark. There are two choices for the homomorphisms above. If we choose the other then the two
“canonical” Pin+ structures on a line bundle differ by the action of w1 of the line bundle, with a similar
remark for the Pin− case.

Lemma 1.3. The obstruction to lifting an O(n)–bundle to a Pin+(n)–bundle is w2, and to a Pin−(n)–
bundle is w2 + w2

1. If ξ ⊕ λ = trivial bundle, then ξ has a Pin− structure iff λ has a Pin+ structure.

Proof : A line bundle has a Pin+ structure by Lemma 1.2, so w2 = 0, but there are examples, e.g. the
canonical bundle over RP2, for which w2

1 �= 0. Hence w2 is the obstruction to a bundle having a Pin+

structure.

For 3 times a line bundle, w2 = w2
1, so we can find examples, e.g. 3 times the canonical bundle over

RP2, for which w2 + w2
1 = 0 but w2 �= 0. Hence w2 + w2

1 is the obstruction to having a Pin− structure.

The remaining claim is an easy characteristic class calculation.

The fact that the tangent bundle and normal bundles have different structures can lead to some con-
fusion. In the rest of this paper, when we say a manifold has a Pin± structure, we mean that the tangent
bundle to the manifold has a Pin± structure. As an example of the possibilities of confusion, the Pin
bordism theory calculated by Anderson, Brown and Peterson, [ABP2], is Pin− bordism. They do the calcu-
lation by computing the stable homotopy of a Thom spectrum, which as usual is the Thom spectrum for the
normal bundles of the manifolds. The key fact that makes their calculation work is that w2 vanishes, but
this is w2 of the normal bundle, so the tangent bundle has a Pin− structure and we call this Pin− bordism.

We remark that a Pin± structure is equivalent to a stable Pin± structure and similarly for Spin. This
can be seen by observing that

Pin±(n) −→ Pin±(n + 1)

↓ ↓
O(n) −→ O(n + 1)



commutes and is a pull–back of groups, with a similar diagram in the Spin case.

In order to be able to carefully discuss structures on bundles, we introduce the following notation and
definitions. Given a vector bundle, ξ, let Pin±(ξ) denote the set of Pin± structures on it. If ξ is an oriented
vector bundle, let Spin(ξ) denote the set of Spin structures on it. Throughout this paper we will be writing
down functions between sets of Pin± or Spin structures. All these sets, if non–empty are acted on, simply
transitively, by H1 (B;Z/2Z) where B is the base of the bundle.

Definition 1.4. We say that a function between two sets of structures on bundles over bases B1 and B2

respectively is natural provided there is a homomorphism H1 (B1;Z/2Z) → H1 (B2;Z/2Z) so that the
resulting map is equivariant.

One example of this concept is the following construction.

Construction 1.5. Let f̂ : ξ1 → ξ2 be a bundle map covering f :B1 → B2. Given a cover and transition
functions for B2 and ξ2, we can use f and f̂ to construct a cover and transition functions for B1 and ξ1.
This construction induces a natural function

f̂∗:Pin±(ξ2) → Pin±(ξ1)

with a similar map for Spin structures if we use f̂ to pull back the orientation.

There are two examples of this construction we will use frequently. The first is to consider an open
subset U ⊂ M of a manifold M : here the derivative of the inclusion is a bundle map so Construction 1.5
gives us a natural restriction of structures. The second is to consider a codimension 0 immersion between two
manifolds, say f :N → M . Again the derivative is a bundle map so we get a natural restriction of structures.

We can also formally discuss stabilization.

Lemma 1.6. Let ξ be a vector bundle, and let ε1 be a trivial line bundle, both over a connected space B.
There are natural one to one correspondences

Sr(ξ):Pin±(ξ) → Pin±(ξ ⊕
r
⊕
i=1

ε1) .

If ξ is oriented there is a natural one to one correspondence

S+
r (ξ):Spin±(ξ) → Spin±(ξ ⊕

r
⊕
i=1

ε1) .

Given a bundle map f̂ : ξ1 → ξ2, there is another bundle map
̂

(f ⊕
r
⊕
i=1

1): ξ1⊕
r
⊕
i=1

ε1 → ξ2⊕
r
⊕
i=1

ε1. The obvious

squares involving these bundle maps and the stabilization maps commute.

We would like a result that relates Pin± structures on bundles to the geometry of the bundle restricted
over the 1–skeleton mimicking the framing condition for the Spin case. We settle for the next result. Let ξn

be an n–plane bundle over a CW–complex X, and let det ξ be the determinant bundle of ξn.

Lemma 1.7. There exist natural bijections

Ψ4k+1(ξ):Pin−(ξ) → Spin(ξ ⊕ (4k + 1) det ξ)

Ψ4k+3(ξ):Pin+(ξ) → Spin(ξ ⊕ (4k + 3) det ξ)

Ψ4k+2(ξ):Pin±(ξ) → Pin∓(ξ ⊕ (4k + 2) det ξ)

Ψ4k(ξ):Pin±(ξ) → Pin±(ξ ⊕ (4k) det ξ)

and Ψ+
4k(ξ):Spin(ξ) → Spin(ξ ⊕ (4k) det ξ) .



A bundle map f̂ : ξ1 → ξ2 defines a bundle map det ξ1 → det ξ2. Using this map between determinant
bundles, all the squares involving the Ψ maps commute.

Proof : It follows from Lemma 1.3 that the existence of a structure of the correct sort on ξ is equivalent to
the existence of a structure of the correct sort on ξ ⊕ r det ξ.

Let us begin by recalling the transition functions for the various bundles. There are homomorphisms
δr:O(n) → O(n + r) defined by sending an n× n matrix A to the (n + r)× (n + r) matrix which is A in the
first m×m locations, detA in the remaining r diagonal locations, and zero elsewhere.

If Ui, gij :Ui ∩ Uj → O(n) is a family of transition functions for ξ, then δr◦gij is a family of transition
functions for ξ ⊕ r det ξ.

Next, we describe a function from the set of structures on ξ to the set of structures on ξ ⊕ r det ξ.

Begin with the case in which ξ has a Pin− structure with transition functions Gij :Ui ∩ Uj → Pin−(n)
lifting the given set gij into O(n). Pick an element e in the Clifford algebra for Rn ⊕ R1 so that e2 = −1
and e maps to reflection through Rn under the canonical map to O(n + 1). There are two such choices but
choose one once and for all. Define Hij into Pin−(n + 1) by Hij(u) = i(Gij(u)) · xij(u) where i denotes the
natural inclusion of Pin−(n) into Pin−(n + 1) and xij(u) is e if det gij(u) = −1 and 1 otherwise.

It is clear that the Hij land in Spin(n+1), but what needs to be checked is that they are a set of transition
functions for our bundle. Clearly they lift the transition functions for the underlying SO(n+1) bundle, so we
need to consider the cocycle relation. This says that Hij(u)Hjk(u)Hki(u) = 1. If we replace the H’s by G’s,
we do have the relation, so let us compute Hij(u)Hjk(u)Hki(u) = Gij(u)xij(u)Gjk(u)xjk(u)Gki(u)xki(u).
Any x commutes past a G if the x associated to the G is 1 and it goes past with a sign switch if the x
associated to the G is e. Also note that either none or two of the x’s in our product are e. We leave it to
the reader to work through the cases to see that the cocycle relation always holds and to note that the key
point is that e2 = −1.

Next, consider the case in which ξ has a Pin+ structure, and let Gij continue to denote the transition
functions. Let e1, e2 and e3 denote elements in the Pin+ Clifford algebra for Rn ⊕ R3: each ei covers
reflection in a hyperplane perpendicular to one of the three standard basis vectors for the R3 factor. Define
Hij as above except replace e by e1e2e3. The proof goes just as before after we note that (e1e2e3)

2 = −1.

For the case in which r = 2 and ξ may have either a Pin+ or a Pin− structure, choose e1 and e2; note
that (e1e2)

2 = −1 and proceed as above.

The last natural bijection is also easy. If gij are transition functions for ξ it is easy to choose the cover
so that there are lifts Gij of our functions to Pin−(n) (or Pin+(n) if the reader prefers), but the cocycle
relation may not be satisfied. We can define new functions Hij into Spin(4n) by just juxtaposing 4 copies of
Gij thought of as acting on four copies of the same space. These functions can easily be checked to satisfy
the cocycle condition.

Now that we have defined our functions, the results of the theorem are easy. The reader should check
that the functions we defined are H1 ( ;Z/2Z) equivariant and hence induce 1–1 transformations.

Remark 1.8. We did make a choice in the proof of 1.7. The choice was global and so the lemma holds, but
it is interesting to contemplate the effect of making the other choice. It is not too hard to work out that if
we continue to use 1, but replace e by −e, the new Spin structure will differ from the old one by the action
of w1(ξ). The same result holds if we switch an odd number of the e1, e2, e3 in the Pin+ case or an one of
e1, e2 in the r = 2 case.

For later use, we need a version of Lemma 1.7 in which the line bundles are merely isomorphic to
the determinant bundle. To be able to describe the effect of changing our choices, we need the following
discussion.

There is a well–known operation on an oriented vector bundle known as “reversing the orientation”.
Explicitly, suppose that we have transition functions, gij , defined into SO(n) based on a numerable cover
{Ui}. Then we choose maps hi:Ui → O(n)−SO(n) and let the bundle with the “opposite orientation” have
transition functions hi◦gij◦h

−1
j and use the maps hi to get the O(n) equivalence with the original bundle.

The choice of the hi is far from unique, but any two choices yield equivalent SO(n) bundles. In the same



fashion, given a Spin(n) bundle, we can consider the opposite Spin structure. Proceed just as above using
Spin(n) for SO(n) and Pin+(n) or Pin−(n) for O(n).

Note that a Spin structure and its opposite are equivalent Pin+ or Pin− structures. Conversely, given
a Pin± structure on a vector bundle which happens to be orientable, then there are two compatible Spin
structures which are the opposites of each other. We summarize the above discussion as

Lemma 1.9. If ξ is an oriented vector bundle, then there is a natural one to one correspondence, called
reversing the spin structure,

Rξ:Spin(ξ) → Spin(−ξ)

where −ξ denotes ξ with the orientation reversed. We have that Rξ◦R−ξ is the identity. Finally, given a

bundle map f̂ as in Construction 1.5, the obvious square commutes.

Proof : We described the transformation above, and it is not hard to see that it is H1 (;Z/2Z) equivariant.
It is also easy to check that the composition formula holds.

In practice, we can rarely identify our bundles with the accuracy demanded by Lemma 1.7 or Lemma
1.6, so we discuss the effect of a bundle automorphism on the sets of structures. Suppose we have a bundle

χ = ξ ⊕
r
⊕
i=1

λ, where λ is a line bundle. We will study the case λ is trivial (so called “stabilization”) and

the case λ is isomorphic to det ξ. Let γ be a bundle automorphism of χ which is the sum of the identity

on ξ and some automorphism of
r
⊕
i=1

λ. The transition functions for
r
⊕
i=1

λ are either the identity or minus the

identity, both of which are central in O(r) so γ is equivalent to a collection of maps γ:B → O(r), where B
is the base of the bundle. The bundle automorphism induces a natural automorphism of Pin± structures
on χ, described in the proof of

Lemma 1.10. Let the base of the bundle, B, be path connected. The map induced by γ on structures,
denoted γ∗, is the identity if γ lands in SO(r). Otherwise it reverses the Spin structure in the Spin case
and acts via w1(ξ) in the Pin± case if λ is trivial and by r · w1(ξ) if λ is isomorphic to det ξ.

Proof : To fix notation, choose transition functions for a structure on ξ (either Spin or Pin±). Pick transition
functions for λ using the same cover. If λ is trivial, take the identity for the transition functions and if λ is
the determinant bundle take the determinant of the transition functions for ξ. The new structure induced by
γ has transition functions γ̃(u)oij(u)γ̃−1(u) where oij denotes the old transition functions and γ̃(u) denotes
a lift of γ(u) to Pin±(r) and then into Pin±(n + r) where ξ has dimension n. There may be no continuous
choice of γ̃, but since the two lifts yield the same conjugation, the new transition functions remain continuous.
The element oij(u)Pin±(n + r) has the form x with x involving only the first n basis vectors in the Clifford
algebra if det oij(u) = 1 or if λ is trivial: otherwise xen+1 · · · en+r with x as before.

Recall γ̃x = (−1)α(x)α(γ)xγ̃ and γ̃en+1 · · · en+r = (−1)α(γ)(r−1)en+1 · · · en+rγ̃ where α on Pin± is the
restriction of the mod 2 grading from the Clifford algebra and α on O(r) is 1 iff the element is in SO(r). The
result now follows for Pin± structures. The result for Spin structures is now clear. If γ takes values in SO(r)
then the bundle map preserves the orientation and the underlying Pin− structure, hence the Spinstructure.
If γ takes values in O(r)−SO(r), compose the map induced by γ with the reverse Spin structure map. The
reverse Spin structure map is induced by any constant map B → O(r) − SO(r). Hence the composite of
these two maps is induced by a map B → SO(r) and hence is the identity.

There are a couple of further compatibility questions involving the functions we have been discussing.
Given an SO(n) bundle ξ and an oriented trivial line bundle ε1, we get a natural SO(n + r) bundle ξ ⊕ rε1

and an isomorphism −ξ ⊕ rε1 ∼= −(ξ ⊕ rε1).

Lemma 1.11. With the above identifications, stabilization followed by reversing the Spin structure agrees
with reversing the Spin structure and then stabilizing: i.e. Rξ⊕rε◦S+

r (ξ) = S+
r (−ξ)◦R(ξ).

Proof : Left to the reader.

Let Mm be Pin± and let V m−1 be a codimension 1 manifold of M with normal line bundle ν. We wish
to apply Lemma 1.7 to the problem of constructing a “natural” structure on V . If there is a natural map



from structures on M to structures on V , we say that V inherits a structure from the structure on M . Of
course, the homomorphism H1 (M ;Z/2Z) → H1 (V ;Z/2Z) implicit in the use of “natural” is just the one
induced by the inclusion.

Corollary 1.12. If ν is trivialized then V inherits a Pin± structure from a Pin± structure on M . If M
and V are oriented then V inherits a Spin structure from a Spin structure on M .

Proof : When ν is trivialized the result follows from Lemma 1.6. If M and V are oriented, then we can
trivialize (i.e. orient) ν so that the orientation on TV ⊕ ν agrees with the orientation on TM |V .

A case much like Corollary 1.12 occurs when M is a manifold with boundary, V = ∂M . In this case,
the normal bundle, ν, is trivialized by the geometry, namely the preferred direction is inward. Just as in
Corollary 1.12, we put ν last getting TM |∂M = T∂M ⊕ ν. On orientations this gives the convention “inward
normal last” which we adopt for orienting boundaries. Furthermore, a Spin or Pin± structure on M now
induces one on ∂M , so we have a bordism theory of Spin manifolds and of Pin± manifolds.

In the Spin case, the inverse in the bordism group is formed by taking the manifold, M , with Spin
structure on TM , and reversing the Spin structure. In either the Pin+ or the Pin− case, the inverse in
bordism is formed by acting on the given structure by w1(M). Having to switch the Pin± structure to form

the inverse is what prevents ΩPin
±

∗ from being a Z/2Z vector space like ordinary unoriented bordism. The
explicit formula for the inverse does imply

Corollary 1.13. The image of ΩSpinr (X) in ΩPin
±

r (X) has exponent 2 for any CW complex X, or even any
spectrum.

The “inward normal last” rule has some consequences. Suppose we have a manifold with boundary M ,
∂M , and a structure on M × R1. We can first restrict to the boundary, which is (∂M) × R1, and then do
the codimension 1 restriction, or else we can do the codimension 1 restriction to M and then restrict to the
boundary.

Lemma 1.14. The two natural functions described above,

Pin±(M ×R1) → Pin±(∂M) ,

differ by the action of w1(M). The same map between Spin structures reverses the Spin structure.

Proof : By considering restriction maps it is easy to see that it suffices to prove the result for M = (∂M) ×
[0,∞), and here the functions are bijections. Consider the inverse from structures on ∂M to structures on
∂M ×R1 × [0,∞). The two different functions differ by a bundle automorphism which interchanges the last
two trivial factors. By Lemma 1.10, this has the effect claimed.

In the not necessarily trivial case we also have a “restriction of structure” result.

Corollary 1.15. If ν is not necessarily trivial, then V inherits a structure from one on M in three of the

four cases below:

Pin+ Pin−

V orientable
ν = detTM

Spin None

V not necessarily orientable

ν = detTV
Pin− Pin−

Proof : In the northwest case, TV ⊕ ν = TM |V has a Pin+ structure, so TM
3
⊕detTM has a Spin structure.

But TM
3
⊕detTM |V = TV ⊕ ν ⊕

3
⊕detTM |V = TV

4
⊕detTM |V so TV and hence V acquires a Spin structure.

However, there is a choice in the above equation: we have had to identify ν with detTM |V . When we say
that the ν and detTM are equal, we mean that we have fixed a choice.

A similar argument works in the southeast case: TV ⊕ detTV is naturally oriented, so an identification
of ν with detTV gives TV ⊕ ν = TM |V . Since M has a Pin− structure, V gets a Pin−structure.



In the southwest case, consider E ⊂ M , a tubular neighborhood of V . Since ν and detTV are identified,
and since TV ⊕ detTV is naturally oriented, E is oriented and hence the Pin+ structure reduces uniquely to
a Spin structure. From here the argument is the same as in the last paragraph.

Lastly, consider the northeast case. If we let V = RP5 ⊂ RP6 = M , we see that M has a Pin−

structure; ν and detTM are isomorphic; V is orientable but does not have any Spin structures at all.

Remark. If we just assume that the line bundles in the table are isomorphic, which is surely the more usual
situation, then we no longer get a well–defined structure. The new structure is obtained from the old one by
first reversing orientation in the Spin case, and then acting by w1(ν). A similar remark applies to Corollary
1.12.

§2. Pin− structures on low–dimensional manifolds and further generalities.

We begin this section by recalling some well–known characteristic class formulas. Every 1–dimensional
manifold is orientable and has Spin and Pin± structures. It is easy to parlay this into a proof that ΩSpin0

∼= Z

and ΩPin
±

0
∼= Z/2Z, with the isomorphism being given by the number of points (for Spin) and the number

of points mod 2 for Pin±. Using the Wu relations, [M–S, p. 132], we see that every surface and every
3–manifold has a Pin− structure, and hence oriented 2 and 3–manifolds have Spin structures. We can also
say that a 2 or 3–manifold has a Pin+ structure iff w2

1 = 0. For surfaces this translates into having even
Euler characteristic or into being an unoriented boundary.

We next give a more detailed discussion of structures on S1. The tangent bundle to S1 is trivial and
1–dimensional, hence a trivialization is the same thing as an orientation. Since H1

(
S1;Z/2Z

) ∼= Z/2Z,
there are two Spin structures on the circle. Since the tangent bundle to S1 does not extend to a non–zero
vector field over the 2–disk, the two Spin structures on an oriented S1can be described as follows: one of
them is the Spin structure coming from the framing given by the orientation (this is called the Lie group
framing or the Lie group Spin structure) and the other one is the one induced by the unique Spin structure
on the 2–disk restricted to S1.

Theorem 2.1. The group ΩSpin1
∼= Z/2Z, generated by the Lie group Spin structure on the circle; ΩPin

−
1

∼=
Z/2Z and the natural map ΩSpin1 → ΩPin

−
1 is an isomorphism; ΩPin

+

1 = 0.

Proof : Since the 2–disk has an orientation reversing involution, the restriction of this involution to the
boundary gives an equivalence between S1 with Lie group Spin structure and S1 with the orientation
reversed and the Lie group Spin structure. Hence ΩSpin1 and ΩPin

±
1 are each 0 or Z/2Z. Suppose S1 is the

boundary of an oriented surface F̂ . It is easy to check that all Spin structures on F̂ induce the same Spin
structure on S1. If we let F denote F̂ ∪B2 then F also has a Spin structure, and it is easy to see that any
Spin structure on F̂ extends (uniquely) to one on F . In particular, the Spin structure induced on S1 is the
one which extends over the 2–disk, so S1 with the Lie group Spin structure does not bound.

The proof for the Pin− case is identical because any surface has a Pin− structure.

In the Pin+ case however, RP2 does not have a Pin+ structure. On the other hand, RP2 − int B2

(which is the Möbius band) does have a Pin+ structure. The induced Pin+ structure on the boundary
must therefore be one which does not extend over the 2–disk, and hence the circle with the Lie group Pin+

structure does bound.

In dimension 4, the generic manifold supports neither a Spin nor a Pin± structure. A substitute which
works fairly well is to consider a 4–manifold with a submanifold dual to w2 or w2 + w2

1. We will also have
need to consider submanifolds dual to w1. A general discussion of these concepts does not seem out of place
here.

Let M be a paracompact manifold, with or without boundary. Let a be a cohomology class in
Hi (M ;Z/2Z). We say that a codimension i submanifold of M , say W ⊂ M , is dual to a iff the em-
bedding of W in M is proper and the boundary of M intersects W precisely in the boundary of W . The
fundamental class of W is a class in H l.f.

n−i(W,∂W ;Z/2Z), where H l.f. denotes homology with locally finite
chains. With the conditions we have imposed on our embedding, this class maps under the inclusion to an el-
ement in H l.f.

n−i(M,∂M ;Z/2Z). Under Poincaré duality, H l.f.
n−i(M,∂M ;Z/2Z) is isomorphic to Hi (M ;Z/2Z)



and we require that the image of the fundamental class of W map under this isomorphism to a. Specifically,
in H l.f.

n−i(M,∂M ;Z/2Z), we have the equation a ∩ [M,∂M ] = i∗[W,∂W ].

A cohomology class in Hn (B;A), is given by a homotopy class of maps, B → K(A,n), where K(A,n)
is the Eilenberg–MacLane space with πn ∼= A. If TO(n) denotes the Thom space of the universal bundle
over BO(n), then the Thom class gives a map TO(n) → K(Z/2Z, n). If M is a manifold, the Pontrjagin–
Thom construction shows that a ∈ Hn (M ;Z/2Z) is dual to a submanifold iff the map M → K(Z/2Z, n)
representing a lifts to a map M → TO(n). Similar remarks hold if A = Z with BO(n) replaces by BSO(n).
The submanifold, V , is obtained by transversality, so the normal bundle is identified with the universal
bundle over BO(n) or BSO(n) and the Thom class pulls back to a. Hence there is a map (M,M − V ) →
(TO(n), ∗) which is a monomorphism on Hn (;Z/2Z) by excision. The Thom isomorphism theorem shows
Hn (M,M − V ;Z/2Z) ∼= H0 (V ;Z/2Z) so Hn (M,M − V ;Z/2Z) is naturally isomorphic to a direct product
of Z/2Z’s and the Thom class in Hn (TO(n), ∗;Z/2Z) restricts to the product of the generators. It follows
that a restricted to M −V is 0. It also follows that a restricted to V is the Euler class of the normal bundle.

Since TO(1) = RP∞ = K(Z/2Z, 1) all 1–dimensional mod 2 cohomology classes have dual submani-
folds. Since TSO(1) = S1 = K(Z, 1) all 1–dimensional integral homology classes have dual submanifolds with
oriented normal bundles. This holds even if M is not orientable, in which case the submanifold need not be
orientable either. Since TSO(2) = CP∞ = K(Z, 2), any 2–dimensional integral cohomology class has a dual
submanifold with oriented normal bundle. A case of interest to us is TO(2). The map TO(2) → K(Z/2Z, 2)
is not an equivalence, and not all 2–dimensional mod 2 cohomology classes have duals. As long as the
manifold has dimension ≤ 4, duals can be constructed directly, but these techniques fail in dimensions 5 or
more. A more detailed analysis of the map TO(2) → K(Z/2Z, 2) also shows the same thing: there are no
obstructions to doing the lift until one gets to dimension 5 and then there are. It is amusing to note that the
obstruction to realizing a class a in a 5–manifold is Sq2Sq1a+ aSq1a ∈ H5 (M ;Z/2Z)

/
Sq1(H4 (M ;Z/2Z)):

in particular, if M is not orientable, then any class can be realized.

In our case we want to consider duals to w1, w2 and w2 + w2
1. We begin with w1. This is an example

for which the above discussion shows that we always have a dual, say V m−1 ⊂ Mm. We want to use the
fact that we have a dual to w1. The first question we want to consider is when is an arbitrary codimension
1 submanifold dual to w1. The answer is supplied by

Lemma 2.2. A codimension 1 submanifold V ⊂ M is dual to w1(M) iff there exists an orientation on
M − V which does not extend across any component of V . The set of such orientations is acted on simply
transitively by H0 (M ;Z/2Z).

Remark. We say that an orientation on N − X does not extend across X if there is no orientation on N
which restricts to the given one on N − X. We can take N = (M − V ) ∪ V0 and X = V0, where V0 is a
component of V . By varying V0 over the path components of V we get a definition of an orientation on
M − V which does not extend across any component (= path component) of V . A similar definition applies
to the case of a Spin or Pin± structure on M − V which does not extend across any component of V .

Proof : Suppose that M−V is orientable and fix an orientation. If νi denotes the normal bundle to the compo-
nent Vi of V , let

(
D(νi), S(νi)

)
represent the disk sphere bundle pair. Each S(νi) is oriented by our fixed orien-

tation on M −V since M− ⊥⊥ D(νi) ⊂ M −V is a codimension 0 submanifold (hence oriented) and ⊥⊥ S(νi)
can be naturally added as a boundary. Define b ∈ H1 (M,M − V ;Z/2Z) ∼= ⊕H1 (D(νi), S(νi);Z/2Z) ∼=
⊕Z/2Z on each summand as 1 if the orientation on S(νi) extends across D(νi) and −1 if it does not. The
class b hits w1(M) in H1 (M ;Z/2Z). This can be easily checked by considering any embedded circle in M
and making it transverse to the Vi’s subject to the further condition that if it intersects Vi at a point then
it just enters S(νi) at one point and runs downs a fibre and out the other end. The tangent bundle of M
restricted to this circle is oriented iff it crosses the Vi in an even number of points iff 〈i∗(b), j∗[S1]〉 = 1,
where i∗(b) is the image of b in H1 (M ;Z/2Z) and j∗[S1] is the image of the fundamental class of the circle in
H1 (M ;Z/2Z). Since w1(M) also has this property, i∗(b) = w1(M) as claimed. If we act on this orientation
by c ∈ H0 (M − V ;Z/2Z), the new element in H1 (M,M − V ;Z/2Z) is just b + δ∗(c), where δ∗(c) is the
image of c under the coboundary H0 (M − V ;Z/2Z) → H1 (M,M − V ;Z/2Z).

Now suppose that M − V has an orientation which does not extend across any component of V . The b



for this orientation has a −1 in each summand, and is hence the image of the Thom class. Therefore V is
dual to w1(M).

Next suppose that V is dual to w1(M). Then w1(M) restricts 0 to M−V , and hence M−V is orientable.
Fix one such orientation and consider the corresponding b. Since both b and the image of the Thom class
hit w1, we can find c ∈ H0 (M − V ;Z/2Z) so that b + δ∗(c) is the image of the Thom class. If we alter the
given orientation on M − V by c, we get a new one which does not extend across any component of V .

There is also a “descent of structure” result here.

Proposition 2.3. Given Mm, the Poincaré dual to w1(M) is an orientable (m− 1)–dimensional manifold
V m−1. There is an orientation on M − V which does not extend across any component of V and this
orients the boundary of a tubular neighborhood of V . This boundary is a double cover of V and the
covering translation is an orientation preserving free involution. In particular, V is oriented. Recall that
α ∈ H0 (M ;Z/2Z) acts simply transitively on the orientations of M − V which do not extend across any
component of V . Hence α acts on the set of orientations of V by taking the image of α in H0 (V ;Z/2Z) and
letting this class act as it usually does.

Remark. If V has more components than M , not all orientations on V can arise from this construction.

Proof : Suppose there is a loop λ in V which reverses orientation in V . If the normal line bundle ν to V in
M is trivial when restricted to λ, then λ reverses orientation in M also, so λ•V ≡ 1 (mod 2); but λ•V = 0
since ν is trivial over λ, a contradiction. If ν|λ is nontrivial, then λ preserves orientation in M so λ•V ≡ 0
(mod 2); but λ•V = 1 since ν is nontrivial, again a contradiction. So orientation reversing loops λ cannot
exist.

Another proof that V is orientable: As we saw above w1(ν) = i∗(w1(M)), where i:V ⊂ M . Since TM |V =
TV ⊕ ν, it follows easily from the Whitney sum formula that w1(V ) = 0.

We now continue with the proof of the proposition. Let E be a tubular neighborhood of V and recall
that H1 (E, ∂E;Z/2Z) is H0 (V ;Z/2Z) by the Thom isomorphism theorem. By Lemma 2.2 each component
of ∂E can be oriented so that the orientation does not extend across E. Clearly ∂E is a double cover of
V classified by i∗(w1(M)). Since V is orientable, the covering translation must be orientation preserving
and we can orient V so that the projection map is degree 1. It is easy to check the effect of changing the
orientation on M − V which does not extend across any component of V .

We continue this discussion for the 2–dimensional cohomology classes w2 and w2 + w2
1. Again we need

a lemma which enables us to tell if a codimension 2 submanifold is dual to one of these classes. We have

Theorem 2.4. Let M be a paracompact manifold, with or without boundary. Let F be a codimension 2
submanifold of M with finitely many components and with ∂M∩F = ∂F . Then F is dual to w2+w2

1 iff there
is a Pin− structure on M−F which does not extend across any component of F . Furthermore H1 (M ;Z/2Z)
acts simply transitively on the set of Pin− structures which do not extend across any component of F . There
are similar results for Pin+ structures and Spin structures.

Proof : The proof is rather similar to the proof of the previous result. First, let F be a codimension 2
submanifold of M with i:F → M denoting the inclusion. Let

(
D(νi), S(νi)

)
denote the disk, sphere bundle

tubular neighborhoods to the components of F . Suppose M − F has a Pin− structure. (The proof for
Pin+ or Spin structures is sufficiently similar that we leave it to the reader.) From Lemma 1.6, each S(νi)
inherits a Pin− structure. Define b ∈ H2 (M,M − F ;Z/2Z) ∼= ⊕H2 (D(νi), S(νi);Z/2Z) ∼= ⊕Z/2Z on each
summand as 1 if the Pin− structure on S(νi) extends across D(νi) and −1 if it does not. The class b hits
w2(M) in H2 (M ;Z/2Z). To see this, let j:N → M be an embedded surface which either misses an Fi or
hits it in a collection of fibre disks. As before 〈i∗(b), j∗[N ]〉 is 1 if TM |N has a Pin− structure and is −1 if it
does not, since a bundle over a surface with a Pin− structure over N− ⊥⊥ D2 such that the Pin− structure
does not extend over the disks has a Pin− structure iff there are an even number of such disks. Since w2(M)
has the same property, i∗(b) = w2(M).

Now H1 (M − F ;Z/2Z) acts simply transitively on the Pin− structures on M − F and, for c ∈
H1 (M − F ;Z/2Z), the new b one gets is b + δ∗(c). The proof is now sufficiently close to the finish of
the proof of Lemma 2.2 that we leave it to the reader to finish.



There is also a “descent of structure” result in this case, but it is sufficiently complicated that we
postpone the discussion until §6.

There are two cases in which we can show a “descent of structure” result for Pin± structures. As above,
given M we can find a submanifold V dual to w1(M). We can then form V ∩| V which is the submanifold
obtained by making V transverse to itself. If ν denotes the normal bundle to V in M , then the normal bundle
to V ∩| V in V is naturally identified with ν|

V ∩| V and hence the normal bundle to V ∩| V in M is naturally
identified with ν|

V ∩| V ⊕ ν|
V ∩| V . Since V is orientable, 2.3, ν|

V ∩| V is isomorphic to detTM |
V ∩| V . Hence by

Lemma 1.7, a Pin± structure on M induces one on V ∩| V after we identify ν|
V ∩| V with detTM |

V ∩| V . If we
choose the other identification, the structure on V ∩| V changes by twice w1(M) restricted to V ∩| V : i.e. the
final structure on V ∩| V is independent of the identification.

Theorem 2.5. The function above

[∩w2
1]:Pin±(M) → Pin∓(V ∩| V )

is a natural function using the map, H1 (M ;Z/2Z) → H1 (V ∩| V ;Z/2Z), induced by the inclusion. If V1∩| V1

is another choice then there is a dual to w1, W ⊂ M × [0, 1] which is V at one end and V1 at the other,
so that W ∩| W can be constructed as a Pin∓ bordism between the two Pin∓ structures. The map [∩w2

1]
induces a homomorphism of bordism theories

[∩w2
1]: Ω

Pin±

m (X) → ΩPin
∓

m−2 (X)

for any CW complex or spectrum X.

Proof : The naturality result follows easily from the naturality result in Lemma 1.7. The first bordism result
follows easily once we recall that TO(1) ∼= K(Z/2Z, 1) so 1–dimensional cohomology classes in M are the
same as codimension 1 submanifolds up to bordism in M × [0, 1]. The bordism result is also not hard to
prove.

For another example of “descent of structure”, we consider the following: given any manifold, Mm, the
dual to w1(M) is a codimension 1 submanifold V m−1. Since V is orientable, Proposition 2.3, we are in the

northwest situation of Corollary 1.15 and V receives a pair of Spin structures. Let
(
ΩPin

+

m

)
0

denote the

subgroup of ΩPin
+

m consisting of those elements so that the two Spin structures on V are bordant. It is not

hard to see that if the two structures are bordant for one representative in ΩPin
+

m , then they are for any
representative. Moreover, it is easy to check that the induced map is a homomorphism:

Lemma 2.6. There is a well–defined homomorphism

[∩w1]:
(
ΩPin

+

m

)
0
→ ΩSpinm−1 .

Remark. It is not difficult to see that
(
ΩPin

+

m

)
0

contains the kernel of the map [∩w2
1] since any such element

has a representative for which the normal bundle to V is trivial. For such a V , we see a Spin bordism of
2 · V to zero, so V and −V represent the same element in Spin bordism. Moreover, the cohomology class
by which we need to change the Spin structure is the zero class.

We conclude this section with some results we will need later which state that different ways of inducing
structures are the same.

The first relates structures (Spin or Pin±) and immersions. Given an immersion f :N → M the
derivative gives a bundle map between the tangent bundles and so we can use it to pull structures on M
back to N . The induced map on structures, denoted f∗, is natural in the technical sense defined earlier.
Suppose we have an embedding M0 × R1 ⊂ M . Let N0 = f−1(M0) and note that there is an embedding
N0 ×R1 ⊂ N so that f restricted to N0 ×R1 is g × id where g:N0 → M0 is also an immersion.



Lemma 2.7. The following diagram commutes

Pin±(N)
f∗

−−−−→ Pin±(M)

S′N
� �S′M

Pin±(N0)
g∗

−−−−→ Pin±(M0)

where we orient R1 and Lemma 1.6 gives us the natural map S ′M as the composite Pin±(M) → Pin±(M0×
R1)

S
−−→Pin±(M0) with a similar definition for S ′N . There is a similar result for Spin structures.

Proof : We can easily reduce to the case M = M0×R1. The required result can now be checked by choosing
transition functions on M0 and extending to transition functions for all the other bundles in sight, The two
bundle we want to be isomorphic will be identical.

The next result relates double covers and Pin+ structures. Let M be a manifold with a Spin structure,
and let x:π1(M) → Z/2Z be a homomorphism (equivalently, x ∈ H1 (M ;Z/2Z)). Let E be the total space
of the induced line bundle over M . By Lemma 1.7, E has a natural Pin+ structure induced from the Spin
structure on M . Hence ∂E receives a Pin+ structure. Furthermore, ∂E is orientable and we orient it by
requiring the covering map π: ∂E → M to be degree 1. The Pin+ structure and the orientation give a Spin
structure on ∂E. We can also use the immersion π to pull the Spin structure on M back to one on ∂E.

Lemma 2.8. The two Spin structures on ∂E are the same.

Proof : Begin with the 1–dimensional case. Here we are discussing Spin structures on the circle. Suppose
that the line bundle is non–trivial. Thinking of the circle as the boundary of E, we see that it has the Lie
Spin structure from Theorem 2.1. Thinking of it as the connected double cover we also see that it has the
Lie group Spin structure, so the result is true in dimension 1. The case in which the line bundle is trivial is
even easier.

The proof proceeds by induction on dimension. Suppose we know the result in dimension m − 1 and
let M have dimension m > 1. It suffices to show that the two Spin structures on ∂E agree when restricted
to embedded circles. We can span H1 (M ;Z/2Z) by embedded circles, S1

i , i = 1, · · · , r, where all the circles
except the first lift to disjoint circles in the double cover. The first double covers itself if the line bundle is
non–trivial and lifts to disjoint circles otherwise. The group H1 (∂E;Z/2Z) is spanned by the collection of
connected components of the covers from the circles in M .

Let M0 be the boundary of the tubular neighborhood of such a circle and let M̃0 be a connected
component of the corresponding double cover. It suffices to prove that the two Spin structures on ∂E agree
when restricted to M̃0. We can restrict the line bundle to M0 and consider the resulting total space E0.
First note that E0 has trivial normal bundle in E and that it suffices to show that the two Spin structures
on ∂E agree when restricted to ∂E0.

Consider first the Spin structure induced by the double cover map. This map is an immersion, so Lemma
2.7 shows that inducing the structure on ∂E and then restricting to ∂E0 is the same as first restricting the
structure to M0 and then inducing via the double cover map ∂E0 → M0.

Next consider the Spin structure induced by restricting the Pin+ structure to the boundary. We can
restrict the Pin+ structure on E to E0 and then restrict to ∂E0 or else restrict to the boundary and then
to ∂E0. These are not obviously the same: if we let ν1 be the normal vector to E0 in E, restricted to ∂E0,
and let ν2 be the normal bundle to ∂E in E, again restricted to ∂E0. We have a Spin structure on TE |∂E0 ,
and in the two cases we identify this bundle with T∂E0 ⊕ ν1 ⊕ ν2 in one case and with T∂E0 ⊕ ν2 ⊕ ν1 in the
other. By Lemma 1.10, these two ways of getting the Spin structure via boundaries agree up to a reverse
of Spin structure. But we are using the orientation of M to keep track of all the other orientations, so the
structures turn out to agree.

Our inductive hypothesis applies over M0 and we conclude that the two Spin structures on ∂E0 agree.

The other result relates double covers and the Ψ2. Let M be a manifold and let E′ be the total space of
the bundle detTM ⊕detTM over M . There is a natural one to one function Ψ2:Pin±(M) → Pin∓(E′). Let



E ⊂ E′ be the total space of the first copy of detTM : note ∂E → M is a 2 sheeted cover. The embedding
∂E ⊂ E′ has a normal bundle which we see as two copies of the trivial bundle, which happens to be detT∂E .
This gives a natural function Ψ:

2Pin∓(E′) → Pin±(∂E).

Theorem 2.9. The Pin± structure defined above on ∂E is the same as the one induced by the double cover
map.

Proof : We begin by proving that certain diagrams commute. To fix notation, let M0 × R1 ⊂ M . Let E0

denote the total space of detTM0
⊕ detTM0

and observe that we can embed E0 ×R1 in E. We can arrange
the embedding so that on 0 sections it is our given embedding, and so that (∂E0)×R1 is embedded in ∂E.
We begin with

Pin±(M)
Ψ2−−−−→ P∓(E′)

L1

� �L2

Pin±(M0)
Ψ2−−−−→ P∓(E′0)

where L1 is just S−1 followed by the restriction map induced by the embedding of M0 ×R1 in M and L2 is
defined similarly but using the embedding of E0 × R1 in E. This diagram commutes by Lemma 1.10. We
can then restrict this structure to ∂E and then further to (∂E0) × R1. Since stabilization commutes with
restriction we see

Pin±(M) −−−−→ Pin±(∂E)

L3

� �L4

Pin±(M0) −−−−→ Pin±(∂E0)

commutes, where L3 is defined by restricting from M to M0 ×R1 followed by the inverse stabilization map
and L4 is defined by restricting from ∂E to (∂E0) ×R1 followed by the inverse stabilization map.

The proof now proceeds much like the last one. First we check the result for S1. Applying the last
diagram to the 2–disk with boundary S1 shows the result for the structure which bounds. Apply the Pin+

diagram to the Möbius band to see the result for the Lie Pin+ structure. The result now holds for any Pin+

structure on S1. Hence it holds for Spin structures and hence for Pin− structures.

For M of dimension at least 2 we induct on the dimension. But just like the proof of the preceding
result, this follows from the commutativity of our second diagram.

§3. Pin− structures on surfaces, quadratic forms and Brown’s arf invariant.

In this section we want to recall an algebraic way of describing Pin− structures due to Brown [Br].

Definition 3.1. A function q:H1 (F ;Z/2Z) → Z/4Z is called a quadratic enhancement of the intersection
form provided it satisfies q(x + y) = q(x) + q(y) + 2 · x•y for all x, y ∈ H1 (F ;Z/2Z) (here 2· denotes the
inclusion Z/2Z ⊂ Z/4Z and • denotes intersection number.

The main technical result of this section is

Theorem 3.2. There is a canonical 1–1 correspondence between Pin− structures on a surface F and
quadratic enhancements of the intersection form.

Discussion. One sometimes says that there is a 1–1 correspondence between Pin− structures on F and
H1 (F ;Z/2Z), but this is non–canonical. Canonically, there is an action of H1 (F ;Z/2Z) on the set of
Pin− structures which is simply transitive. Once a base point has been selected, the action gives a 1–1
correspondence between H1 (F ;Z/2Z) and the set of Pin− structures.

Note also that H1 (F ;Z/2Z) acts on the set of quadratic enhancements, by q×γ goes to qγ defined by

(3.3) qγ(y) = q(y) + 2 · γ(y)

and note that this action is simply transitive. The 1–1 correspondence in Theorem 3.2 is equivariant with
respect to these actions. Indeed, the proof of Theorem 3.2 will be to fix a Pin− structure on F and use it



to write down a quadratic enhancement. This gives a transformation from the set of Pin− structures to the
set of quadratic enhancements. We will check that it is equivariant for the H1 (F ;Z/2Z) action and this will
prove the theorem.

Before describing the enhancement, we prove a lemma that produces enhancements from functions on
embeddings. Specifically

Lemma 3.4. Let q̂ be a function which assigns an element in Z/4Z to each embedded disjoint union of
circles in a surface F subject to the following conditions:

(a) q̂ is additive on disjoint union; if L1 and L2 are two embedded collections of circles such that L1 ⊥⊥ L2

is also an embedding then q̂(L1 ⊥⊥ L2) = q̂(L1) + q̂(L2)

(b) if L1 and L2 are embedded collections of circles which cross transversely at r points, then we can get a
third embedded collection, L3, by replacing each crossing: we require q̂(L3) = q̂(L1) + q̂(L2) + 2 · r

(c) if L is a single embedded circle which bounds a disk in F , then q̂(L) = 0.

Then q̂(L) depends only on the underlying homology class of L, and the induced function q:H1 (F ;Z/2Z) →
Z/4Z is a quadratic enhancement.

Proof : The first step is to show how given L, we may replace it with a single embedded circle K such that the
L and K represent the same homology class in H1 (F ;Z/2Z) and have the same q̂. If L has more than one
component, it is possible to draw an arc between two different components. A small regular neighborhood
of this arc is a disk, and let K1 be its boundary circle. By (c), q̂(K1) = 0. The circle K1 has two pairs of
intersection points with L. Apply (b): the new embedding consists of a new collection L1 which has one
fewer components that L, and two small circles K2 and K3, each of which bounds a disk. Condition (b) says
that q̂(L1 ⊥⊥ K2 ⊥⊥ K3) = q̂(L)+ q̂(K1) = q̂(L). From (a) and (c) we see that q̂(L1 ⊥⊥ K2 ⊥⊥ K3) = q̂(L1), so
q̂(L) = q̂(L1), and L and L1 represent the same homology class. Continue until there is only one component
left.

Next we prove isotopy invariance of q̂ in several steps. First, suppose A ⊂ F is an embedded annulus
with boundary K0 ⊥⊥ K1 and core C. We want to show q̂(K0) = q̂(K1) = q̂(C). Draw an arc from K0 to
C and let K3 be a circle bounding a regular neighborhood of this arc. Apply condition (b): the result is
two circles, each of which bounds a disk. From conditions (a) and (c) we see q̂(C) = q̂(K0). A similar proof
establishes the rest. We can also show that q̂(C) must be even. Let C1 be a copy of C pushed off itself in the
annular structure. Then q̂(C) = q̂(C1) since they are both q̂(K0). Let L = C ⊥⊥ C1. Then q̂(L) = 2q̂(C) by
(a). On the other hand, just as above, we can use (b) to transform L into a picture with two circles bounding
disks, so by (a) and (c) we see q̂(L) = 0 and the result follows. Hence any curve in F with trivial normal
bundle has even q̂. Finally, suppose that C1 is embedded in A and represents the same element in mod 2
homology as C. We can find a third curve C2 which also represents the same element in mod 2 homology
and which intersects both C1 and C transversely. Consider say C2 and C. Apply (b): r is even as are both
q̂(C) and q̂(C2). Hence q̂(C) = q̂(C2). Similarly q̂(C1) = q̂(C2) and we have our result.

Next suppose that M ⊂ F is a Möbius band with core C0. We can push C0 to get another copy, C1

intersecting C0 transversely in one point. We can push off another copy C2 which intersects C0 and C1

transversely in a single point and all three points are distinct. Applying (b) to pairs of these circles, we get
q̂(Ci) + q̂(Cj) = 2 for 0 ≤ i, j ≤ 2, i �= j. Adding all three equations we see 2(q̂(C0) + q̂(C1) + q̂(C2)) = 2, so
at least one q̂(Ci) must be odd. But then returning to the individual equations we see that q̂(C0) = q̂(C1) =
q̂(C2), so we see that q̂(C) must be odd whenever the normal bundle to C is non–trivial. Let C1 be any
embedded circle in M which represents the core in mod 2 homology. It is possible to find a third embedded
circle, C2 which also represents the core and intersects C0 and C1 transversely. Since q̂(Ci) must be odd, it
is not hard to use (b) to show that q̂(C0) = q̂(C1).

To show isotopy invariance proceed as follows. Let K be a circle with a neighborhood W . Any isotopy
of K will remain for a small interval inside W and the image Kt will continue to represent the core in mod 2
homology. By the above discussion q̂ will be constant on Kt, the circle at time t. Hence, the subset of
t ∈ [0, 1] for which q̂(Kt) = q̂(K) is an open set. Likewise the set of t ∈ [0, 1] for which q̂(Kt) �= q̂(K) is an
open set, so we have isotopy invariance for a single circle. By part (a), the result for general isotopies follows
as above.



Next we prove homology invariance. Suppose L1 and L2 represent the same element in homology. By
isotopy invariance, we may assume that they intersect transversely. Let L3 be the result of applying condition
(b). q̂(L3) = q̂(L1) + q̂(L2) + 2 · r, and L3 is null–homologous. If we can prove q̂(L3) = 0 then we are done.
As we saw above, it is no loss of generality to assume that L3 is connected, and since it is null–homologous,
it has trivial normal bundle, so q̂(L3) is even. Also, since L3 is null–homologous, there exists a 2–manifold
with boundary a single circle, say W , and an embedding W ⊂ F so that ∂W = L3. If W is a disk we are
done by (c), so we work by induction on the Euler characteristic of W . If W is not a disk then we can write
W = W1 ∪ V where ∂V = ∂0V ⊥⊥ ∂1V = S1 ⊥⊥ S1, V is either a twice punctured torus or a punctured
Möbius band, and W1 has larger Euler characteristic than W . We are done if we can show q̂(∂0V ) = q̂(∂1V ).
We begin with the toral case. Using (b) and (c) as usual, we can see that q̂(∂0V ) = q̂(Sa) + q̂(Sb) where Sa
and Sb are two meridian circles, one on either side of the hole. Likewise q̂(∂1V ) = q̂(Sa) + q̂(Sb) so we are
done with this case. In the Möbius band case we can again use (b) and (c) and see that q̂(∂0V )+ q̂(∂1V ) = 0.
Since they are both even, again they are equal.

This shows that q̂ induces a function q:H1 (F ;Z/2Z) → Z/4Z, and (b) translates immediately into the
relation q(x + y) = q(x) + q(y) + 2 · x•y.

Now we describe our function. Let λ be a line bundle over F with w1(λ) = w1(F ) and let E(λ) denote
its total space. From Lemma 1.7, a Spin structure on E(λ) gives a Pin− structure on F . Let K be an
embedded circle in F , and let τ denote the tangent bundle of E(λ) restricted to K. A Spin structure on
E(λ) yields a trivialization of τ . It is also true that τ = TS1 ⊕ νK⊂F ⊕ νF⊂E(λ), where ν denotes normal
bundle. Note all three of these bundles are line bundles. Pick a point p ∈ K and orient each of the line
bundles at p so that the orientation on τ agrees with that coming from the Spin structure. Since TS1 is
trivial, the orientation picks out a trivialization, and hence νK⊂F ⊕ νF⊂E acquires a preferred even framing.
(Note that framings of a 2–plane bundle correspond to Z, while those of a 3–plane bundle correspond to
Z/2Z. Hence the framing of the 3–plane bundle picks out a set of framing of the 2–plane bundle, a set we
call even.)

Definition 3.5. Choose an odd framing on νK⊂F ⊕ νF⊂E and using it, count the number (mod 4) of
right half twists that νK⊂F makes in a complete traverse of K. This is q̂(K). Given a disjoint union of
circles, Lemma 3.4 (a) gives the value of q̂ in terms of the individual components.

We first need to check that q̂ really only depends on the embedded curve and not on the choice of p or
the local orientations made at p or on the choice of odd framing. It is easy to see that the actual choice of
framing within its homotopy class is irrelevant because we get the same count in either frame. If we choose
a new odd framing the new count of right half twists will change by a multiple of 4, so the specific choice
of odd framing is irrelevant. If we move p to a new point, we can move around K in the direction of the
orientation and transport the local orientations as we go. If we make these choices at our new point, nothing
changes so the choice of point is irrelevant. Since we must keep the same orientation on τ , we are only free
to change orientations in pairs. If we keep the same orientation on K, the odd framing on the normal bundle
remains the same and so we get the same count. Finally, suppose we switch the orientation on K. We can
keep the same framing on the normal bundle provided we switch the order of the two frame vectors. If we
do this and traverse K in the old positive direction we get the same count as before, except with a minus
sign. Fortunately, we are now required to traverse K in the other direction which introduces another minus
sign, so the net result is the same count as before. Hence q̂ only depends on the embedded curve.

Since q̂ satisfies Lemma 3.4 (a) by definition, we next show that it satisfies conditions (b) and (c) also.
We begin with (c). In this case, all three line bundles are trivial, hence framed after our choice of p and
the local orientations. However, this stable framing of the circle is the Lie group one, so it is not the stable
framing of the circle which extends over the disk, Theorem 2.1. Since the framing from the Spin structure
does extend over the disk, the framing constructed above is an odd framing, and q̂ is clearly 0 for these
choices. To show (b), consider a small disk neighborhood of a crossing. It is not hard to check that in the
framing coming from that of the disk, we can remove the crossing without changing the count. However,
this is the even framing and we are supposed to do the counting using the odd framing. This introduces a
full twist, and so we get a contribution of 2 for each crossing. This is (b).

Thanks to Lemma 3.4 we have described a function from the set of Pin− structures on F to the set of



quadratic enhancements on the intersection form on H1 (F ;Z/2Z). Suppose now that we change the Pin−

structure by γ ∈ H1 (F ;Z/2Z). The effect of this change is to reverse even and odd framings on K for which
γ(K) = −1 and to leave things alone for K for which γ(K) = 1. The effect on the resulting q is to add 2 to
q(x) if γ(x) = −1 and add nothing to it if γ(x) = 1. But this is just qγ .

This completes the proof of Theorem 3.2.

Next we describe an invariant due to Brown, [Br], associated to any quadratic enhancement q. Given
q, form the Gauss sum

Λq =
∑

x∈H1(F ;Z/2Z)

e2πiq(x)/4 .

This complex number has absolute value
√
|H1 (F ;Z/2Z) | and there exists an element β(q) ∈ Z/8Z such

that Λq =
√
|H1 (F ;Z/2Z) | e2πiβ(q)/8.

Hence we can think of β as a function from Pin− structures on surfaces to Z/8Z. It also follows from
Brown’s work, that β is an invariant of Pin− bordism: two surfaces with Pin− structures that are Pin−

bordant have the same β.

Lemma 3.6. The homomorphism

β: ΩPin
−

2 → Z/8Z

is an isomorphism. The composite ΩPin
−

2

β
−→Z/8Z → Z/2Z is the mod 2 Euler characteristic and hence

determines the unoriented bordism class of the surface.

Proof : Brown proves that β induces an isomorphism between Witt equivalence classes of quadratic forms
and Z/8Z. One homomorphism from the Witt group is the dimension mod 2 of the underlying vector space.
Since this is just the mod 2 Euler characteristic of our surface, the second result follows.

Hence, if β(F ) = 0, the manifold is an unoriented boundary, say of W 3. There is an obstruction in
H2 (W,∂W ;Z/2Z) to extending the Pin− structure on F across W . If this obstruction is 0 we are done, so
assume otherwise. There is a dual circle, K ⊂ W − F and the Pin− structure on F extends across W −K.
The boundary of a neighborhood of K is either a torus or a Klein bottle, so if β(F ) = 0, F is Pin− bordant
to a torus or a Klein bottle with β still 0. Moreover, since the Pin− structure is not supposed to extend
across the neighborhood of K, one of the non–zero classes in H1 has a non–zero q. For the Klein bottle, two
of the non–zero classes have odd square and the other has even square. It is the class with even square that
must have a non–trivial q on it to prevent the Pin− structure from extending across the disk bundle. But
the Klein bottle with this sort of enhancement has non–zero β, so the boundary of K must be a torus. For
the torus, q must vanish on the remaining classes in H1 in order to have β = 0 and it is easy to find a Pin−

boundary for it.

Exercise. Show that RP2 with its two Pin− structures has β = ±1 ∈ Z/8Z.

The relation between Pin− structures and quadratic enhancements is pervasive in low–dimensional
topology. In [Ro], [F–K] and [G–M] enhancements were produced on characteristic surfaces in order to
generalize Rochlin’s theorem. In §6, we will show how to find an enhancement without the use of membranes.
This gives some generalizations of the previous work. In the next section we will study surfaces embedded
in “spun” 3–manifolds. An interesting theory that we do not pursue is Brown’s idea of studying immersions
of a surface in R3. Since R3 has a unique Spin structure, an immersion pulls back a Spin structure onto
the total space of a line bundle over the surface with oriented total space.

Another point we wish to investigate is the behavior of β under change of Pin− structure. Hence fix a
quadratic form q:V → Z/4Z: i.e. V is a Z/2Z–vector space; q(rx) = r2q(x) for all x ∈ V and r ∈ Z; and
q(x + y) − q(x) − q(y) is always even and gives rise to a non–singular bilinear pairing λ:V × V → Z/2Z.

Given a ∈ V , define qa by qa(x) = q(x) + 2 · λ(a, x).

Lemma 3.7. With notation as above, β(qa) = β(q) + 2 · q(a).

Proof : There is a rank 1 form (1) consisting of a Z/2Z vector space with one generator, x, for which q(x) = 1.
There is a similar form (−1). It is easy to check the formula by hand for these two cases. Or, having checked



it for (1) and a = x and a = 0, argue as follows. Given any form q, there is another form −q defined on the
same vector space by (−q)(x) = −q(x). It is easy to check that β(−q) = −β(q). If the formula holds for q
and a, it is easily checked for −q and a after we note (−q)a = −(qa).

Given two forms q1 on V1 and q2 on V2, we can form the orthogonal sum q1 ⊥ q2 on V1 ⊕ V2 by the
formula (q1 ⊥ q2)(v1, v2) = q1(v1) + q2(v2). Brown checks that β(q1 ⊥ q2) = β(q1) + β(q2). If ai ∈ Vi, note
(q1 ⊥ q2)(a1,a2) = (q1)a1 ⊥ (q2)a2 , so if the formula holds for the two pieces, it holds for the orthogonal sum.
Moreover, if it holds for the sum and one of the pieces, it holds for the other piece.

Finally, note that if a = 0, the formula is true.

Now use Brown, [Br, Theorem 2.2 (viii)] to see that it suffices to prove the formula for a form isomorphic
to m(1) + n(−1) and any a and this follows from the above discussion.

Next we present a “geometric” calculation of the Spin and Pin+ bordism groups in dimension 2.

Proposition 3.8. Any Spin structure induces a unique Pin− structure, so β is defined just as above for
surfaces with a Spin structure. We have β defines an isomorphism ΩSpin2 → Z/2Z. Any surface with odd

Euler characteristic with any Pin− structure is a generator for ΩPin
−

2 and the 2–torus with the Lie group

Spin structure is a generator for ΩSpin2 .

Proof : The proof is almost identical to that of Lemma 3.6. The surface F bounds an oriented 3–manifold
W and by considering the obstruction to extending the Spin structure we see that F is Spin bordant to a
torus with the same Spin structure as in the proof of Lemma 3.6. Just note that the boundary constructed
there is actually a Spin boundary. It is a fact from Brown that β restricted to even forms only takes on the
values 0 and 4. The results about the generators are straightforward.

The Pin+ case is more interesting. We have already seen that the only way a surface can have a Pin+

structure is for w2
1 to be 0. Hence the [∩w2

1] map must also be 0, so the [∩w1] map is defined on all of ΩPin
+

2 .

Proposition 3.9. The homomorphism [∩w1]: Ω
Pin+

2 → ΩSpin1
∼= Z/2Z is an isomorphism. A generator is

given by the Klein bottle in half of its four Pin+ structures.

Proof : A surface, F , has a Pin+ structure iff w2(F ) = 0 iff F is an unoriented boundary, say F = ∂W . The
obstruction to the Pin+ structure on F extending to W is given by a relative 2–dimensional cohomology
class, so its dual is a 1–dimensional absolute homology class. We can assume that it is a single circle, and
so F is Pin+ bordant to either a torus or a Klein bottle, and the Pin+ structure has the property that it
does not extend over the corresponding 2–disk bundle over S1.

Since S1 with either Pin+ structure is a Pin+ boundary it is not hard to see that the torus with any
Pin+ structure is a Pin+ boundary. There are two Pin+ structures on the Klein bottle which do not extend
over the disk bundle. If one cuts the Klein bottle open along the dual to w1 and glues in two copies of the
Möbius band, one sees a Pin+ bordism between these two Pin+ structures. Hence ΩPin

+

2 has at most two
elements. On the other hand it is not hard to see that the Klein bottle with the Pin+ structures which do
not extend over the disk bundle hit the non–zero element in ΩSpin1 under [∩w1].

For future convenience let us discuss another way to “see” structures on the torus and the Klein bottle.
We begin with the torus, T 2.

Example 3.10. We can write T 2 as the union of two open sets Ui = S1 × (−1, 1) so that U1 ∩ U2 is two
disjoint copies of S1 × (−1, 1), say U1 ∩ U2 = V12 ⊥⊥ V 12. We can frame S1 × (−1, 1) using the product
structure and the framings of the two 1–dimensional manifolds, S1 and (−1, 1). If we form an SO(2) bundle
over T 2 with transition function g12 defined by g12(U1∩U2) = 1 then we get the tangent bundle. If we think
of 1 as the identity of Spin(2) then the same transition functions give a Spin structure on T 2. This Spin
structure is the Lie group one: clearly the copy of S1 in the S1 × (−1, 1)’s receives the Lie group structure,
and it is not difficult to start with a framing of (−1, 1) and transport it around the torus to get the Lie
group structure on this circle. If we take as Spin(2) transition functions h12 defined by h12(V12) = 1 and
h12(V 12) = −1 ∈ Spin(2), then we get a Spin structure whose enhancement is 0 on the obvious S1 and 2
on the circle formed by gluing the two intervals.



Example 3.11. We can write the Klein bottle, K2, as the union of two open sets Ui = S1 × (−1, 1) so that
U1 ∩ U2 is two disjoint copies of S1 × (−1, 1), say U1 ∩ U2 = W12 ⊥⊥ W 12. We can frame S1 × (−1, 1) using
the product structure and the framings of the two 1–dimensional manifolds, S1 and (−1, 1). If we form an

O(2) bundle over K2 with transition function g12 defined by g12(W1) = 1 and g12(W 12) =

(
−1 0

0 1

)
∈ O(2)

then we get the tangent bundle (we are writing the S1 tangent vector first). If we define h12(W1) = 1 and
h12(W 12) = e1 ∈ Pin(2), we get a Pin structure on the tangent bundle. The copy of S1 in the S1× (−1, 1)’s
receives the Lie group structure, so if we are describing a Pin− structure, then we get the bordism generator.

We conclude this section with two amusing results that we will need later.

Theorem 3.12. Let F be a surface with a Spin structure. Let q:H1 (F ;Z/2Z) → Z/2Z denote the induced
quadratic enhancement. Let x ∈ H1 (F ;Z/2Z). Corresponding to x there is a double cover of F , F̃ which
has an induced Spin structure. There is also a dual homology class a and

[F̃ ] = q(a) ∈ Z/2Z .

Proof : We can write F as T 2#F1 where T 2 is a 2 torus and a is contained in T 2. Then F̃ = T 2
1 #F1#F1,

where T 2
1 is a double cover of T 2 given by x ∈ H1

(
T 2;Z/2Z

)
. Note 〈x, a〉 = 1 not −1,so a lifts to 2 disjoint

parallel circles. Moreover, H1

(
T 2

1 ;Z/2Z
)

is generated by one component of the cover of a, say ã, and another

circle, say b̃ which double covers a circle, say b in T 2.

Note [F̃ ] = [T 2
1 ] + 2[F1], so [F̃ ] = [T 2

1 ]. The enhancement q̃:H1

(
T 2

1 ;Z/2Z
)

satisfies q̃(ã) = q(a) and

q̃(b̃) = −1. Hence the Spin bordism class of T 2
1 in Z/2Z is given by q(a).

The second result is the following. Given any surface, F , we can take the orientation cover, F̃ , and
orient F̃ so that the orientation does not extend across any component of the total space of the associated
line bundle. Given a Pin± structure on F , we can induce a Spin structure on F̃ .

Lemma 3.13. The orientation double cover map induces homomorphisms

ΩPin
±

2 → ΩSpin2

which are independent of the orientation on the double cover. The Pin− map is trivial, and the Pin+ map
is an isomorphism.

Proof : If we switch to orientation on F̃ , we get the reverse of the Spin structure we originally had. Since
ΩSpin2

∼= Z/2Z this shows that the answer is independent of orientation. By applying the construction to a
bordism between two surfaces we see that the maps are well–defined on the bordism groups. Since addition
is disjoint union, the maps are clearly homomorphisms.

In the Pin− case, RP2 is a generator of the bordism group. The oriented cover is S2 which has a unique
Spin structure and is a Spin boundary. This shows the Pin− map is trivial.

In the Pin+ case, a generator is given by the Klein bottle. Consider the transition functions that we
gave for this Pin+ structure in Example 3.11. This give us a set of transition functions for the torus which
double covers the Klein bottle. We get 4 open sets, but it is not difficult to amalgamate three of the cylinders
into one. The new transition function, h12, takes the value 1 on one component of the overlap and the value
e2
1 on the other. Since e1 ∈ Pin+(2), e2

1 = 1 so we get the Lie group structure on T 2 by Example 3.10.

Remark. If we started with a non–bounding Pin− structure on the Klein bottle, then the above proof
would show that the double cover has Spin transition functions given by 1 on one component of the overlap
and −1 on the other, and, as we saw, this Spin structure bounds (as Lemma 3.13 requires).



§4. Spin structures on 3–manifolds.

Let M3 be a closed 3–manifold with a given Spin structure. We begin by generalizing some of the basic
ideas in the calculus of framed links in S3.

Given any embedded circle k:S1 → M3, the normal bundle is trivial, and therefore has a countable
number of framings. If the homology class represented by k is torsion, we can give a somewhat more geometric
description of these framings. Recall that there is a non–singular linking form

F: torH1 (M ;Z) ⊗ torH1 (M ;Z) → Q/Z .

Let x ∈ H1 (M ;Z) be the class represented by k, and assume that x is torsion.

Lemma 4.1. The framings on the normal bundle to k are in one–to–one correspondence with rational
numbers q such that the class of q in Q/Z is F(x, x).

Proof : We describe the correspondence. A framing on the normal bundle of k is equivalent to a choice of
longitude in the torus which bounds a tubular neighborhood of k. Suppose r ∈ Z is chosen so that r · x = 0
in H1 (M ;Z). Take r copies of the longitude in the boundary torus and let F be an oriented surface which
bounds these r circles. Count the intersection of F and k with signs as usual. If one gets p ∈ Z, then assign
the rational number pr to this framing. It is a standard argument that pr is well–defined once the framing is
fixed. It is also easy to see that pr mod Z is F(x, x), and that if we choose a new framing which turns through
t full right twists with respect to our original framing, then the new rational number that we get is pr + t.

A Spin structure on M gives a Spin structure on the normal bundle to k as follows. Restriction gives
a Spin structure on the tangent bundle to S1 plus the normal bundle. Choose the Spin structure on the
normal bundle so that this Spin structure plus the one on S1 which makes S1 into a Spin boundary gives
the restricted Spin structure.

Definition 4.2. We call the above framings even.

If x as above is torsion and M is spun, then the Spin structure picks out half of the rational numbers
for which the longitude gives a framing compatible with the Spin structure on the normal bundle. Given
one of these rational numbers, say q, the remaining ones are of the form q + 2t for t an integer. Hence we
can define a new element in Q/Z, namely q

2 . This gives a map

γ: torH1 (M ;Z) → Q/Z

which is a quadratic enhancement of the linking form:i.e.

γ(x + y) = γ(x) + γ(y) + F(x, y)
γ(rx) = r2 · γ(x) for any integer r .

Suppose now that x is zero in H1 (M ;Z/2Z), but not necessarily torsion in H1 (M ;Z). Then any Spin
structure on M induces the same Spin structure in a neighborhood of k, and hence the notion of even
framing is independent of Spin structure for these classes.

Theorem 4.3. A knot k which is mod 2 trivial as above, bounds a surface which does not intersect k. This
surface selects a longitude for the normal bundle to k, and this longitude represents an even framing.

Proof : Let E be a tubular neighborhood for k with boundary T 2. (This T 2 is often called the peripheral
torus.) We can select a basis for H1

(
T 2;Z/2Z

)
as follows. One element, the meridian, is the unique non–

trivial element in the kernel of the map H1

(
T 2;Z/2Z

)
→ H1 (E;Z/2Z). One calculates that the sequence

H1

(
T 2;Z/2Z

)
→ H1 (M − k;Z/2Z) → H1 (M ;Z/2Z) is exact, and that the image of H1

(
T 2;Z/2Z

)
in

H1 (M − k;Z/2Z) is 1–dimensional and generated by the meridian. Hence there is a unique non–trivial
element, the mod 2 longitude, in the kernel of H1

(
T 2;Z/2Z

)
→ H1 (M − k;Z/2Z). An even longitude for

k is an element F ∈ H1

(
T 2;Z

)
which reduces in mod 2 homology to the mod 2 longitude.



Fix an even longitude, F. It follows that there is an embedded surface, F 2 ⊂ M such that ∂F = k. This
surface can be chosen to intersect T 2 transversely in the even longitude. The southeast corner of Corollary
1.15 assigns a Pin− structure to F . Restricted to k, the normal bundle to F in M is trivial, so the surface
frames the normal bundle to k in M . Hence the Spin structure on M restricted to k is seen as the Spin
structure on the circle coming from the restriction of the Pin− structure on F plus the Spin structure on
the normal bundle coming from the framing. We saw in the proof of Theorem 2.1 that, regardless of the
Pin− structure on F , the boundary circle receives the non–Lie structure. This is the definition of the even
framing.

Remarks 4.4.

(i) In S3 with its unique Spin structure, the framing on k designated by an even number in the framed
link calculus is an even framing in the above sense.

(ii) If the class x has odd order, then F(x, x) = p
r with r odd. There are then two sorts of representatives in

Q for F(x, x): the p is even for half the representatives and odd for the other half. The framings that
the Spin structure will call even are the ones with even numerator.

(iii) If we change the Spin structure on M by a class α ∈ H1(M ;Z/2Z) the even framings on a circle change
iff α evaluates non–trivially on the fundamental class of the circle.

(iv) If we attach a handle to a knot in a 3–manifold, M3, we get a 4–manifold W with H2 (W,M ;Z) = Z.
If our knot in M3 is torsion, we get a unique (up to sign) class x ∈ H2 (W ;Q) which hits our relative
class. If we attach a handle with framing q ∈ Q from Lemma 4.1, then x intersects itself with a value
of q. Hence the signature of W is sign (q), where sign (q) = 1 if q > 0; −1 if q < 0 and 0 if q = 0.

By Corollary 1.15 the surface F we used in the proof of Theorem 4.3 inherits a Pin− structure from
one on M . This suggests trying to define a knot invariant in this situation. Indeed, for knots in S3, this
is one way to define Robertello’s Arf invariant, [R]. The situation in general is more complicated and needs
results from §6, so we carry out the discussion in §8.

An invariant of a 3–manifold with a Spin structure is the µ–invariant. We discuss in Theorem 5.1 the
classical result that ΩSpin3 = 0. It follows that any 3–manifold, M3, is the boundary of a Spin 4–manifold,
W .

Definition 4.5. The signature of W , reduced mod 16, is the µ–invariant of the manifold M with its Spin
structure. It follows from Rochlin’s theorem that µ(M) is well–defined once the Spin structure on M is
fixed.

Remark. Some authors stick to Z/2Z homology spheres so that there is a unique Spin structure and hence
a µ invariant that depends only on the manifold.

We now turn to a geometric interpretation of some work of Turaev [Tu]. Intersection defines a symmetric
trilinear product

τ :H2 (M ;Z/2Z) ×H2 (M ;Z/2Z) ×H2 (M ;Z/2Z) → Z/2Z

We introduce a symmetric bilinear form

λ:H2 (M ;Z/2Z) ×H2 (M ;Z/2Z) → Z/2Z

which is defined as follows. Let Fx and Fy be embedded surfaces representing two classes x and y in
H2 (M ;Z/2Z). To define λ(x, y) put the two surfaces in general position. The intersection will be a collection
of embedded circles. The normal bundle of each circle in M has a sub–line bundle, ξx, given by the inward
normal to the surface Fx. Define λ(x, y) to be the number of circles with non–trivial ξx.

Here is an equivalent definition of λ. Any codimension 1 submanifold of a manifold is mod 2 dual to a
1–dimensional cohomology class in the manifold. If this cohomology class is pulled–back to the submanifold,
it becomes w1 of the normal bundle to the embedding. Hence, if x∗ and y∗ are the Poincaré duals to x and
y, λ(x, y) = x∗ ∪ x∗ ∪ y∗[M ], where [M ] is the fundamental class of the 3–manifold. This follows because
x∗ ∪ y∗ ∩ [M ] is the homology class represented by the intersection circles, and to count the number with



non–trivial ξx we just evaluate w1 of the normal bundle on these circles. But w1 = x∗ so we are done.
We can also prove symmetry using this definition. Since M is orientable, 0 = w1(M)x∗y∗ = Sq1(x∗y∗) =
(x∗)2y∗ + x∗(y∗)2.

Yet another definition of λ is
λ(x, y) = τ(x, x, y) .

Hence λ is symmetric and bilinear.

Given a Spin structure on M , we can enhance λ to a function

f :H2 (M ;Z/2Z) ×H2 (M ;Z/2Z) → Z/4Z .

To begin, we define f on embedded surfaces Fx and Fy in M as above, but now use the Spin structure to
put even framings on the intersection circles and then count the number of half twists in each ξx. (Since
the collection of circles is embedded, there is no correction term needed to account for intersections.) Note
if we defined ξy in the obvious manner and counted half twists in it instead of in ξx, we would get the same
number, so f is symmetric.

Here is another description of f(Fx, Fy). In M3, Fy is dual to a cohomology class, α ∈ H1 (M ;Z/2Z),
and we could take α and restrict it to Fx, getting αx ∈ H1 (Fx;Z/2Z). The Poincaré dual of αx in Fx is
just the class represented by our collection of circles, which we will denote by ŷ. Associated to our Pin−

structure on Fx, there is a quadratic enhancement ψx. Note

(4.6) f(Fx, Fy) = ψx(ŷ) .

In particular, note f(Fx, Fy) only depends on the homology class of Fy, and hence by symmetry also only
on the homology class of Fx.

Once we see the pairing is well–defined, it is easy to see that f(x, 0) = f(0, x) = 0 for all x ∈
H2 (M ;Z/2Z). We have lost bilinearity and gained

(4.7) f(x, y + z) = f(x, y) + f(x, z) + 2τ(x, y, z) .

Proof : With notation as above, we apply formula 4.6. We need to show ψx( ̂y + x) = ψx(ŷ) + ψx(ẑ) +
2τ(x, y, z), which is just the quadratic enhancement property of ψx and the identification of ŷ•ẑ in Fx with
τ(x, y, z).

If we change the Spin structure on M by α ∈ H1 (M ;Z/2Z), then we change f as follows. Let fα
denote the new pairing and let a ∈ H2 (M ;Z/2Z) be the Poincaré dual to α. Then

fα(x, y) = f(x, y) + 2τ(x, y, a) ,

or
fα(x, y) = f(x, y + a) − f(x, a) .

Proof : We prove the first formula. Using 4.6 we see that the first formula is equivalent to ψα(ŷ) = ψ(ŷ) +
2τ(x, y, a), which follows easily from formula 3.3.

Finally, we have a function

(4.8) β:H2 (M ;Z/2Z) → Z/8Z .

We define β by taking an embedded surface representing x, using the Spin structure on M to get a Pin−

structure on Fx, taking the underlying Pin− bordism class, and using our explicit identification of this group
with Z/8Z.

We need to see why this is independent of the choice of embedded surface. Given two such surfaces,
there is a bordism in M × [0, 1] between them. Let W ⊂ M × [0, 1] be a 3–manifold with the two boundary
components representing the same element in H2 (M ;Z/2Z). Since M×[0, 1] is spun, we get a Pin− structure



on W which is our given Pin− structure at the two ends. Since Brown’s Z/8Z is a Pin− bordism invariant,
we are done. It further follows that β(0) = 0.

Reduced mod 2 β(x) is just the mod 2 Euler class of an embedded surface representing x, and hence β
is additive mod 2. We have

(4.9) β(x + y) = β(x) + β(y) + 2f(x, y) .

which we will prove in a minute. It follows that f(x, x) = −β(x) reduced mod 4. Note that, mod 4,
β(x + y) = β(x) + β(y) + 2τ(x, x, y).

How does β change when we change the Spin structure by α ∈ H1 (M ;Z/2Z)? The principle is easy.
Given a surface, F , restrict α to F and consider it to be a change in Pin− structure on F . Compute the
Brown invariant for this new Pin− structure, and this is the value of the new β on F . It follows from Lemma
3.7 that

(4.10) βα(x) = β(x) + 2f(x, a)

with notation as above.

Given the theorem below, we now prove formula 4.9. From this theorem we get: u − uα = 2β(a) and
u− uα1

= 2β(a1). Also uα − uα1
= 2βα(a1 − a). Hence βα(a1 − a) = β(a1) − β(a). Set a1 = x + a and use

formula 4.10.

The main result concerning β is

Theorem 4.11. Let M be a spun 3–manifold with resulting function β and µ–invariant u in Z/16Z. Let
α ∈ H1 (M ;Z/2Z) be used to change the Spin structure, and let uα be the new µ–invariant. Then

u− uα = 2β(a) (mod 16)

where a ∈ H2(M ;Z/2Z) is the Poincaré dual to α.

Proof : The proof is just the Guillou–Marin formula, [G–M, Theoreme, p. 98], or our discussion of it in §6,
6.4. On M × [0, 1] put the original Spin structure on M × 0 and put the altered one on M × 1. We can cap
this off to a closed 4–manifold by adding Spin manifolds that the two copies of M bound to either end. The
resulting 4–manifold has index uα − u. Let F be a surface in M representing a. Then F × 1/2 is a dual to
w2 for the 4–manifold. Since F is in a product, F •F = 0 and the enhancement used in the Guillou–Marin
formula is the same as the one we put on F to calculate β. By formula 6.4, u− uα = 2β(a).

As a corollary we get a result of Turaev, [Tu]

Corollary 4.12. The quadratic enhancement of the linking form gives the µ–invariant mod 8 via the
Milgram Gauss sum formula.

Proof : This was proved in [Ta] for rational homology spheres. Pick a basis for the torsion free part of H1

and do surgery on this basis. The resulting bordism, W, has signature 0; both boundary components have
isomorphic torsion subgroups of H1; and the top boundary component has no torsion free part. Put a Spin
structure on the bordism, which puts a Spin structure at both ends. The two enhancements on the linking
forms are equal, and they stay equal if we change both Spin structures by an element in H1 (W ;Z/2Z). Any
Spin structure on M can be obtained from our initial one by acting on it by an element of the form x + y,
where x comes from H1 (W ;Z/2Z) and y comes from H1 (M ;Z). But acting by this second sort of element
does not change the mod 8 µ–invariant or the quadratic enhancement of the linking form.



§5. Geometric calculations of ΩPin
±

3,4 .

We begin this section with a calculation for the 3–dimensional Spin, Pin− and Pin+ bordism groups.

Theorem 5.1. ΩSpin3
∼= 0; ΩPin

−
3

∼= 0 and [∩w1]: Ω
Pin+

3 → ΩSpin2
∼= Z/2Z is an isomorphism.

Proof : The Spin bordism result is classical: [ABP1], [Ka] or [Ki].

Given a non–orientable Pin± manifold M3, we will try to find a Pin± bordism to an orientable manifold
which then Pin± bounds by the Spin case. The dual to w1(M) is an orientable surface F by Proposition
2.3. The first step is to reduce to the case when F has trivial normal bundle. If not, consider F intersected
transversely with itself. It can be arranged that this is a single circle C, which is dual in F to w1(M)
pulled back to F . The normal bundle to C in M is νF⊂M |C ⊕ νF⊂M |C which is also νC⊂F ⊕ νC⊂F which is
trivialized. Hence the Pin± structure on M induces a Pin∓ structure on C. Suppose C with this structure
bounds Y 2; let E denote the total space of ζ ⊕ ζ over Y , where ζ is the determinant line bundle for Y . Note
that inside ∂E there is a copy of (∂Y ) ×B2, and E has a Pin± structure extending the one on (∂Y ) ×B2.
We can form M × [0, 1]∪E by gluing (∂Y 2)×B2 to C ×B2 × 1 where C ×B2 is the trivialized disk bundle
to C above. Clearly the Pin± structure extends across the bordism, and the “top” is a new Pin± manifold
M1 with a new dual surface F1 with trivial normal bundle.

In the Pin− case, C has a Pin+ structure which bounds (ΩPin
+

1 = 0, Theorem 2.1) so we have achieved
the (M1, F1) case. In the Pin+ case an argument is needed to see that we never get C representing the

non–zero element in ΩPin
−

1 = Z/2Z, i.e. C does not get the Lie group Spin structure.

To show this, let V be a dual to w1 and let E be a tubular neighborhood of V . By the discussion just
before Lemma 2.7, since E as a Pin+ structure, there is an inherited Spin structure on V (in fact there are
two which differ by the action of x ∈ H1 (V ;Z/2Z), where x denotes the restriction of w1 to V ). Note x also
describes the double cover ∂E → V . The boundary, ∂E, also inherits a Pin+ structure and we saw, Lemma
2.7, that, if we orient ∂E and V so that the covering map is degree 1, the Spin structure on ∂E is the same
as the one induced by the covering map. The Spin structure on ∂E bounds the Spin manifold which is the
closure of M −E, so if C is the dual to x and q is the quadratic enhancement on H1 (V ;Z/2Z), q(C) = 0 by
Theorem 3.12. Recall that the normal bundle to V in M , when restricted to C is trivial. Hence the framing
on C as a circle in V is the same as the Pin− structure on C as V intersect V in a Pin+ manifold. Hence
C has the non–Lie group Spin structure and hence represents 0 in ΩSpin1 .

Hence we may now assume that F has trivial normal bundle in M . Therefore F inherits a Pin±

structure from the one on M , and hence, after choosing an orientation, F has a Spin structure. If the Spin
structure on F is a boundary then it is easy as above to construct a Pin± bordism to an oriented manifold.
In the Pin+ case we are entitled to assume that the surface bounds because that is what the invariant [∩w1]
is measuring. In the Pin− case, the Klein bottle ×S1 with the Lie group framing is an example for which
the F has the non–bounding Spin structure. But if we add this manifold to our original M , for the new
manifold, F will bound and we are done.

We have now proved that [∩w1] is injective in the Pin+ case and that ΩPin
−

3 is generated by K × S1,
where K is the Klein bottle and the Pin− structure comes from some structure on the surface and the Lie
group Spin structure on S1. In some Pin− structures, K bounds and hence so does K × S1. In the others,
K is Pin− bordant to two copies of RP2, so K × S1 is bordant to two copies of RP2 × S1. Hence, if we
can prove that [∩w1] is onto and that RP2 × S1 bounds, we are done.

If we take the generator of ΩPin
+

2 and cross it with S1 with the Lie group Spin structure, we get a
3–manifold with [∩w1] being the 2–torus with Lie group Spin structure so by Proposition 3.8, [∩w1] is onto.

Consider RP2 in RP4: it is the dual to w2
1 + w2 so there is a Pin− structure on RP4 − RP2 which

restricts to the Lie group structure on the normal circle to RP2. An easy calculation of Stiefel–Whitney
classes shows that the normal bundle ν of RP2 in RP4 is orientable but w2(ν) �= 0. So we take the pairwise
connected sum (RP4, RP2)#(CP2, CP1) and then the normal bundle of RP2 = RP2#CP1 in RP4#CP2

has w1 = w2 = 0. For a bundle over RP2 this means that the bundle is trivial, so its normal circle bundle is
RP2 ×S1. The two Pin− structures on RP4#CP2 −RP2 bound two Pin− structures on RP2 ×S1 which
have the Lie group structure on S1. Since this is all the Pin− structures that there are with the Lie group
Spin structure on the S1, we are done.



Next we turn to the 4–dimensional case. The result is

Theorem 5.2. The group ΩSpin4
∼= Z generated by the Kummer surface; ΩPin

−
4 = 0; and the group

ΩPin
+

4
∼= Z/16Z generated by RP4.

Proof : The Spin result may be found in [Ki, p. 64, Corollary]. Our first lemma determines the image of

ΩSpin4 in the Pin± bordism groups.

Lemma 5.3. The Kummer surface bounds a Pin− manifold hence so does any 4–dimensional Spin manifold.
Twice the Kummer surface bounds a Pin+ manifold, but the Kummer surface itself does not. Hence a 4–
dimensional Spin manifold Pin+ bounds iff its signature is divisible by 32.

Proof : The Enriques surface, E, [Ha], is a complex surface with π1(E) ∼= Z/2Z with w2(E) �= 0. Habegger
shows that H2 (M ;Z) ∼= Z10 ⊕ Z/2Z and w2(M) is the image of the non–zero torsion class in H2 (M ;Z),
see paragraph 2 after the Proposition on p. 23 of [Ha]. If y ∈ H1 (E;Z/2Z) is a generator, then from the
universal coefficient theorem, y2 = w2(W ). If L is the total space of the line bundle over E with w1 = y,
then it is easy to calculate that L is Pin− (but not Pin+), and ∂E is the Kummer surface. This proves the

Kummer surface bounds a Pin− manifold. Since ΩSpin4
∼= Z generated by the Kummer surface, this proves

any Spin 4–manifold bounds as a Pin− manifold.

Let M4 is a Spin manifold and let W 5 be a Pin− manifold with ∂W = M as Pin− manifolds. Consider
the obstruction to putting a Pin+ structure on W extending the one on M4. The obstruction is w2(W ) =
w2

1(W ), so the dual class is represented by a 3–manifold formed as the intersection to a dual to w1 pushed off
itself. As usual, this 3–manifold has a natural Pin+ structure and it is easy to see that we get a well–defined
element in ΩPin

+

3
∼= Z/2Z. If this element is 0, then we can glue on the trivializing bordism and extend its

normal bundle to get a new Pin− manifold W1 which still bounds M and has no obstruction to extending
the Spin structure on the boundary to a Pin+ structure on the interior. Hence, if our element in ΩPin

+

3 is
0, M bounds. From this it is easy to see that twice the Kummer surface bounds. Hence any 4–dimensional
Spin manifold with index divisible by 32 bounds a Pin+ manifold.

Suppose that W is a Pin+ manifold with ∂W = M orientable. Let V ⊂ W be a dual to w1 contained
in the interior of W . Let E be a tubular neighborhood of V with boundary ∂E. As usual, ∂E is orientable
and the covering translation is orientation preserving. Since V is orientable with a normal line bundle, if we
fix an orientation, Spin structures on V correspond to Pin+ structures on E. Since W is a Pin+ manifold,
E has an induced Pin+ structure and V acquires an induced Spin structure. The bordism between M and
∂E is an oriented Pin+ bordism, so M and ∂E have the same signature. But ∂E is the double cover of
V so has signature twice the signature of V . Since V is Spin, the signature of V is divisible by 16, so the
signature of M is divisible by 32. This shows that the Kummer surface does not bound a Pin+ manifold
and indeed that any 4–dimensional Spin manifold of index congruent to 16 mod 32 does not bound a Pin+

manifold.

Since ΩSpin4
∼= Z generated by the Kummer surface this lemma calculates the image of ΩSpin4 in ΩPin

±
4

and our next goal is to try to produce a Pin± bordism from any Pin± manifold to an orientable one.

To this end let M be a 4–manifold with V 3 a dual to w1. Consider the dual to w1 intersected with
itself. It is a surface F ⊂ M and the normal bundle is two copies of the same line bundle. Indeed, the
transversality condition gives an isomorphism between the two bundles. This line bundle is also abstractly
isomorphic to the determinant line bundle for F . A Pin± structure on F gives rise to a Pin∓ structure on
the total space of the normal bundle of F in M by Lemma 1.7. Hence we can use the Pin± structure on M
to put a Pin∓ structure on F and it is not hard to check that we get a homomorphism ΩPin

±
4 → ΩPin

∓
2 . If

F bounds in this structure, one can easily see a Pin± bordism to an new 4–manifold M1 in which the dual
to w1 has trivial normal bundle. This puts a Pin± structure on V1. By orienting V1 we get a Spin manifold
and if V1 bounds in this Spin structure, M1 Pin± bounds an orientable manifold.

Consider the Pin− case. Any element in the kernel of the map [∩w2
1]: Ω

Pin−
4 → ΩPin

+

2 is Pin− bordant
to a Pin− manifold whose dual to w1, say V , has trivial normal bundle. Orienting this normal bundle
gives a Pin− structure on V , and since ΩSpin3 = 0, we can further Pin− bord our element to an orientable
representative. It then follows from Lemma 5.3 that the map [∩w2

1] is injective.



To show that this map is trivial, which proves ΩPin
−

4 = 0, proceed as follows. Let V ⊂ M be a dual to
w1(M) and let F 2 denote the transverse intersection of V with itself. Since the normal bundle to F in M is
2 copies of the determinant line bundle for F , F acquires a Pin+ structure from the Pin− structure on M .
Let E ⊂ V be a tubular neighborhood for F in V . Theorem 2.9 applies to this situation to show that the
Pin+ structure on ∂E induced by the double cover map ∂E → F is the same as the Pin+ structure induced
on ∂E ⊂ M from the fact that its normal bundle is exhibited as the sum of 2 copies of its determinant line
bundle. Since the normal bundle to V in M is trivial on V − F , V − F has a Spin structure which restricts
to the given one on ∂E. By Lemma 3.13, the oriented cover map ΩPin

+

2 → ΩSpin2 is an isomorphism, so F
is a Pin+ boundary, which finishes the Pin− case.

So consider the Pin+ case. This time our homomorphism goes from ΩPin
+

4 to ΩPin
−

2
∼= Z/8Z and

the example of RP4 shows that it is onto. Just as in the Pin− case, any element in the kernel of this
homomorphism is Pin+ bordant to an orientable manifold. This together with Lemma 5.3 shows that
0 → Z/2Z → ΩPin

+

4 → Z/8Z → 0 is exact.

To settle the extension requires more work. Given a Pin+ structure on a 4–manifold M , we can choose a
dual to w1, say V ⊂ M , and an orientation on M−V which does not extend across any component of V . We
can consider the bordism group of such structures, say G4. There is an epimorphism G4 → ΩPin

+

4 defined
by just forgetting the dual to w1 and the orientation. There is another homomorphism G4 → Q/32Z defined
as follows. Let E be a tubular neighborhood of V with boundary ∂E. The covering translation on ∂E is
orientation preserving, so V is also oriented. The normal bundle to ∂E in M is a trivial line bundle, oriented
by inward normal last, where inward is with respect to the associated disk bundle. Hence ∂E acquires a
Spin structure, and hence a µ invariant in Z/16Z. The manifold ∂E is a 3–manifold with an orientation
preserving free involution on it, hence there is an associated Atiyah–Singer α invariant, α(∂E) ∈ Q. Define
ψ(M,V ) = σ(M− int V )+α(∂E)−2µ(V ) ∈ Q/32Z. It is not hard to check that ψ depends only on the class
of (M,V ) in G4 and defines a homomorphism. We can make choices so that ψ(RP4,RP3) = +2. Hence
ψ(8(RP4,RP3)) = 16 with these choices. The Pin+ bordism of 8 copies of RP4 to an oriented manifold
is seen to extend to a bordism preserving the dual to w1 and orientation data. This oriented, hence Spin
manifold has index congruent to 16 mod 32, and so we have constructed a Pin+ bordism (with some extra
structure which we ignore) from 8 copies of RP4 to a Spin manifold which is Pin+ bordant to the Kummer

surface. This shows ΩPin
+

4
∼= Z/16Z.

§6. 4–dimensional characteristic bordism.

The purpose of this section is to study the relations between 4–manifolds and embedded surfaces dual
to w2 + w2

1.

Definition 6.1. A pair (M,F ) with the embedding of F in M proper and the boundary of M intersecting
F precisely in the boundary of F is called a characteristic pair if F is dual to w2 +w2

1. A characteristic pair
is called characterized provided we have fixed a Pin− structure on M − F which does not extend across
any component of F . The characterizations of a characteristic pair are in one to one correspondence with
H1 (M ;Z/2Z).

We begin by discussing the oriented case.

Lemma 6.2. Let M be an oriented manifold with a codimension 2 submanifold F which is dual to w2.
There exists a function

Char(M,F ) → Pin−(F ) .

The group H1 (M ;Z/2Z) acts on Char(M,F ), the group H1 (F ;Z/2Z) acts on Pin−(F ) and the map is
equivariant with respect to the map induced on H1 (;Z/2Z) by the inclusion F ⊂ M .

Remark. Later in this section we will define this function in a more general situation.

Proof : There is an obvious restriction map from characteristic structures on (M,F ) to those on (E,F ),
where E is the total space of the normal bundle to F in M , denoted ν. Hence it suffices to do the case
M = E. In this case we expect our function to be a bijection. After restricting to the case M = E it is no
further restriction to assume that F is connected since we may work one component at a time.



We begin with the case that F has the homotopy type of a circle. In this case ν has a section, so choose
one and write ν = λ⊕ ε1. Orient ε1 and use it to embed F in ∂E. The normal bundle to ∂E in E is oriented;
E is oriented; so ∂E is oriented. The normal bundle to the embedding of F in ∂E is λ so the orientation on
E plus the orientation of ε1 pick out a preferred isomorphism between λ and detTF . From Corollary 1.15,
there is a Pin− structure on F induced from the one on ∂E.

We want to see that this Pin− structure is independent of the section we chose. It is not difficult to
work out the effect of reorienting the section: there is none.

Suppose the bundle is trivial. We divide into two cases depending on the dimension of E. In the 1–
dimensional case, we may proceed as follows. The manifold F is a circle and since the bundle has oriented
total space, it must be trivial. Hence ∂E = T 2 and H1

(
T 2;Z/2Z

)
has one preferred generator, the image

of the fibre, otherwise known as a meridian, denoted m. Let x denote another generator. Since the Spin
structure is not to extend over the disk, the enhancement associated to the Spin structure on T 2, say q,
satisfies q(m) = 2. The Spin structure on the embedded base is determined by q of the image, which is
either x or x + m. Check q(x) = q(x + m).

In the higher dimensional case, there is an S1 embedded in F and the normal bundle to this embedding
is trivial. Over the S1 in F there is an embedded T 2 in ∂E and the bundle projection, p, identifies the
normal bundle to T 2 in ∂E with the normal bundle to S1 in F . Fix a Spin structure on one of these normal
bundles and use p to put a Spin structure on the other. The Spin structure on ∂E restricts to one on T 2

and it is not hard to check that the Pin− structure we want to put on F using the section is determined by
using the section over S1 and checking what happens in T 2. We saw this was independent of section so we
are done with the trivial case.

Now we turn to the non–trivial case, still assuming that F is the total space of a bundle over S1. The
minimal dimension for such an F is 2 since the bundle, ν, is non–trivial. In this case F is just a Möbius
band. Since E is oriented, the bundle we have over F is isomorphic to det ν ⊕ ε1. Sitting over our copy of
S1 in F is the Klein bottle, K2, and the normal bundle to K2 in ∂E is just the pull–back of ν. One can sort
out orientations and check that there is an induced Pin− structure on K2 so that the Pin− structure that
we want to put on F is determined by the enhancement of the section applied to S1 as a longitude of K2.
This calculation is just like the torus case. In the higher dimensional case, ν is a non–trivial line bundle plus
a trivial bundle so we can reduce to the dimension 2 case just as above.

Now we turn to the case of a general F .

Since we have done the circle case, we may as well assume that the dimension of F is at least 2. If the
dimension of F is 2, then we can find a section of our bundle over F − pt. The embedding of F − pt in
∂E gives a Pin− structure on F − pt and this extends uniquely to a Pin− structure on F . This argument
even works if F has a boundary and we take as the function on the boundary the function we have already
defined. Now if we restrict this structure on F to a neighborhood of an embedded circle, we get our previous
structure. Since this structure is independent of the section, the structure on all of F is also independent of
the section since Pin− structures can be detected by restricting to circles.

The higher dimensional case is a bit more complicated. We can define our function by choosing a set of
disjointly embedded circles and taking a tubular neighborhood to get U , with H1 (U ;Z/2Z) → H1 (F ;Z/2Z)
an isomorphism. We then use our initial results to put a Pin− structure on U and then extend it uniquely
to all of F . Now let V be a tubular neighborhood of a circle in F . We can restrict the Pin− structure on
F to V , or we can use our “choose a section, embed in ∂E and induce” technique. There is an embedded
surface, W 2, in F which has the core circle for V as one boundary component and some of the cores of U
as the others. Let X be a tubular neighborhood of W in F . The bundle restricted to X has a section so
we can induce a Pin− structure on X using the section. This shows that the two Pin− structures defined
above on V agree. It is not hard from this result to see that the Pin− structure on F is independent of the
choice of U .

Remarks. Notice that the proof shows that the Pin− structure on a codimension 0 subset of F , say X, only
depends on the Pin− structure on the circle bundle lying over X. It is not hard to check that our function
commutes with taking boundary, we get a well–defined homomorphism, β, from the rth Guillou–Marin
bordism group to ΩPin

−
r−2 .



Theorem 6.3. Let M4 be an oriented 4–manifold, and suppose we have a characteristic structure on the
pair (M,F ). The following formula holds:

(6.4) 2 · β(F ) = F •F − sign(M) (mod 16)

where the Pin− structure on F is the one induced by the characteristic structure on (M,F ) via 6.2.

Proof : By the Guillou–Marin calculation, their bordism group in dimension 4 is Z ⊕ Z, generated by
(S4,RP2) and (CP2, S2). The formula is trivial to verify for (CP2, S2). For (S4,RP2) we must verify that
RP2•RP2 = 2 implies that the resulting q is 1 on the generator. Now RP2 has two sorts of embeddings in S4.
There is a “right–handed” one, which has RP2•RP2 = 2, and a “left–hand” one which has RP2•RP2 = −2.
The “right–handed” one can be constructed by taking a ‘right–handed” Möbius strip in the equatorial S3 and
capping it off with a ball in the northern hemisphere. For our vector field, use the north–pointing normal.
The “even” framing on the bundle to νk, the core of the Möbius band, is the one given by the 0–framing in
S3. Hence we may count half twists in S3, where the right–hand Möbius band half twists once.

It would be nice to check that the Pin− structure we put on the characterized surface agrees with those
of Guillou–Marin and Freedman–Kirby. For the Freedman–Kirby case we take an embedded curve k in F
and cap it off by an orientable surface, B, in M . We start B off in the same direction as our normal vector
field, so then the normal bundle to B in M , when restricted to the boundary circle, will be the 2–plane
bundle around k we are to consider. The Guillou–Marin case is similar except that B need not be orientable.
Since B is a punctured surface, the normal bundle to B in M splits off a trivial line bundle and so is a trivial
bundle plus the determinant line bundle for the tangent bundle. Having chosen one section, the others are
classified by H1 (B;Zw1) , where Zw1 denotes Z coefficients twisted by w1 of the normal bundle. When
restricted to the boundary circle, this gives a well–defined “even” framing of the normal bundle.

If B does not intersect F except along ∂B, Theorem 4.3 shows that the framing on ∂B is the even one in
the sense of Definition 4.2. We can assume in general that B intersects F transversally away from ∂B. The
surface B̂ = B− ⊥⊥ D2 lies in M −F and each circle from the transverse intersection has the non–bounding
Spin structure. Hence, in general, the framing on ∂B is even iff the mod 2 intersection number of F and
B is even. Moreover, the number of half right twists mod 4 is just the obstruction to extending the section
given by the normal to k in F over all of B. This shows that our enhancement and those of Freedman–Kirby
and Guillou–Marin agree when both are defined.

The enhancement above is defined more generally since we do not need the membranes to select the
Pin− structure and hence do not need the condition that H1 (F ;Z/2Z) → H1 (M ;Z/2Z) should be 0. One
nice application of this is to compute the µ–invariant of circle bundles over surfaces when the associated disk
bundle is orientable.

Any O(2)–bundle, η, over a 2 complex, X, is determined by w1(η) and the Euler class, χ(η) ∈
H2 (X;Zw1), where Zw1 denotes Z coefficients twisted by w1(η). In our case, X is a surface which we
will denote by F ; the bundle η has the same w1 as the surface; and the Euler class is in H2 (F ;Zw1) ∼= Z.
Let S(η) denote the circle bundle. One way to fix the isomorphism is to orient the total space of η and then
F •F = χ(η). The signature of the disk bundle is also easy to compute. We denote it by σ(η) since we will see
it depends only on η; indeed it can be computed from w1(η) and χ(η). If w1(η) = 0 then σ(η) = sign χ(η)
(±1 or 0 depending on χ(η)): if w1(η) �= 0 then σ(η) = 0. By Lemma 6.2, Spin structures on S(η) which do
not extend across the disk bundle are in 1–1 correspondence with Pin− structures on F .

Theorem 6.5. With notation as above fix a Spin structure on S(η). Let b(F ) = 0 if this structure extends
across the disc bundle and let b(F ) = β(F ) if it does not and the Pin− structure on F is induced via the
function in Lemma 6.2. We have

(6.6) µ(S(η)) = σ(η) − χ(η) + 2 · b(F ) (mod 16) .

Proof : The result follows easily from 6.4.



We want to describe a homomorphism from various characteristic bordism groups into the Pin− bordism
group in two dimensions less. Roughly the homomorphism is described as follows. We have a characteristic
pair (M,F ) and we will see that, with certain hypotheses, F is a Pin− manifold. We then use the charac-
terization of the pair to pick out a Pin− structure on F . The homomorphism then just sends (M,F ) to the
Pin− bordism class of F .

To describe our hypotheses, consider the following commutative square

F −→ BO(2)

↓ ↓
M −→ TO(2)

Let U ∈ H2 (TO(2);Z/2Z) denote the Thom class and recall that U pulls back to w2 in H2
(
BO(2);Z/2Z

)
.

The 2–plane bundle classified by ν is just the normal bundle to the embedding i:F ⊂ M , and f∗(U) ∈
H2 (M ;Z/2Z) is the class dual to F . Let a denote the class dual to F . Then we see that i∗(a) = w2(νF⊂M ),
where νF⊂M is the normal bundle to the embedding. Let us apply this last equation to our characteristic
situation. The class a is w2(M) + w2

1(M) and we have the bundle equation i∗(TM ) = TF ⊕ νF⊂M . Now
i∗w1(M) = w1(F ) + w1(ν) and i∗w2(M) = w2(F ) + w2(ν) + w1(F ) · w1(ν). Hence i∗(w2(M) + w2

1(M)) =
w2(F )+w2(ν)+w1(F )·w1(ν)+w2

1(F )+w2
1(ν) and using our equation for w2(ν) we see that w2(F )+w2

1(F ) =
w1(ν) · i∗w1(M). Hence F is Pin− iff the right hand product vanishes or

Lemma 6.7. The surface F has a Pin− structure iff(
w1(F ) + w1(η)

)
∪ w1(η) = 0 .

To study w1(ν)·i∗w1(M) we may equally study w1(ν)∩(i∗w1(M)∩[F, ∂F ]). The term i∗w1(M)∩[F, ∂F ]
can be described as the image of the fundamental class of the manifold obtained by transversally intersecting
F and a manifold V in M dual to w1. Hence, the product w1(ν) · i∗w1(M) vanishes if the normal bundle to
F ∩ V ⊂ V is orientable. This suggests studying the following situation.

Definition 6.8 . Let M be a manifold with a proper, codimension 2 submanifold F (proper means that
∂M ∩ F = ∂F and that every compact set in M meets F in a compact set). A characteristic structure on
the pair (M,F ) is a collection consisting of

a) a proper submanifold V dual to w1(M) which intersects F transversely

b) an orientation on M − V which does not extend across any component of V

c) a Pin− structure on M −F that does not extend across any component of F (so F is dual to w2 +w2
1)

d) an orientation for the normal bundle of V ∩ F in V .

Let Char−(M,F ) be the set of characteristic structures on (M,F ).

The next goal of this section is to prove a “reduction of structure ” result, the Pin− Structure Corre-
spondence Theorem.

Theorem 6.9. There exists a function

Ψ: Char−(M,F ) → Pin−(F )

which is natural in the following sense. If we change the Pin− structure on M − F which does not extend
across any component of F by acting on it with a ∈ H1 (M ;Z/2Z), then we change Ψ of the structure
by acting on it with i∗(a) ∈ H1 (F ;Z/2Z), where i:F ⊂ M is the inclusion. If X denotes a collection of
components of F ∩ V , then the dual to X is a class in x ∈ H1 (F ;Z/2Z). If we switch the orientation to the
normal bundle of F ∩ V in F over X and not over the other components, then we alter Ψ by acting with
x. If we change the orientation on M − V which does not extend across any component of V , we do not
change Ψ of the Pin− structure. Finally, if M1 ⊂ M is a codimension 1 submanifold with trivialized normal



bundle such that F and V intersect M1 transversely (including the case M1 = ∂M), then the characteristic
structure on M restricts to one on M1. The Pin− structure we get on F1 = M1 ∩ F is the restriction of the
one we got on F .

Remark. The observation that characteristic structures restrict to boundaries allows us to define bordism
groups: let Ω!

r denote the bordism group of characteristic structures.

Reduction 6.10. Given a closed manifold M with a characteristic structure, let E ⊂ M denote the total
space of the normal bundle of F in M . The associated circle bundle, ∂E, is embedded in M with trivial
normal bundle and without loss of generality we may assume that V intersects ∂E transversally. Hence E
acquires the above data by restriction.

This reduces the general case to the following local problem. We may deal with one component at a
time now and so we must describe how to put a Pin− structure on a connected Pin− manifold F , given that
we have a 2–disc bundle over F with total space E; a Pin− structure on ∂E which does not extend to all
of E; a codimension 1 submanifold V which is dual to w1(E) and intersects F transversally; an orientation
on E − V which does not extend across any component of V ; and an orientation for the normal bundle of
F ∩ V in V . We must also check that the Pin− structure that we get on F is independent of our choice of
tubular neighborhood. Note for reassurance that Pin− structures on F are in one to one correspondence
with Pin− structures on ∂E which do not extend to E.

Let us consider the following situation. We have a circle bundle p: ∂E → F over F with associated
disc bundle ξ. We let E denote the total space of ξ. We have a codimension 1 submanifold, V , of E which
is dual to w1(E) and which intersects F transversally. We are given an orientation on E − V which does
not extend across any component of V and we are given an orientation of the normal bundle to F ∩ V
in V . We are going to describe a one to one correspondence between Pin− structures on F and Pin−

structures on ∂E which do not extend across E. Furthermore, suppose that U ⊂ F is a submanifold with
trivialized normal bundle. Suppose that U intersects V transversally and let EU denote the total space of
the disk bundle for ξ restricted to U . Then over U we have our data. Notice that any Pin− structure on
F restricts to one on U , and any Pin− structure on ∂E restricts to one on ∂EU . Let Pin−(F,U) denote
the set of Pin− structures on F which restrict to a fixed one on U . Define Pin−(∂E, ∂EU ) similarly except
we require that the Pin− structures do not extend across the disk bundles. Below we will define a 1–1 map
Ψ:Pin−(∂E, ∅) → Pin−(F, ∅). If we fix a Pin− structure on U , which comes from one on F , and use Ψ for
U to pick out a Pin− structure on ∂EU , then we also get a 1–1 map

Ψ:Pin−(∂E, ∂EU ) → Pin−(F,U) .

There is an isomorphism, p∗:H1 (F,U ;Z/2Z) → H1
(
∂E, ∂EU ∪ S1;Z/2Z

)
, induced by the projection

map, p: ∂E → F , where S1 denotes a fibre of the bundle (if U �= ∅ then ∂EU ∪ S1 = ∂EU ). The
group H1

(
∂E, ∂EU ∪ S1;Z/2Z

)
acts in a simply transitive fashion on Pin−(∂E, ∂EU ) and the group

H1 (F,U ;Z/2Z) acts in a simply transitive fashion on Pin−(F,U). The map Ψ is equivariant with respect
to these actions and p∗.

The relative version of the Pin− Structure Correspondence gives the uniqueness result needed in Re-
duction 6.10 since any two choices are related by a picture with our data over E × I with structure fixed
over E × 0 and E × 1.

Note first that F has a Pin− structure by the calculations above.

Recall that there is a sub–bundle of T∂E , namely the bundle along the fibres, η. This is a line bundle
which is tangent to the fibre circle at each point in ∂E. The quotient bundle, ρ, is naturally isomorphic to
TF , via the projection map, p. Our first task is to use our given data to describe an isomorphism between
η ⊕ det(T∂E) and det(ρ) ⊕ ε1. To fix notation, let N be a tubular neighborhood of V in ∂E and fix an
isomorphism between ρ⊕ η and T∂E .

On ∂E − V we have an orientation of T∂E . This describes an isomorphism between det(T∂E) and
ε1. Furthermore, the orientation picks out an isomorphism between η and det(ρ) as follows. These two
line bundles are isomorphic since they have the same w1, and there are two distinct isomorphisms over



each component of ∂E − V . Pick a point in each component of ∂E − V , and orient η at those points. The
orientation of T∂E picks out an orientation of ρ, and hence det(ρ), at each point. We choose the isomorphism
between η and det(ρ) which preserves the orientations at each point. It is easy to check that if we reverse
the orientation at a point for η, we reverse the orientation for det(ρ) and hence get the same isomorphism
between these two bundles. The isomorphism between η ⊕ det(T∂E) and det(ρ) ⊕ ε1 is just the sum of the
above two isomorphisms.

We turn our attention to the situation over N . Over F ∩ V , ξ is the normal bundle to F ∩ V in V , and
hence it is oriented. Hence so is p∗(ξ) in ∂E, and p∗(ξ) is isomorphic to η⊕ε1. The outward normal to ∂E in
E orients the ε1, and hence η is oriented over p−1(F ∩V ), and hence over N . This time det(ρ) and det(T∂E)
are abstractly isomorphic, and we can choose an isomorphism by choosing a local orientation. Since η is
oriented and 0 → η → T∂E → ρ → 0 is exact, there is a natural correspondence between orientations of T∂E
at a point and orientations of ρ at the same point. As before, if we switch the orientation on T∂E , we still get
the same isomorphism between det(ρ) and det(T∂E). As before, the orientation for η defines an isomorphism
between η and ε1, but this time we take the isomorphism which reverses the orientations. We take the sum
of these two isomorphisms as our preferred isomorphism between η ⊕ det(T∂E) and det(ρ) ⊕ ε1.

Now over N−V , we have two isomorphisms between η⊕det(T∂E) and det(ρ)⊕ε1. If we restrict attention
to a neighborhood of ∂N both bundles are the sum of two trivial bundles, and our two isomorphisms differ

by composition with the matrix

(
0 −1
1 0

)
.

Parameterize a neighborhood of ∂N in N by ∂N × [0, π/2] and twist one bundle isomorphism by the

matrix

(
cos(t) − sin(t)
sin(t) cos(t)

)
. We can now glue our two isomorphisms together to get an isomorphism between

η ⊕ det(T∂E) and det(ρ) ⊕ ε1 over all of ∂E.

Finally, we can describe our correspondence between Pin− structures. Suppose that we have a Pin−

structure on F . This is a Spin structure on TF ⊕ det(TF ). Since ρ is isomorphic via p to TF , we get a Spin
structure on ρ⊕ det(ρ), and hence on ρ⊕ det(ρ)⊕ ε1. Using our constructed isomorphism, this gives a Spin
structure on ρ⊕ η ⊕ det(T∂E). Choose a splitting of the short exact sequence 0 → η → T∂E → ρ → 0, and
we get a Spin structure on T∂E ⊕ det(T∂E).

If we choose a different splitting, we get an automorphism of T∂E and hence an automorphism of
T∂E ⊕ det(T∂E) which takes one Spin structure to the other. But this automorphism is homotopic through
bundle automorphisms to the identity, and so the Spin structure does not change.

Finally, let us consider the Pin− structure induced on a fibre S1. We will look at this situation for a
fibre over a point in F where we have an orientation of T∂E . Restricted to S1, the bundle T∂E splits as η
plus the normal bundle of S1 in ∂E, so η is naturally identified as the tangent bundle of S1 and the normal
bundle of S1 in ∂E is trivialized using the bundle map p. The trivialization of the normal bundle of S1 in ∂E
plus the Spin structure on T∂E⊕det(T∂E) yields a trivialization of η|S1 , which then yields a trivialization of
the tangent bundle of S1. Since SO(1) is a point, any oriented 1–plane bundle has a unique framing, which
in the case of the tangent bundle to the circle is the Lie group framing. The Pin− structure that results
from a framing of the tangent bundle of S1 is therefore the one that does not extend across the disk, so our
Pin− structure on ∂E does not extend across E.

Recall that Pin− structures on ∂E that do not extend across E are acted on by H1 (F ;Z/2Z) in a
simply–transitive manner by letting p∗(x) ∈ H1 (∂E;Z/2Z) act as usual on Pin− structures on ∂E. If we
change Pin− structures on F by x ∈ H1 (F ;Z/2Z), we change the Pin− structure that we get on ∂E by
the p∗(x) in H1 (∂E;Z/2Z) so our procedure induces a one to one correspondence between Pin− structures
on F and Pin− structures on ∂E which do not extend across E.

Next, we consider the effects of changing our orientations. We wish to study how the choices of orien-
tations on ∂E−V and on ξ effect the resulting map between Pin− structures on F and Pin− structures on
∂E which do not extend across E. Let us begin by considering the effect of changing the orientation on ξ.
This switches the orientation on η and so our bundle map remains the same over ∂E −N and over N it is

multiplied by the matrix

(
−1 0

0 −1

)
. This has the effect of putting s full twists into the framing around

any circle that intersects F ∩V geometrically t times where s ≡ t (mod 2). Hence the class in H1 (F ;Z/2Z)



that measures the change in Pin− structure is just the class dual to F ∩V . If F ∩V has several components
and we switch the orientation of ξ over only one of them then the class in H1 (F ;Z/2Z) that measures the
change in Pin− structure is just the class dual to that component of F ∩ V .

Now suppose that we switch the orientation on ξ and on M − V . This time the two bundle maps differ

over all of ∂E by multiplication by the matrix

(
−1 0

0 −1

)
. The effect of this is to change the Pin− structure

on F via w1(F ). This follows from Lemma 1.6.

From the two results above the reader can work out the effect of the other possible changes of orientations.
Finally, the diligent reader should work through the relative version.

This ends our description of the Pin− Structure Correspondence.

As an application of the Pin− Structure Correspondence and Reduction 6.10 we present

Theorem 6.11. There exists a homomorphism R: Ω!
r → ΩPin

−
r−2 (BO(2)). Given an object, x ∈ Ω!

r, let F
denote the submanifold dual to w2 +w2

1. This manifold has a map F → BO(2) classifying the normal bundle.
Use the above construction to put a Pin− structure on F : R(x) is the bordism class of this Pin structure
on F .

Variants of this map enter into the discussions below.

Corollary 6.12. If MFKr denotes the r–th bordism group of Freedman–Kirby, then there exists a long
exact sequence

· · · → ΩSpinr
i−→MFKr

R−→ΩSpinr−2 (BSO(2))
a−→ΩSpinr−1 → · · ·

where R takes the Spin bordism class of the classifying map for the normal bundle to F in M , and a takes
the Spin structure we put on the total space of the associated circle bundle. The V we always take is the
empty set.

Remark 6.13. There are definitely non–trivial extensions in this sequence.

Remark 6.14. The Freedman–Kirby bordism theory is equivalent to the bordism theory Spinc, the theory
of oriented manifolds with a specific reduction of w2 to an integral cohomology class. This bordism theory
has been computed, e.g. Stong [Stong], and is determined by Stiefel–Whitney numbers, Pontrjagin numbers,
and rational numbers formed from products of Pontrjagin numbers and powers of the chosen integralization
of w2.

Remark 6.15. There are versions of this sequence for the bordism theory studied by Guillou–Marin and
for our bordism theory. In both of these cases we replace ΩSpin by the Pin− bordism groups ΩPin

−
. We

also replace ΩSpinr−2 (BSO(2)) by the bordism groups of O(2)–bundles over Pin− manifolds with some extra
structure. The bordism groups of O(2)–bundles over Pin−manifolds can be identified with the homotopy
groups of the Thom spectrum formed from BPin− × BO(2) using the universal bundle over BPin− and the

trivial bundle over BO(2). The associated bordism groups are denoted ΩPin
−

r−2 (BO(2)). In the Guillou–Marin
case we define BGM as the fibre of the map BPin− × BO(2) → K(Z/2Z, 1) where the map is the sum of
w1 of the universal bundle over BPin− and w1 of the universal bundle over BO(2). In our case we let BE
be the fibre of the map BPin− × BO(2) → K(Z/2Z, 2) where the map is the product of two 1–dimensional
cohomology classes: namely w1 of the universal bundle over BPin− and w1 of the universal bundle over
BO(2). Over either BGM or BE we can pull back the universal bundle over BPin− plus the trivial bundle
over BO(2) and form the associated Thom spectrum. The homotopy groups of these spectra fit into the
analogous exact sequences for the bordism theory studied by Guillou–Marin and by us.

Remark 6.16. All the bordism groups defined in Theorem 6.11, Corollary 6.12 and its two other versions are
naturally modules over the Spin bordism ring, and all the maps defined above are maps of ΩSpin∗ –modules.



§7. Geometric calculations of characteristic bordism.

In this section we will calculate the characteristic bordism introduced in the last section up through
dimension 4.

The first remark is that any manifold M of dimension less than or equal to 4 has a characteristic
structure. Hence !–bordism is onto unoriented bordism through dimension 4. We show next that

Theorem 7.1. The forgetful map

Ω!
r → ΩOr

is an isomorphism for r = 0, 1, and 2. Hence Ω!
0
∼= Ω!

2
∼= Z/2Z and Ω!

1
∼= 0.

Proof : Since the forgetful map is onto, it is merely necessary to show that the !–bordism groups are abstractly
isomorphic to Z/2Z or 0. We begin in dimension 0. The only connected manifold is the point and it has
a unique characteristic structure: F and V are empty. Hence Ω!

0 is a quotient of Z. It is easy to find
a characteristic structure on [0, 1] which has 2 times the oriented point as its boundary: F is empty and
V = {1/2}. Hence Ω!

0
∼= Z/2Z given by the number of points mod 2.

In dimensions at least 1, it is easy to add 1–handles to show any object is bordant to a connected one.
Hence in dimension 1, the only objects we need to consider are characteristic structures on S1. Here F is
still empty, and V is an even number of points. The circle bounds B2, the 2–disk, and it is easy to extend
V to a collection of arcs in B2 and to extend the orientation on S1 − V . The Pin− structure on the circle
either bounds a 2–disk, in which case extend it over B2, or it does not, in which case take F to be a point
in B2 which misses the arcs and extend the Pin− structure over B2 − pt. Hence Ω!

1
∼= 0.

In dimension 2 we can assume that M is connected and that it bounds as an unoriented manifold. The
goal is to prove that it bounds as a characteristic structure. Note V is a disjoint union of circles, and F is a
finite set of points with F ∩V being empty. Since every surface has a Pin− structure, F is an even number of
points. Let W be a collection of embedded arcs in M × [0, 1] which miss M × 1 and have boundary F . Since
W is a dual to w2 + w2

1, there is a Pin− structure on M × [0, 1] − W which extends across no component
of W . This induces such a structure on M × 0. Since H1 (M ;Z/2Z) acts on such structures, it is easy to
adjust to get a Pin− structure on M × [0, 1]−W which extends across no component of W and which is our
original Pin− structure on M × 0. Given V ⊂ M × 0 we can extend to an embedding V × [0, 1] in M × [0, 1].
The orientation on M − V extends to one on M × [0, 1]− V × [0, 1]. Clearly this orientation extends across
no component of V × [0, 1], so this submanifold is dual to w1. Hence we may assume our surface has empty
F with no loss of generality: i.e. M has a fixed Pin− structure.

Let E3
K denote the total space of the non–trivial 2–disk bundle over the circle. The boundary of E3

K is
K2, the Klein bottle and H1 (K;Z/2Z) is spanned by a fibre circle,Cf , and a choice of circle which maps
non–trivially to the base, C2. Consider the Pin− structure on K2 whose quadratic enhancement satisfies
q(Cf ) = 2 and q(C2) = 1. This structure does not extend across EK so let F be the core circle in EK . Let
V be a fibre 2–disk. Orient the normal bundle to V ∩F in F any way one likes. It is easy to check that this
gives a characteristic structure on E3

K extending the one on K2 which does not bound as a Pin− manifold.
By adding copies of this structure on K2 to M , we can assume that M is a Pin− boundary, so let W 3 be a
Pin− boundary for M .

Inside W we find a dual to w1, say X2, which extends V in M . There is some orientation on W − X
which extends across no component of X and this structure restricts to such a structure on M −V . Since M
is connected, there are only two such structures and both can be obtained from such a structure on W −X.
Hence our original characteristic structure is a characteristic boundary assuming nothing more than that it
was an unoriented boundary.

The results in dimensions 3 and 4 are more complicated. We begin with the 3–dimensional result.

Theorem 7.2. The homomorphism R of Theorem 6.11, followed by forgetting the map to BO(2) yields an
isomorphism

R̂: Ω!
3 → ΩPin

−

1
∼= Z/2Z .



Proof : We first show that R̂ is onto and then that it is injective.

Let E3
K denote the disk bundle with boundary the Klein bottle as in the last proof. The Pin− structure

received by F in this structure is seen to be the Lie group Pin− structure. There is a similar story for
the torus, T 2. There is a 2–disk bundle over a circle, E3

T , and a Pin− structure on the torus which does
not extend across the disk bundle so that the core circle receives the Lie group Pin− structure. Indeed,
E3
T is just a double cover of E3

K . If we take two copies of K2 with its Pin− structure and one copy of T 2

with its Pin− structure, the resulting disjoint union bounds in ΩPin
−

2 . Let W 3 denote such a bordism. Let

M3 =
2

⊥⊥E3
K ⊥⊥ E3

T ⊥⊥ W 3 with the boundaries identified. Let F be the disjoint union of the three core
circles, and note F is a dual to w2 + w2

1 since the complement has a Pin− structure which does not extend
across any of the cores. Let V be a dual to w1 and arrange it to meet F transversely. Indeed, with a little
care one can arrange it so that V ∩ F consists of 2 points, one on each core circle in a E3

K . This is our

characteristic structure on M . Our homomorphism applied to M is onto the generator of ΩPin
−

1 .

It remains to show monicity. Let M be a characterized 3–manifold. By adding 1–handles, we may
assume that M is connected. First we want to fix it so that V ∩ F is empty. In general, V ∩ F is dual to
w2w1 + w3

1 and, for a 3–manifold, this vanishes. Hence V ∩ F consists of an even number of points. We
explain how to remove a pair of such points.

Pick two points, p0 and p1, in V ∩ F . Each point in F has an oriented normal bundle. The normal
bundle to each point in V is also trivial and V is oriented, so the normal bundle to each point in V is
oriented. Attach a 1–handle, H = (B1 × [0, 1]) × B2 so as to preserve the orientations at p0 and p1. Let
W 4 denote the resulting bordism. Inside W 4, we have embedded bordisms, V 3

1 and F 2
1 beginning at V and

F in M . Notice that at the “top” of the bordism, the “top” of V1 and the “top” of F1 intersect in 2 fewer
points. Moreover, the orientation of the normal bundle of V ∩ F in F clearly extends to an orientation of
the normal bundle of V1 ∩ F1 in F1.

Since F1 is a codimension 2 submanifold of W , it is dual to some 2–dimensional cohomology class. Since
H∗ (W,M ;Z/2Z) is 0 except when ∗ = 1 (in which case it is Z/2Z), this class is determined by its restriction
to H2 (M ;Z/2Z). Hence F1 is dual to w2 +w2

1, so choose a Pin− structure on W −F1 which extends across
no component of F1. This restricts to a similar structure on M , and since H1 (W ;Z/2Z) → H1 (M ;Z/2Z)
is onto, we can adjust the Pin− structure until it extends the given one on M − F .

The above argument does not quite work for V1, but it is easy in this case to see that W − V1 has an
orientation extending the one on M − V . Any such orientation can not extend over any components of V1.
Hence we have a characteristic bordism as required.

We may now assume that V ∩ F is empty. Since F is a union of circles and V ∩ F = ∅, F has a trivial
normal bundle in M . If our homomorphism vanishes on our element, F is a Pin− boundary, which, in this
dimension, means that it is a Spin boundary: i.e. F bounds Q2, an orientable Pin− manifold. Glue Q2×B2

to M × [0, 1] along F × B2 ⊂ M × 1 to get a bordism X4. Since Q is orientable, V × [0, 1] is still dual to
w1, and it is not hard to extend the Pin− structure on M − F to one on X − Q which extends across no
component of Q. Since Q and V × [0, 1] remain disjoint, the “top” of X is a new characteristic pair for which

the dual to w2 + w2
1 is empty: i.e. the “top”, say N3, has a Pin− structure. Since ΩPin

−
3 = 0, N3 bounds

a Pin− manifold, Y 4. Since M was connected, so is N and there is no obstruction to extending the dual to
w1 in N , say V1, to a dual to w1 in Y , say U , and extending the orientation on N − V1 to an orientation
on Y − U which extends across no component of U . The union of X4 and Y 4 along N3 is a characteristic
bordism from M3 to 0.

The last goal of the section is to compute Ω!
4. Since the group is non–zero, we begin by describing

the invariants which detect it. Given an element in Ω!
4, we get an associated surface F 2 with a Pin−

structure, and hence a quadratic enhancement, q. We may also consider η, the normal bundle to F in our
original 4–manifold. We describe three homomorphisms. The first is β: Ω!

4 → Z/8Z which just takes the
Brown invariant of the enhancement q. The second homomorphism is Ψ: Ω!

4 → Z/4Z given by the element
q(w1(η)) ∈ Z/4Z. The third homomorphism is w2: Ω

!
4 → Z/2Z given by 〈w2(η), [F ]〉 ∈ Z/2Z. We leave it to

the reader to check that these three maps really are homomorphisms out of the bordism group, Ω!
4.



Theorem 7.3. The sum of the homomorphisms

β ⊕ Ψ ⊕ w2: Ω
!
4 → Z/8Z⊕ Z/4Z⊕ Z/2Z

is an isomorphism.

Proof : First we prove the map is onto and then we prove it is 1–1. Recall from Lemma 6.7 that a surface,
M , with a Pin− structure and a 2–plane bundle, η, can be completed to a characteristic bordism element
iff (w1(M) + w1(η)) ∪ w1(η) = 0. Notice that this equation is always satisfied since cupping with w1(M)
and squaring are the same. Hence we will only describe the surface with its Pin− structure and the 2–plane
bundle.

First note that RP2 with the trivial 2–plane bundle generates the Z/8Z and maps trivially to the Z/4Z
and the Z/2Z.

The Hopf bundle over the 2–sphere maps trivially into the Z/8Z and the Z/4Z since S2 is a Pin−

boundary and Ψ vanishes whenever the 2–plane bundle has trivial w1. However, S2 and the Hopf bundle
maps non–trivially to the Z/2Z.

Let K2 denote the Klein bottle, and fix a Pin− structure for which K2 is a Pin− boundary. Let η be
the 2–plane bundle coming from the line bundle with w1 being the class in H1

(
K2;Z/2Z

)
with non–zero

square. Since K2 is a Pin− boundary, β(K2) = 0. Since η comes from a line bundle, w2(η) = 0. However,
q(w1(η)) is an element in Z/4Z of odd order and is hence a generator.

This shows that our map is onto. Before showing that our map is 1–1, we need a lemma.

Lemma 7.4. There exists a 2–disk bundle B2n over the punctured S1 × S2, S1 × S2 − int B3, whose
restriction to the boundary S2 has Euler class 2n, n ∈ Z.

Proof : Start with the 2–disk bundle B̃n over S2 with Euler number n and pull it back over the product
S2×I. Now add a 1–handle to S2×I, forming S1×S2− int B3, and extend the bundle B̃n over the 1–handle
so as to create a non–orientable bundle B2n. Then χ(B2n|S2) = 2n.

Suppose M4, V 3, F 2, η2 is a representative of an element of Ω!
4 and that β(F 2) = 0, Ψ(w1(η)) = 0, and

w2(η) = 0. We need to construct a !–bordism to ∅.
Since we may assume that F , M and V are connected, there is a connected 1–manifold, an S1, which

is Poincaré dual to w1(η); then the normal vector to S1 in F makes an even number of full twists in the
Pin− structure on F as S1 is traversed. It follows that we can form a !–bordism by adding to F a B2 ×B1

where S1 × B1 is attached to the dual S1 to w1(η) and its normal B1 bundle. Clearly the Pin− structure
on F extends across the bordism. Since the dual to S1 has self–intersection zero in F , η restricted to S1 is
orientable, so η extends over B2 ×B1.

Since w2(η) = 0, it follows that χ(η)[F ] = 2n for some n ∈ Z. By Lemma 7.4 there is a bundle B−2n

over a punctured S1 × S2 with χ(B−2n|S2) = −2n. We form a 5–dimensional bordism to the boundary
connected sum, i.e. in M4 × 1 ⊂ M4 × I, choose a 4–ball of the form B2 ×B2 where B2 × 0 ⊂ F 2 − (V ∩F )
and p×B2 is a normal plane of η over p, and identify B2 ×B2 with B−2n|S2

−
where S2

− is a hemisphere of

S2.

The new boundary to our !–bordism, which we shall denote (M, V, F, η) now has a trivial normal
bundle η.

Since β(F 2) = 0, F Pin− bounds a 3–manifold N3, so we add N3 × B2 to M × 1 along the normal
bundle η to F , F ×B2, where it does not matter how we trivialize η. The Pin− structure on M −F extends
over the complement of N (using the Pin− Correspondence Theorem, 6.9, and the Pin− structure on N),
so the new boundary to our !–bordism consists of a Pin− manifold M with empty F 2. Since 4–dimensional
Pin− bordism, ΩPin

−
4 , is zero, we can complete our !–bordism by gluing on to M × 1 a 5–dimensional Pin−

manifold.

Remark. It is worth comparing this argument with the argument in [F–K] showing that if (M4, F 2) is
a characteristic pair with M4 and F 2 orientable and with sign(M4) = 0 and F •F = 0, then (M, F ) is



characteristically bordant to zero. The arguments would have been formally identical if we had also assumed
that the Spin structure on F , obtained from the Pin− Correspondence Theorem, bounded in 2–dimensional
Spin bordism, ΩSpin2 = Z/2Z (corresponding to β(F ) = 0 above). However, it is possible to show that
Ωchar

4 = Z⊕Z without the extra assumption on F , and this Z/2Z improvement leads to Rochlin’s Theorem
(see [F–K], [Ki], ...).

Further Remark. The image of the Guillou–Marin bordism in this theory can be determined as follows.
The group is Z ⊕ Z generated by (S4, RP 2) and (CP 2, S2). Both β and Ψ vanish on (CP 2, S2), but w2 is
non–zero. On (S4, RP 2), w2 evaluates 0 (the normal bundle comes from a line bundle): β is either 1 or −1
depending on which embedding one chooses. Moreover, Ψ is either 1 or −1 (the same sign as β).

§8. New knot invariants.

The goal here is to describe some generalizations of the usual Arf invariant of a knot (or some links)
due to Robertello, [R].

We fix the following data. We have a 3–manifold M3 with a fixed Spin structure and a link L:⊥⊥
i
S1 →

M3. Since M is Spin , w2(M) = 0 and we require that [L] ∈ H1 (M ;Z/2Z) is also 0, hence dual to w2(M).
We next require a characterization of the pair, (M,L): i.e. a Spin structure on M −L which extends across
no component of L. We call such a characterization even iff the Pin− structure induced on each component
of L by Lemma 6.2 is the structure which bounds. We say the link is even iff it has an even characterization.

One way to check if a link is even is the following. Each component of L has a normal bundle, and the
even framing of this normal bundle picks out a mod 2 longitude on the peripheral torus. The link is even iff
the sum of these even longitudes is 0 in H1 (M − L;Z/2Z)

Remark. Not all links which represent 0 are even: the Hopf link in S3 is an example where any structure
which extends across no component of L induces the Lie group Spin structure on the two circles. We shall
see later that a necessary and sufficient condition for a link in S3 to be even is that each component of the
link should link the other components evenly. This is Robertello’s condition, [R].

Definition. A link, L, in M3 with a fixed Spin structure on M and a fixed Spin structure on M −L which
extends across no component of L and induces the bounding Pin− structure on each component of L is
called a characterized link.

Given a characterized link, (M,L), there is defined a class γ ∈ H1 (M − L;Z/2Z): γ is the class which
acts on the fixed Spin structure on M − L to get the one which is the restriction of the one on M . The
class γ is defined by the characterization and conversely a characterization is defined by a choice of class
γ ∈ H1 (M − L;Z/2Z) so that, under the coboundary map, the image of γ in H2 (M,M − L;Z/2Z) hits
each generator. (Recall that by the Thom isomorphism theorem, H2 (M,M − L;Z/2Z) is a sum of Z/2Z’s,
one for each component of L.)

Let E be the total space of an open disk bundle for the normal bundle of L, and let S be the total space
of the corresponding sphere bundle. Note S is a disjoint union of a peripheral torus for each component of
L. The class γ is dual to an embedded surface F ⊂ M −E and ∂F ∩S is a longitude in the peripheral torus
of each component of L. Let F denote this set of longitudes. We will call F a set of even longitudes. We will
call F a spanning surface for the characterized link.

The set of even longitudes is not well–defined from just the characterized link. It is clear that two
surfaces dual to the same γ must induce the same mod 2 longitudes. But if we act on one component of L by
an even integer, we can find a new surface dual to γ which has the same longitudes on the other components
and the new longitude on our given component differs from the old one via action by this even integer.
Hence the characteristic structure only picks out the mod 2 longitudes and any set of integral classes which
are longitudes and which reduce correctly mod 2 can be a set of even longitudes. Moreover, any set of even
longitudes is induced by an embedded surface.

Since M is oriented, the normal bundle to any embedded surface, F , is isomorphic to the determinant
bundle associated to the tangent bundle of F . The total space of the determinant bundle to the tangent



bundle is naturally oriented. The total space to the normal bundle to F is M is oriented by the orientation
on M . Choose the isomorphism between the normal bundle to F in M and the determinant bundle to the
tangent bundle of F so that, under the induced diffeomorphism between the total spaces, the two orientations
agree. Under these identifications, Corollary 1.15 picks out a Pin− structure on F from the Spin structure
on M . We apply this to an F which is a spanning surface for our link. Of course we could apply the same
result but use the Spin structure on M −L. It is not hard to check that the two structures on F differ under
the action of w1(F ) since this is the restriction of γ to F . Hence it is not too crucial which structure we use
but to fix things we use the structure on M .

We can restrict this structure on F to a component of L. If we put the Spin structure on F coming
from that on M − L it is easy to see that we get the bounding Pin− structure on each component of L.
Hence this also holds for the Pin− structure on F coming from the one on M . Hence, a spanning surface
for a characterized link has an induced Pin− structure which extends to the corresponding closed surface
uniquely.

Our link invariant is a mod 8 integer which depends on the characterized link and the set of even
longitudes.

Definition 8.1. Given a characterized link, (M,L), and a set of even longitudes, F, pick a spanning surface
F for L which induces the given set of longitudes. Then define

β(L, F,M) = β(F )

where F is F with a disk added to each component of L; the Pin− structure is extended over each disk; and
β is the usual Brown invariant applied to a closed surface with a Pin− structure.

Remarks.

i) Notice that unlike Robertello’s invariant, our invariant does not require that the link be oriented.

ii) It follows from the proof of Theorem 4.3 that a knot is even iff it is mod 2 trivial.

iii) If each component of L represents 0 in H1 (M ;Z/2Z) then the mod 2 linking number of a component of
L with the rest of the link is defined. If F is an embedded surface in M with boundary L, the longitude
picked out for a component of L is even iff the mod 2 linking number of that component of L with the
rest of the link is 0.

iv) If M is an oriented Z/2Z homology 3 sphere, then it has a unique Spin structure and there is a unique
way to characterize an even link L.

v) Let M be an integral homology 3 sphere containing a link L. Orient each component of the link. Let
Fi be the linking number of the ith component of L with the rest of the link. Each component of L
has a preferred longitude, the one with self–linking 0, so Fi also denotes a longitude. The link L is even
iff each Fi is even. Robertello’s Arf invariant is equal to β(L,−F,M), where the Spin structure and
characterization are unique and F is the set of longitudes obtained by using −Fi on each component.
Notice that Fi depends on how the link is oriented.

It is not yet clear that our invariant really only depends on the characterizations and the even longitudes.

Theorem 8.2. Let L be a link in a 3–manifold M . Suppose M has a Spin structure and that L is
characterized. Let F be a collection of even longitudes. Then β(L, F,M) is well–defined. Let W 4 be an
oriented bordism between M1 and M2. Let Li ⊂ Mi, i = 1, 2 be characterized links. Let F ⊂ W be a
properly embedded surface with F ∩ Mi = Li. Suppose W − F has a Spin structure which extends across
no component of F and which gives a Spin bordism between the two structures on Mi − Li, i = 1, 2, given
by the characterizations.

The normal bundle to F in W has a section over every non–closed component of F so pick one. This
choice selects a longitude for each component of each link. Suppose the longitudes picked out for each Li, say
Fi, are even. The surface F receives a Pin− structure by Lemma 6.2. With this structure, each component
of ∂F bounds and hence F has a β invariant. If we orient W so that M1 receives the reverse Spin structure
then the following formula holds.

β(L2, F2,M2) − β(L1, F1,M1) = −β(F ) − sign(W ) − µ(M2) + µ(M1) .



Proof : We begin by discussing some constructions and results involving a Spin 3–manifold N and a spanning
surface, V 2 for a characterized link, L. To begin, given e:V 2 ⊂ N3, define V̂ ⊂ N × [0, 1] as the image of
e×f , where f :V → [0, 1/2] is any map with f−1(0) = ∂V . If N has a Spin structure, N× [0, 1] receives one.
The class represented by [V̂ , L] in H2 (N × [0, 1], N × 0 ⊥⊥ N × 1;Z/2Z) ∼= H1 (N × 0;Z/2Z) is the same as
that represented by [L] in H1 (N × 0;Z/2Z). Hence it represents 0. Since w2(N × [0, 1]) is also trivial, there
is a Spin structure on N × [0, 1]− V̂ which does not extend across any component of V̂ . Such structures are
acted on simply transitively by H1 (N ;Z/2Z), so it is easy to construct a unique such Spin structure which
restricts to the initial one on N × 1.

We proceed to identify the Spin structure induced on N × 0 − L. Let X = V × [0, 1] and embed two
copies of V in the boundary so that ∂X = V ∪ V where the union is along ∂V thought of as ∂V × 1/2.
First observe that we can embed X in N × [0, 1] so that ∂X is V ⊂ N × 0 union V × 1 = V̂ . Since X has
codimension 1, the Poincaré dual to W is a 1–dimensional cohomology class x ∈ H1 (N × [0, 1] − V ;Z/2Z).
Suppose we take the Spin structure on N × [0, 1] and restrict it to N × [0, 1] − V and then act on it by x.
This is a Spin structure on N × [0, 1]−V which extends across no component of V and which is the original
one on N × 1. On N × 0 − L it can be described as the one obtained by taking the given Spin structure
on N × 0, restricting it, and then acting on it by the restriction of x. But the restriction of x is just the
Poincaré dual of F ⊂ N × 0 and so it is the Spin structure which characterizes the link. By Lemma 6.2,
there is a preferred Pin− structure on V , which is easily checked to be the same as the one we put on it
in §4. The above Spin structure on N × [0, 1] − V̂ will be called the standard characterization of the pair
(N × [0, 1], V̂ ).

With this general discussion behind us, let us turn to the situation described in the second part of the
theorem. Recall W 4 is an oriented bordism between M1 and M2; L1 ⊂ M1 and L2 ⊂ M2 are characterized
links; F 2 ⊂ W be a properly embedded surface with F ∩Mi = Li; and W − F has a Spin structure which
extends across no component of F and which gives a Spin bordism between the structures on Mi − Li.
Define sets of even longitudes Fi as in the statement of the theorem.

Let Fi ⊂ Mi be a spanning surface for Li. Inside W = M1×[−1, 0]∪W∪M2×[0, 1] embed F = F̂1∪F∪F̂2,
where F̂1 is defined with function f :F1 → [−1/2, 0] and still f−1(0) = ∂F1. There is a Spin structure on
W − F which extends across no component of F . It is just the union of the standard characterization of
M1 × [−1, 0], F̂1, the given Spin structure on W − F and the standard characterization of M2 × [0, 1], F̂2.

By Lemma 6.2 again, there is a preferred Pin− structure on F , which agrees with the usual ones on F1

and F2. In particular, F also receives a Pin− structure which only depends on W , not on the choice of F1

or F2. However, from F1 and F2, we see that the Pin− structure induced on each component of each link is
the bounding one. Moreover, β(F ) = β(F ) + β(F2) − β(F1).

By construction, F •F is 0, so 6.4 says that

β(F2) − β(F1) = −
(
β(F ) + sign(W ) + µ(M2) − µ(M1)

)
where the µ invariants arise because 6.4 only applies to closed manifolds.

Apply this to the case W = M× [0, 1], F = L× [0, 1] embedded as a product. Since we may use different
spanning surfaces at the top and bottom, this shows β is well–defined. The formula in the theorem now
follows from the formula immediately above.

The next thing we wish to discuss is how our invariant depends on the longitudes. Given two different
sets of even longitudes, F and F′, for a characterized link L ⊂ M3, there is a set of integers, one for each
component of L defined as follows. The integer for the ith component acts on the longitude for F to give the
longitude for F′. Since both these longitudes are even, so is this integer.

Theorem 8.3. Let L ⊂ M3 be a characterized link with two sets of even longitudes F and F′. Let 2r be the
sum of the integers which act on the longitudes F to give the longitudes F′. Then

β(L, F′,M) = β(L, F,M) + r (mod 8) .



Proof : Given F1, a spanning surface for the longitude F, we can construct a spanning surface for F′ as follows.
Take a neighborhood of the peripheral torus, which will have the form W = T 2 × [0, 1]. Inside W embed a
surface V which intersects T 2 × 0 in the longitude F, which intersects T 2 × 1 in the longitude F′, which has
no boundary in the interior of W ; and which induces the zero map H2 (V, ∂V ;Z/2Z) → H2 (W,∂W ;Z/2Z).
The Spin structure on M restricts to one on W which is easily described: it is the stabilization of one on
T 2 and this can be described as the one which has enhancement 0 on the longitude and 0 on the meridian.
Since the Pin− structure induced from Corollary 1.15 is local, we see that F2 = V ∪ F1 has invariant the
invariant for F1 plus the invariant for V . We further see that the invariant for V only depends on the surface
and the Spin structure in W . But these are independent of the link and so we can calculate the difference
of the β’s using the unknot.

Furthermore, we see that the effect of successive changes is additive, so we only need to see how to go
from the 0 longitude to the 2 longitude, and the 2 longitude is given by the Möbius band, which inherits a
Pin− structure. This Pin− structure extends uniquely to one on RP2 and this RP2 has β invariant +1.

Remark. Even in the case of links in S3, the longitudes used enter into the answer. It is just in this case
that there is a unique set of longitudes given by using an orientable spanning surface.

Unfortunately, in general there is no natural choice of longitudes so it seems simplest to incorporate
them into the definition. The drawback comes in discussing notions like link concordance. In order to assert
that our invariant is a link concordance invariant, we need to describe to what extent a link concordance
allows us to transport our structure for one link to another. Recall that a link concordance between L0 ⊂ M
and L1 ⊂ M is an embedding of (⊥⊥ S1) × [0, 1] ⊂ M × [0, 1] with is (⊥⊥ S1) × i being Li for i = 0, 1.
Suppose L0 is an even link with F0 a set of even longitudes. There is a unique way to extend this framing
of the normal bundle to L0 in M to a framing of the normal bundle of (⊥⊥ S1) × [0, 1] in M × [0, 1]. Hence
the concordance picks out a set of longitudes for L1 which we will denote by F1. There is a unique way to
extend a characterization of L0 to a Spin structure on M × [0, 1] − (⊥⊥ S1) × [0, 1] and hence to M − L1.

Corollary 8.4. Let L0 and L1 be concordant links in M . Suppose L0 is characterized and that F0 is a set of
even framings. Then the transport of framings and Spin structures described above gives a characterization
of L1 and F1 is a set of even framings. Furthermore β(L0, F0,M) = β(L1, F1,M).

Proof : The proof follows immediately from Theorem 8.2 and the fact that (⊥⊥ S1)× [0, 1], when capped off
with disks, is a union of S2’s and so has β invariant 0.

We do know one scheme to remove the longitudes which works in many cases. Suppose that each
component of the link represents a torsion class in H1 (M ;Z). Each component has a self–linking and by
Lemma 4.1 the framings, hence longitudes are in one to one correspondence with rational numbers whose
equivalence class in Q/Z is the self–linking number. There is a unique such number, say qi for the ith
component, so that qi represents an even framing and 0 ≤ qi < 2. We say that this is the minimal even
longitude. To calculate linking numbers it is necessary to orient the two elements one wants to link, but the
answer for self–linking is independent of orientation.

Definition 8.5. Let L be a link in M so that each component of L represents a torsion class in H1 (M ;Z).
Suppose L is characterized. Define

β̂(L,M) = β(L, F,M)

where F is the set of even longitudes such that each one is minimal.

Remark. It is not hard to check that β̂ is a concordance invariant.

As we remarked above, β and β̂ (if it is defined) do not depend on the orientation of the link. If we
reverse the orientation of M , and also reverse the Spin structure on M and on M − L, it is not hard to
check that the new Pin− structure on F is the old one acted on by w1(F ) so the new invariant is minus the
old one.

The remaining point to ponder is the dependence on the two Spin structures. To do this properly would
require a relative version of the β function 4.8. It does not seem worth the trouble.



Remark. We leave it to the reader to work out the details of starting with a characteristic structure on
M3 with the link as a dual to w2 + w2

1 (i.e. represents 0 in H1 (M ;Z/2Z)).

§9. Topological versions.

There is a topological version of this entire theory. Just as Spin(n) is the double cover of SO(n) and
Pin±(n) are the double covers of O(n), we can consider the double covers of STop(n) and Top(n). We get
a group TopSpin(n) and two groups TopP in±(n). A Top(n) bundle with a TopP in±(n) structure and an
O(n) structure is equivalent to a Pin±(n) bundle.

Any manifold of dimension ≤ 3 has a unique smooth structure, so there is no difference between the
smooth and the toplogical theory in dimensions 3 and less. The 3–dimensional bordism groups might be
different because the bounding objects are 4–dimensional, but we shall see that even in bordism there is no
difference.

We turn to dimension 4. First recall that the triangulation obstruction (strictly speaking, the stable
triangulation obstruction) is a 4–dimensional cohomology class so evaluation gives a homomorphism, which
we will denote κ, from any topological bordism group to Z/2Z. Since every 3–manifold has a unique smooth
structure, the triangulation obstruction is also defined for 4–manifolds with boundary. Every connected
4–manifold M4 has a smooth structure on M − pt, and any two such structures extend to a smoothing of
M × [0, 1] − pt× [0, 1].

Some of our constructions require us to study submanifolds of M . In particular, the definition of
characteristic requires a submanifold dual to w1 and a submanifold dual to w2 + w2

1. We require that these
submanifolds be locally–flat and hence, by [Q], these submanifolds have normal vector bundles. Of course
we continue to require that they intersect transversely. Hence we can smooth a neighborhood of these
submanifolds. The complement of these smooth neighborhoods, say U , is a manifold with boundary, which
may not be smooth. If we remove a point from the interior of each component of U , we can smooth the
result. With this trick, it is not difficult to construct topological versions of all our “descent of structure”
theorems. In particular, the [∩w2

1], [∩w1] and R maps we defined into low–dimensional Pin± bordism all
factor through the corresponding topological bordism theories.

Theorem 9.1. Let Smooth−bordism∗ denote ΩSpin∗ , ΩPin
±

∗ , Ω!
∗, or the Freedman–Kirby or Guillou–Marin

bordism theories. Let Top− bordism∗ denote the topological version. The natural map

Smooth− bordism3 → Top− bordism3

is an isomorphism.

Smooth− bordism4 → Top− bordism4

κ
−→Z/2Z → 0

is exact.

Proof : The E8 manifold, [F], is a Spin manifold with non–trivial triangulation obstruction. Suppose M3 is
a 3–manifold with one of our structures which is a topological boundary. Let W 4 be a boundary with the
necessary structure. Smooth neighborhoods of any submanifolds that are part of the structure. This gives
a new 4–manifold with boundary U4. If the triangulation obstruction for a component of U is non–zero, we
may form the connected sum with the E8 manifold. Hence we may assume that U has vanishing triangulation
obstruction. By [L–S] we can add some S2 ×S2’s to U and actually smooth it. The manifold W can now be
smoothed so that all submanifolds that are part of the structure are smooth. Hence M3 is already a smooth
boundary.

The E8 manifold has any of our structures, so the map Top− bordism4 → Z/2Z given by the triangu-
lation obstruction is onto.

Suppose that it vanishes. We can smooth neighborhoods of any submanifolds, so let U be the comple-
ment. Each component of U has a triangulation obstruction and the sum of all of them is 0. We can add
E8’s and −E8’s so that each component has vanishing triangulation obstruction and the new manifold is
bordant to the old. Now we can add some S2 ×S2’s to each component of U to get a smooth manifold with
smooth submanifolds bordant to our original one.



Theorem 9.2. The topological bordism groups have the following values. ΩTopSpin4
∼= Z; ΩTopPin

−

4
∼= Z/2Z;

ΩTopPin
+

4
∼= Z/8Z ⊕ Z/2Z; and ΩTop−!

4
∼= Z/8Z ⊕ Z/4Z ⊕ Z/2Z ⊕ Z/2Z. The triangulation obstruction

map is split in all cases except the Spin case: the smooth to topological forgetful map is monic in all cases
except the TopPin+ case where it has kernel Z/2Z. The triangulation obstruction map is split onto for the
topological versions of the Freedman–Kirby and Guillou–Marin theories and the smooth versions inject.

Proof : The TopPin− case is easy from the exact sequence above. The TopSpin case is well–known but
also easy. The E8 manifold has non–trivial triangulation obstruction and twice it has index 16 and hence
generates ΩSpin4 .

There is a [∩w2
1] homomorphism from ΩTopPin

+

4 to ΩPin
−

2
∼= Z/8Z which is onto. Consider the manifold

M = E8#S2 × RP2. The oriented double cover of M is Spin and has index 16, hence is bordant to a
generator of the smooth Spin bordism group. It is not hard to see that the total space of the non–trivial
line bundle over M has a Pin+ structure, so the Kummer surface is a TopP in+ boundary. Hence there is a
Z/2Z in the kernel of the forgetful map and the [∩w2

1] map shows that this is all of the kernel. Furthermore,
E8 represents an element of order 2 with non–trivial triangulation obstruction.

The homomorphisms we used to compute Ω!
4 factor through ΩTop−!

4 , so ΩTop−!
4

∼= Ω!
4 ⊕ Z/2Z.

Likewise, the homomorphisms we use to compute smooth Freedman–Kirby or Guillou–Marin bordism
factor through the topological versions.

Corollary 9.3. Let M4 be an oriented topological 4–manifold, and suppose we have a characteristic struc-
ture on the pair (M,F ). The following formula holds:

2 · β(F ) = F •F − sign(M) + 8 · κ(M) (mod 16)

where the Pin− structure on F is the one induced by the characteristic structure on (M,F ) via the topological
version of the Pin− Structure Correspondence, 6.2.

Proof : Generators for the topological Guillou–Marin group consist of the smooth generators, for which the
formula holds, and the E8 manifold, for which the formula is easily checked.

Remark. The above formula shows that the generator of H2 ( ;Z) of Freedman’s Chern manifold, [F, p.
378], is not the image of a locally–flat embedded S2.
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