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We consider Gauss sums associated to functions T → R/Z which satisfy some sort of “quadratic”
property and investigate their elementary properties. These properties and a Gauss sum formula
from the nineteenth century due to Dirichlet enable us to give elementary proofs of many standard
results. We derive the Milgram Gauss sum formula computing the signature mod 8 of a non–
singular bilinear form over Q and its generalization to non–even lattices. We generalize formulae
of Brown on the signature mod 8 of non–singular integral forms and a generalization of it due to
Kirby and Melvin. These results follow with no additional analysis and require no results on Witt
groups. Assuming a bit of algebraic topology, we reprove a theorem of Morita’s computing the
signature mod 8 of an oriented Poincaré duality space from the Pontryagin square without using
Bockstein spectral sequences. Since we work with forms which may be singular, we also obtain a
version of Morita’s theorem for Poincaré spaces with boundary. We apply our results to the bilinear
form Sq1x∪y on H1(M ;Z/2Z) of an orientable 3–manifold and also derive Levine’s formula for the
Arf invariant of a knot.

Introduction.

Gauss sums have a long and venerable history. A general version has a finite set T , a
function ψ:T → R/Z and the associated Gauss sum

G(ψ) =
∑
t∈T

e2πiψ(t) .

Even more general notions would replace T by a measure space and the finite sum by an
integral. The Gauss sum problem is to evaluate G(ψ) with the first examples going back
to Gauss [ 6 ,Art.356 ].

In the generality of a function on a finite set, it is difficult to say very much useful
except that the problem can be divided into a magnitude and a phase. We can consider the
magnitude or norm, N(ψ) = |G(ψ)|, and when N(ψ) �= 0, define the phase β(ψ) ∈ R/Z
by

G(ψ) = N(ψ) · e2πiβ(ψ) .

Here are two general constructions. Given ψi on Ti, i = 1, 2, define the orthogonal sum
ψ1 ⊥ ψ2:T1 × T2 → R/Z by (ψ1 ⊥ ψ2)(x1, x2) = ψ1(x1) + ψ2(x2). Check that

(1.1) G(ψ1 ⊥ ψ2) = G(ψ1) ·G(ψ2) .

For the second construction, observe Z acts on the functions by (a · ψ)(x) = a · ψ(x) for
a ∈ Z. For a = −1,

(1.2) G(−ψ) = G(ψ) .

Partially supported by the N.S.F.
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We review and extend some examples for which the magnitude and phase can be
calculated and apply these results to some problems in algebra and topology. Our main
interest is the case where T is a finite abelian group and ψ has some sort of “quadratic”
property, which we now review. A function ψ:T → Q/Z is called a quadratic function
provided

1.3) ψ(ax) = a2ψ(x) for all integers a and all x ∈ T
1.4) b(x, y) = ψ(x+ y) − ψ(x) − ψ(y):T × T → Q/Z defines a bilinear form.

We call ψ a quadratic enhancement of b and b the associated bilinear form to ψ. If ψ
just satisfies 1.4), we say ψ is an enhancement of b. Condition 1.4) is equivalent to the
condition

1.5) ψ(x1 + x2 + x3) = ψ(x1 + x2) + ψ(x1 + x3) + ψ(x2 + x3)−
(
ψ(x1) + ψ(x2) + ψ(x3)

)
for all xi ∈ T . Any function ψ:T → R/Z satisfying 1.5) will be called an enhancement.
It is an enhancement of the associated bilinear form, bψ, defined by 1.4). Note that the
associated bilinear form for an enhancement is symmetric. The set of functions from T
to R/Z is a group and the set of enhancements is a subgroup. The orthogonal sum of
enhancements is an enhancement and the Z action takes enhancements to enhancements.

Any symmetric bilinear form has enhancements. Given b:T × T → Q/Z define W(b)
to be T ⊕ Q/Z with group structure (t1, r1) + (t2, r2) =

(
t1 + t2, r1 + r2 − b(t1, t2)

)
.

It is straightforward to check that W(b) is an abelian group and that ι:Q/Z → W(b)
defined by ι(r) = (0, r) is an injective homomorphism. Since Q/Z is divisible, ι has a
section, Ψ:W(b) → Q/Z. Define ψ(t) = Ψ(t, 0) and check that ψ is an enhancement of b.
Conversely, given an enhancement of b, define Ψ(t,m) = ψ(t) +m and check that it is a
section, so the set of enhancements of b corresponds bijectively to the set of sections of ι.
Let Γ(b) denote the space of sections of ι or equivalently the space of enhancements of b.

The set Γ(b) is acted on by the group of homomorphisms, T ∗ = Hom(T,Q/Z): given
one enhancement of b, say ψ, and h ∈ T ∗ define ψh by ψh(t) = ψ(t) + h(t) and check that
ψh is an enhancement of b. If ψ1 and ψ2 are enhancements of b, check that ψ1 − ψ2 ∈ T ∗.
Pick an element ψ ∈ Γ(b) and define T ∗ → Γ(b) using the action on ψ: this function is a
bijection.

A homomorphism, h:T1 → T2 is an isometry between two enhancements provided
ψ2

(
h(x)

)
= ψ1(x): if h is an isomorphism we say ψ1 and ψ2 are isometric, written ψ1

∼= ψ2.
The map h is an isometry in the usual sense between the associated bilinear forms. As an
example, if a ∈ Z is relatively prime to |T | then multiplication by a on T gives an isometry
between a2 · ψ and ψ if ψ is quadratic.

Any enhancement satisfies ψ(0) = 0 and b(x, x) = ψ(x) + ψ(−x) (compute b(x,−x)
using bilinearity). Bilinearity also shows that ψ =⊥p ψp, where ψp denotes ψ restricted

to the p–torsion subgroup Induction shows that ψ(ax) = a2+a
2 · ψ(x) + a2−a

2 · ψ(−x).
Furthermore, ψq:T → Q/Z defined by ψq(x) = ψ(x) − ψ(−x) is a homomorphism and ψ
is quadratic if and only if ψq is identically 0.

If ax = 0 then a · b(x, x) = a · ψq(x) = 0, so aψ(x) ± aψ(−x) = 0 and 2aψ(x) = 0.
Hence, for any enhancement, ψ(T ) ⊂ Q/Z. If a is odd, a·ψ(x) = −a·ψ(−x) and ψ(ax) = 0
together imply aψ(x) = 0. It follows that ψp takes values in Z[ 1

p ]/Z ⊂ Q/Z.

2



Remark 1.6: The action of T ∗ on enhancements has the following effect. Check that
(ψh)q = ψq + 2h so if ψ is quadratic, ψh is also quadratic if and only if h takes values in
Z/2Z ⊂ Q/Z. Since ψq vanishes on elements of order 2, there exits a homomorphism such
that ψq = 2h and then ψ−h is quadratic.

If K ⊂ T is a subgroup, define K⊥ = {t ∈ T | bψ(t, k) = 0 ∀ k ∈ K}. We call ψ and
bψ non–singular provided T⊥ = {0}. Note (T1 ⊥ T2)

⊥ = T⊥
1 ⊕T⊥

2 . If K satisfies ψ|K = 0,
then K ⊂ K⊥ and ψ induces a well–defined function

ψK⊥/K :K⊥/K → Q/Z .

Any bilinear form b defines an adjoint homomorphism Ad(b):T → Hom(T,Q/Z) and
T⊥ is the kernel of Ad(b). This means that non–singular forms have the property that
for any h ∈ T ∗ there exists a unique c ∈ T such that h(t) = b(t, c) for all t ∈ T . In the
singular case, given any h ∈ T ∗ with h|T⊥ trivial, there exist c ∈ T , not unique, such
that h(t) = b(t, c) for all t ∈ T . For x ∈ T/T⊥ we use the notation ψx to denote the
enhancement ψx(t) = ψ(t) + b(x1, t) for all t ∈ T , where x1 ∈ T maps to x. Check that ψx
is independent of the choice of x1.

For any enhancement, ψ restricted to T⊥ is a homomorphism: denote it by ψs. We
say ψ is tame provided ψs is trivial. If ψ is tame then it induces a non–singular form on
T/T⊥, which we denote by ψred The orthogonal sum of two tame enhancements is tame.
If ψ is tame, so is a · ψ for any a ∈ Z which is relatively prime to |T |. If ψ is quadratic ψs

takes values in Z/2Z ⊂ Q/Z and if 2x ∈ T⊥, ψs(2x) = 0.

Remark 1.7: If ψ is tame, ψh is tame if and only if h vanishes on T⊥. Since Q/Z is
injective there is always an extension h of ψs to all of T and for any such h, ψ−h is tame.
If ψ is tame the function x ∈ T/T⊥ �→ ψx defines a bijection between T/T⊥ and the tame
enhancements of b.

Remark 1.8: For any abelian group T and n ∈ Z, let nT =
{
x ∈ T | nx = 0

}
and let

n · T =
{
x ∈ T | x = ny

}
. If ψ is tame and quadratic the function x ∈ 2(T/T

⊥) �→ ψx
defines a bijection between 2(T/T

⊥) and the tame quadratic enhancements of b.

Theorem 1.9. Every symmetric bilinear form b has a tame quadratic enhancement.

Proof : We have seen b has enhancements. Using (1.7) construct a tame one ψt. Pass

to ψt
red and use (1.6) to construct a quadratic ψ̂:T/T⊥ → Q/Z and check that the

composition ψ:T → T/T⊥ ψ̂−→ Q/Z is a tame quadratic enhancement of b.

For subgroups K ⊂ T with ψ|K = 0, the Gauss sums for ψ and ψK⊥/K are related.
This has been noticed before, [ 2 ], [ 3 ], [ 11 ], [ 12 ], [ 14 ] and many others, but apparently
only for non–singular quadratic functions.

Theorem 1.10. Let ψ:T → R/Z be an enhancement and suppose ψ|K = 0 for some
subgroup K. Then

G(ψ) = |K| ·G(ψ|K⊥/K) .
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We emphasize that neither tame nor quadratic is assumed. The proof is standard.
Pick coset representatives αi for T/K⊥ and γj for K⊥/K and let κk run over the elements
ofK. Then every element of T can be written uniquely as αi+γj+κk and ψ(αi+γj+κk) =
b(αi, γj) + b(αi, κk) + ψ(αi) + ψ(γj). If we fix αi and γj and sum over κk then the only
term which depends on κk is b(αi, κk) which is a homomorphism. Hence the sum is 0 if
b(αi, κk) is non–zero for some κk. But by definition of K⊥, b(αi, κk) is non–trivial except
for the αi in the 0 coset, say α0, and in this case the sum is just |K| · e2πiψ(α0+γj).

We say that ψ and ψ|K⊥/K as in (1.10) are W–equivalent. Turn W–equivalent into
an equivalence relation in the usual manner.

A standard observation permits us to evaluate the magnitude of G(ψ).

Corollary 1.11. Let ψ be an enhancement. If ψ is not tame then N(ψ) = 0 and if ψ is
tame then N(ψ) =

√
|T⊥| · |T | .

Proof : If ψ is not tame then there is a c ∈ T⊥ such that ψ(c) �= 0 and ψ(t+c) = ψ(t)+ψ(c)
for all t ∈ T . Since

∑
t∈T e

2πiψ(t) =
∑

t∈T e
2πiψ(t+c) because the sums are over the same

elements, just in a different order, one sees G(ψ) = e2πiψ(c)·G(ψ). It follows thatN(ψ) = 0.
If ψ is tame, check that the evident inclusion ∆:T ⊂ T ⊥ T/T⊥ with enhancement

ψ ⊥ −ψred satisfies
(
∆(T )

)⊥
= ∆(T ) and ψ ⊥ −ψred restricted to ∆(T ) vanishes so

G(ψ ⊥ −ψred) = |T |. But G(ψ ⊥ −ψred) = G(ψ) ·G(−ψred); G(ψ) = |T⊥| ·G(ψred); and

G(−ψred) = G(ψred) so |G(ψ ⊥ −ψred)| = |T⊥| ·N(ψred)2.

Remark 1.12: Note that if ψ1 is W–equivalent to ψ2 then either both are not tame
(because N(ψ1) = N(ψ2) = 0) or β(ψ1) = β(ψ2).

We can evaluate β(ψh) in terms of β(ψ) if both are tame.

Proposition 1.13. Suppose ψ is an enhancement and tame and that h:T → Q/Z is a
homomorphism. Then ψh is tame if and only if h(T⊥) = 0. If qh is tame let c ∈ T/T⊥

be the unique element corresponding to h, so ψh = ψc. The value of ψ(c1) ∈ Q/Z is the
same for all elements reducing to c, so let us denote that common value by ψ(c). Then

β(ψh) = β(ψ) − ψ(c).

Proof : Just note ψh(t) = ψ(t+ c1) − ψ(c1) for all t ∈ T .

Remark 1.14: We check that a potentially interesting function is in fact nothing new.
Let ψ be a tame enhancement and define a new function

∆β :T/T⊥ → R/Z

by ∆β(x) = β(ψ) − β(ψx) for all x ∈ T/T⊥. Then (1.13) says ∆β = ψred. In example
( 3.3 ) below we encounter the construction ∆β and it is nice to be able to identify it.
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It follows from a beautiful argument due to Frank Connolly, [ 4 , p.393 ], that, in the
quadratic case, ψ ⊥ ψ ⊥ ψ ⊥ ψ is isometric to −ψ ⊥ −ψ ⊥ −ψ ⊥ −ψ. It follows that for
any tame, quadratic enhancement, β(ψ) ∈ Z/8Z ⊂ Q/Z and it then follows from (1.13)
that β(ψ) ∈ Q/Z for any tame enhancement.

Connolly’s result can be made more precise: let Tp denote the p–torsion subgroup of
T and let ψp = ψ|Tp . As usual, it suffices to understand ψp.

Lemma 1.15. Assume ψp is a quadratic enhancement. If p ≡ 1 mod 4, ψp ∼= −ψp; if
p ≡ 3 mod 4, ψp ⊥ ψp ∼= −ψp ⊥ −ψp; ψ2 ⊥ ψ2 ⊥ ψ2 ⊥ ψ2

∼= −ψ2 ⊥ −ψ2 ⊥ −ψ2 ⊥ −ψ2.

Here is a version of Connolly’s argument. Over the p–adic integers, Ẑp, the equation
x2 = a has a solution if and only if it has a solution mod p if p is odd or mod 8 if p = 2.
A direct proof is easy or use Hensel’s lemma. We will show how to find xi ∈ Ẑp such
that x21 + x22 + x23 + x24 = −1 and with x3 = x4 = 0 if p ≡ 3 mod 4 and with x2 = x3 =

x4 = 0 if p ≡ 1 mod 4. Assuming this done, Connolly’s matrix M =



x1 x2 x3 x4

−x2 x1 −x4 x3
x3 −x4 −x1 x2
x4 x3 −x2 −x1




corresponds to an evident linear map from Tp ⊕ Tp ⊕ Tp ⊕ Tp to itself. Check M ·MT =
(x21 +x22 +x23 +x24)I so M defines an isomorphism which can be checked to be an isometry
between ψp ⊥ ψp ⊥ ψp ⊥ ψp and −ψp ⊥ −ψp ⊥ −ψp ⊥ −ψp. If x3 = x4 = 0 or
x2 = x3 = x4 = 0 the evident square submatrix gives the required isometry.

To find the xi, observe x21 = −1 − x22 − x23 − x24 has a solution mod 8 ( x2 = x3 = 1,

x4 = 2) and hence in Ẑ2. If p ≡ 1 mod 4, −1 is a quadratic residue mod p so x21 = −1 has

a solution in Ẑp. For the case p ≡ 3 mod 4, recall −1 is not a quadratic residue. Note that
−1 − x22 takes on p+1

2 distinct values mod p, all of which are prime to p. Since there are

only p−1
2 quadratic residues prime to p the equation x21 = −1 − x22 has a solution in Ẑp.

Brown [ 2 ] studied the case in which T is a Z/2Z vector space. Any enhancement
on a Z/2Z vector space is quadratic and Brown’s functions were assumed non–singular,
although tame would have sufficed for many of his results. For example, Brown gave
a different argument for β(ψ) ∈ Z/8Z. An element ω ∈ T is characteristic provided
b(x, x) = b(ω, x) for all x ∈ T . Brown’s argument is to observe that characteristic elements
exist and then ψω = −ψ. By (Proposition 1.13), if ψ is tame, β(ψ) = ψ(ω)+β(ψω) ∈ Q/Z,
so

2β(ψ) = ψ(ω) ∈ Z/4Z ⊂ Q/Z .

This not only shows β(ψ) has order 8 but computes it mod 4 as ψ(ω).

For later use, recall the Gauss sum formulae of Dirichlet [ 5 ] that we require.

Theorem 1.16. If m > 0 then

m−1∑
s=0

e2πis
2/m =




(1 + i)
√
m m ≡ 0 mod 4√

m m ≡ 1 mod 4
0 m ≡ 2 mod 4
i
√
m m ≡ 3 mod 4
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Some elementary Galois theory allows us to extend (1.2) by restricting attention to a
prime at a time. Let ψ:T → Q/Z be a quadratic function on a finite p–group of order pr.

Now not only can we multiply ψ by integers but also by p–adic integers. Let a ∈ Ẑp be

prime to p (equivalently a is a unit in Ẑp, written a ∈ Ẑ∗
p). If s ∈ Ẑ∗

p then multiplication
by s on T gives an isometry between then β(a ·ψ) = β((a · s2) ·ψ). As we saw in the proof

of Lemma 1.15 Ẑ∗
p/(Ẑ

∗
p)

2 = Z/2Z if p is odd and Z/2Z ⊕ Z/2Z if p = 2. The quadratic
non–residues generate the group for p odd, and ±1, ±3 map onto the group for p = 2.
Finally define %p( ): Ẑ∗

p → {0, 1} = Z/2Z by %p(u) = 1 if u is a quadratic non–residue and
0 otherwise and by %2(u) = 1 if u ≡ ±3 mod 8 and 0 otherwise.

We can now work out the formula for β(a · ψ) when a is prime to p. (For pi · ψ see
( 2.14 ) and ( 2.17 )

)
.

Theorem 1.17. Let T be a p group with a tame quadratic enhancement ψ and let a ∈ Ẑ∗
p.

Let |T/T⊥| = pe. Then for p odd

(1.17)p β(a · ψ) = β(ψ) +
%p(a) · e

2

and for p = 2

(1.17)2 β(a · ψ) = a · β(ψ) +
%2(a) · e

2

Proof : It suffices to do the non–singular case since we can work with ψred. Let ζ be a
primitive pr root of unity where pr annihilates ψ(t) for all t ∈ T . Let ω = e

2πi
8 .

Using Lemma 1.15 we see

(1.18) G(ψ) = p
e
2ωσ

where β(ψ) = σ
8 . The result is immediate for quadratic residues, so let η ∈ Ẑ∗

p be a
quadratic non–residue,

Now the left hand side of (1.18) lies in Q[ζ] and hence so must the right. The p–

adic units Ẑ∗
p map onto the Galois group of Q[ζ] over Q. The map sends a ∈ Ẑ∗

p to ζa

(which makes sense since ζp
r

= 1 for some r). Let us denote the corresponding Galois
automorphism by γa: ζ �→ ζa. For p odd, Q[ζ] ∩ Q[ω] = Q, so ±1 are the only powers of
ω in Q[ζ].

For p ≡ 1 mod 4 Dirichlet ( 1.16 ) shows
√
p ∈ Q[ζ] and one can check that γη(

√
p) =

−√
p. If e is even, then the right hand side of ( 1.18 ) must be an integer, so β(η · ψ) =

β(ψ). If e is odd, then the right hand side of (1.18) must be
√
p times an integer, so

β(η · ψ) = β(ψ) + 1
2 . Additionally β(ψ) is either 0 or 1

2 . Note both cases are covered by
the formula (1.17)p.

For p ≡ 3 mod 4 Dirichlet (1.16) shows i
√
p ∈ Q[ζ] and γη(

√
pi) = −√

pi. If e is even,
then the right hand side of (1.18) must again be an integer, so β(η ·ψ) = β(ψ). If e is odd,
then the right hand side of (1.18) must be

√
pi times an integer, so β(η · ψ) = β(ψ) + 1

2
again and (1.17)p holds in this case too. Additionally p ≡ 3 mod 4, β(ψ) = ± 1

4 if e is odd
and 0 or 1

2 if e is even.
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For p = 2, there are three multiplications to be worked out. Which class an integer a
belongs to can be determined by reducing a mod 8. The numbers are −1 and ±3 mod 8.
The affect of −1 we know: β(−ψ) = −β(ψ). The wrinkle when we multiply by ±3 is
that these Galois actions send

√
2 to −

√
2. If e is even then this does not matter and

β(η · ψ) = η · β(ψ) When e is odd we get β(η · ψ) = η · β(ψ) + 1
2 . So for p = 2 (1.18)2

holds.

Remark 1.19: The restriction in ( 1.17 ) that ψ is quadratic is useful in the proof. We
leave as an exercise the formula in general. Let T be a p group with a tame enhancement
ψ and let a ∈ Ẑ∗

p. Let |T/T⊥| = pe. Pick a c ∈ T/T⊥ so that ψc is quadratic.

β(a · ψ) =

{
β(ψ) + (a2 − 1) · ψ(c) +

 p(detB)
8 if p is odd

a · β(ψ) + (a2 − 1) · ψ(c) +  2(detB)
8 if p = 2

.

Some algebra applications.

Application: Given a symmetric bilinear form B on a rational vector space, V , define

Q:V → Q by Q(v) = B(v,v)
2 . Call a lattice integral if B(v1, v2) ∈ Z for all v1, v2 ∈ L.

Pick a lattice L ⊂ V such that Q(x) is integral for all x ∈ L. Define L# = {v ∈
V | B(v, %) ∈ Z ∀ % ∈ L} and check that L integral implies L ⊂ L#. If B is non–
singular, that is detB �= 0, check that L#/L is finite. Check that Q induces a non–
singular quadratic function ψL:L#/L → Q/Z which enhances the symmetric bilinear
form bL:L#/L × L#/L → Q/Z induced by B. The Milgram Gauss Sum Formula [ 11 ]
says

( 2.1 ) β(ψL) =
σ(B)

8
,

where σ(B) denotes the signature of B.

We prove the formula using some straightforward manipulations and Dirichlet’s Gauss
sum formula. The basic outline, except for the appeal to Dirichlet, is in Milnor and
Husemoller [ 12 ] who attribute it to Knebusch. A proof for detB odd was given earlier
by Blij in [ 1 ].

Proof : Call a lattice L acceptable if Q(x) ∈ Z for all x ∈ L. If L1 and L2 are acceptable
lattices, so is L1 ∩ L2. To show all acceptable lattices give the same answer, it suffices
to show β(ψL2) = β(ψL1) under the additional assumption that L1 ⊂ L2, and hence

L1 ⊂ L2 ⊂ L#
2 ⊂ L#

1 . Let T = L#
1 /L1 and apply Theorem 1.10 to K = L2/L1 ⊂ T .

Check K⊥ = L#
2 /L1 so K⊥/K = L#

2 /L2.
Over Q, B can be diagonalized and there are acceptable diagonal lattices, so it suffices

to show β(〈2m〉) = 1
8 if m > 0. Now G(〈2m〉) =

∑2m−1
s=0 e2πi

s2

4m . Dirichlet ( 1.16 ) in case

4m says
∑4m−1

s=0 e2πi
s2

4m = (1 + i)
√

4m. Since (s + 2m)2 = s2 mod 4m, (1 + i)
√

4m =
2 ·G(〈2m〉) and the result follows.

7



Application: Suppose as above that B is a non–singular bilinear form on a rational vector
space V and L is an integral lattice with L# defined as in (2.1). Check B still induces a
symmetric, bilinear form bL on L#/L which is still non–singular. To apply the Milgram
Gauss sum formula to L#/L we need additionally that B(v, v) ∈ 2Z for all v ∈ L. If L
does not satisfy this condition we can proceed as follows. There exists a characteristic
element ω̄ ∈ L: i.e. B(v, v) ≡ B(ω̄, v) mod 2 for all v ∈ L. The element ω̄ is not unique

but pick one. Then set Q(x) = B(x,x)−B(ω̄,x)
2 for all x ∈ L#. Check that Q induces a

quadratic function ψω̄:L#/L→ Q/Z and that ψL enhances bL. Then

(2.2) β(ψω̄) =
σ(B)

8
− B(ω̄, ω̄)

8
∈ Q/Z .

Proof : Let L1 = 2L ⊂ L. Check that the function Q defined above induces a function
ψL1

:L#
1 /L1 → Q/Z which is an enhancement of bL1

. The function ψL1
is almost certainly

not quadratic, but just as in the proof of ( 2.1 ) prove that β(ψω̄) = β(ψL1). Note ψL1 +

B(?, ω̄/2) = ψ on L#
1 /L1 where ψ is the quadratic function induced by B(x,x)

2 on L#
1 /L1.

Use (2.1) to calculate β(ψ) = σ(B)
8 and use Proposition 1.13 to deduce that β(ψω̄) =

β(ψ) − ψ(ω̄/2) = β(ψ) − B(ω̄,ω̄)
8 .

Remark 2.3: From (2.2), it follows that for detB = ±1, σ(B) ≡ B(ω̄, ω̄) mod 8.

If detB is odd, then ω̄ is unique up to sums with elements of the form 2x. A classical
argument shows B(ω̄, ω̄) ≡ B(ω̄ + 2x, ω̄ + 2x) mod 8 and one checks that ψω̄ does not
depend on the choice of ω̄ either. For detB odd (2.2) is a result of Blij [ 1 ]. The general
case appears in [ 3 ].

If detB is even however, there are different choices for ω̄ which give different enhance-
ments and different values of B(ω̄, ω̄). Indeed, it is a theorem of Brumfiel&Morgan [3] and
Wall [ 16 ] that any quadratic enhancement of a non–singular symmetric bilinear form can
be obtained as ψL for an appropriate B and ω̄.

We next turn to Brown [ 2 ] for other ways to obtain quadratic functions. Given a
symmetric bilinear form, B:V × V → Z, define

ψB :V ⊗ Z/2Z → Z/4Z ⊂ Q/Z

by ψB(x) =
B(x, x)

4
. This function is quadratic with associated bilinear form

B2: (V ⊗ Z/2Z) × (V ⊗ Z/2Z) → Z/2Z

obtained by reducing B mod 2. There is an obvious generalization: let Vm = V ⊗ Z/mZ
and define

ψB,m:Vm → Z/2mZ ⊂ Q/Z
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with ψB,m(x) =
B(x, x)

2m
. In order for ψB,m to be defined on Vm it is necessary and

sufficient that m be even. This quadratic enhancement, even for m = 2, need not be tame.
It is non–singular if and only if detB is relatively prime to m. A further generalization
is to recall that for any quadratic ψ:T → Q/Z the function B ⊗ ψ:V ⊗ T → Q/Z
defined by (B ⊗ ψ)

(
v ⊗ x

)
= B(v, v)ψ(x) is also quadratic [ 12 ,p.111 ]. (One should

also check that it really is defined. Note that the formula for B = 〈1〉 implies that ψ is
quadratic so the formula does not work for non–quadratic enhancements.) If m is even,
let 1m:Z/mZ → Q/Z be defined by 1m(1) = 1

2m . Then B⊗1m = ψB,m so this generalizes
Brown’s construction.

Application: If B is a symmetric bilinear form over Z with determinant ±1 and if ψ is
tame quadratic, then

( 2.4 ) β(B ⊗ ψ) = σ(B) · β(ψ) ∈ Q/Z .

Proof : As Brown remarks, Theorem 1.10 shows that β(B⊗ψ) only depends on the Witt
class of B. Now the Witt ring of Z is infinite cyclic generated by the form 〈1〉. But
〈1〉 ⊗ ψ = ψ.

Remark 2.5: Since for positive even m, β(1m) = 1
8 , we get Brown’s theorem, β(ψB,2) =

σ(B)
8 . The calculation at the end of the proof of ( 2.1 ) can be rephrased as β(1m) = 1

8 .

Remark 2.6: If m is odd, define 1m:Z/mZ → Q/Z by 1m(1) = 1
m . If m > 0 and m ≡ 1

mod 4, β(1m) = 0 and if m > 0, m ≡ 3 mod 4, β(1m) = 1
4 . These equations follow

immediately from ( 1.16 ).

We give another proof of (2.4) that bypasses the Witt ring calculation and uses only
the Gram–Schmidt process. We require some preliminaries.

Given ψ, fix a positive integer m so that all the values of ψ applied to elements of
T lie in Z/mZ. When computing β(B ⊗ ψ) any two integer matrices which are the same
mod m clearly yield the same result. We can also split ψ into its p–primary pieces and
work with one prime at a time since (B ⊗ ψ)p = B ⊗ ψp. At a fixed prime we can even
take B to be a matrix over the p–adic integers.

If A and B are matrices over Ẑp such that there is a matrix M with detM prime
to p such that A = M trBM , then the forms induced by A and B are isometric and we
say the matrices are similar. Note that if A and B are similar, detA = detB · s2 for

some s ∈ Ẑ∗
p. Call any matrix over Ẑ2 of the form Hm1,m2

=

(
2m1 u
u 2m2

)
with u ∈ Ẑ∗

2

mod2–hyperbolic. Call any form which is an orthogonal sum of rank one forms and mod2–
hyperbolics reduced. A form which is an orthogonal sum of rank one forms will be called
diagonal.

The usual Gram–Schmidt process can be applied over Ẑp to yield the following algo-
rithm for finding a reduced matrix similar to B. See [ 12 ,p.6 ] for a similar result. If there
is a diagonal entry α in B generated by x with α relatively prime to p, the Gram–Schmidt
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formula requires us to divide by B(x, x) which is possible since B(x, x) ∈ Ẑ∗
p. Continue

until B is similar to D ⊥ B′ where D is diagonal and the diagonal entries of B′ are all
divisible by p. Suppose there are a pair of basis elements e, f in B′ with B′(e, f) ∈ Ẑ∗

p.

If p is odd, replace e, f by e+ f , e− f , note that B′(e+ f, e+ f) ∈ Ẑ∗
p, and keep going.

If p = 2, this does not work and a slightly more complicated formula shows that one can
orthogonally split off the mod2–hyperbolic HB(e,e)

2 ,
B(f,f)

2

. For all p one can continue until

we have C0 ⊥ B1 where C0 is reduced with detC0 ∈ Ẑ∗
p and every entry in the matrix for

B1 is divisible by p. Divide these entries by p and keep going. Eventually we get that B
is similar to an orthogonal sum

( 2.7 ) C0 ⊥ pC1 ⊥ · · · ⊥ pwCw

where each Ci is reduced with detCi prime to p. Note that the ranks of the Ci are
determined by the abelian group structure of the cokernel of B: Ẑr

p → Ẑr
p.

For detA ∈ Ẑ∗
p define a mod 8 integer σp(A) by

σp(A) ≡
{

rankA if p is odd
N1 −N−1 + 3N3 − 3N−3 if p = 2

}
mod 8

and

σ′p(A) ≡



σp(A) + 1 · %p(detA) p ≡ 1 mod 4
σp(A) + 2 · %p(detA) p ≡ 3 mod 4
σp(A) + 4 · %p(detA) p = 2

}
mod 8

where Ni is the number of diagonal entries congruent to i mod 8 in any reduced matrix
similar to A. It is not obvious that σp(A) is well–defined for p = 2 but this is checked in
the proof of the next result.

Proposition 2.8. For each p and ψ:T → Q/Z with ψ tame and quadratic, T a p–group

with |T/T⊥| = pe, and B a symmetric integral form over Ẑp with detB ∈ Ẑ∗
p,

β(B ⊗ ψ) = σp(B) · β(ψ) +
%p(detB) · e

2
.

Proof : We may pass to ψred so without loss of generality assume ψ is non–singular. Note
B ⊗ ψ is also non–singular. We start by proving the formula assuming that that B is
reduced and we have defined σp(B) using B as our reduced form if p = 2. The desired
formula is additive for orthogonal sum so it suffices to prove the result for 〈a〉 plus the
mod2–hyperbolics if p = 2.

Since a · ψ = 〈a〉 ⊗ ψ the formula for rank one forms is just a restatement of the
formula in Theorem 1.17.

Next letHm1,m2 be a mod2–hyperbolic with basis e and f . Let 〈−1〉 be a rank one form
with basis x. The two elements x1 = x+ e and x2 = u · x+ f are orthogonal and generate
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orthogonal summands 〈2m1 − 1〉 and 〈2m2 − u2〉 respectively. Hence 〈−1〉 ⊥ Hm1,m2 and
〈2m1 − 1〉 ⊥ 〈2m2 − 1〉 ⊥ 〈a3〉 are isometric for some a3. Checking determinants shows
a3 ≡ 1 − 2m1 − 2m2 mod 8. Hence

−β(ψ) + β(H ⊗ψ) =
(
2m1 − 1 + 2m2 − u2 + a3) · β(ψ) +

%2((2m1 − 1) · (2m2 − 1) · a3) · e
2

since u2 ≡ 1 mod 8 it follows that β(H ⊗ ψ) =  2(detH)·e
2 , verifying the required formula.

If B and C are similar, then %p(detB) = %p(detC) and β(B ⊗ ψ) = β(C ⊗ ψ). So
σp(B) = σp(C) for odd primes, finishing the proof in this case. We turn to the case p = 2
where all we need to show is that if C1 and C2 are each similar to B, then σ2(C1) = σ2(C2).

Compute β(B ⊗ 14) = β(Ci ⊗ 14) = σ2(Ci)
8 , so σ2(C1) ≡ σ2(C2) mod 8.

Remark: Here is another description of σ2(A) when A is symmetric with detA ∈ Ẑ∗
2.

Recall that if ω̄ is characteristic element for the form A, then A(ω̄, ω̄) is well–defined
mod 8, see ( 2.3 ).

( 2.9 ) σ2(A) ≡ A(ω̄, ω̄) mod 8 .

To see this, note that it is immediate if A is reduced and then note that A(ω̄, ω̄) mod 8 is
independent of the basis. If we define ρ4(a) = 0 if a ≡ 1 mod 4 and 1 otherwise for any

a ∈ Ẑ∗
2, then

(2.10)2 rankA ≡ A(ω̄, ω̄) + 2 · ρ4(detA) mod 4

Compare this with the result that for any symmetric A over the reals with detA �= 0,

(2.10)∞ rankA ≡ σ(A) + 2 · ρ∞(detA) mod 4

where ρ∞(a) = 0 if a > 0 and 1 if a < 0.

We can now prove ( 2.4 ) directly from 2.8. It suffices to prove (2.4) a prime at a
time. For p ≡ 1 mod 4, β(ψ) is a multiple of 1

2 and %p(−1) = 0. Since rank B ≡ σ(B)
mod 2, (2.4) holds. For p ≡ 3 mod 4, β(ψ) is ± 1

4 if e is odd and a multiple of 1
2 if e is

even. Since %p(−1) = 1 (2.10)∞ shows that (2.4) holds. When p = 2, ( 2.3 ) and ( 2.9 )
show that σ2(B) = σ(B). Since %2(−1) = 0 we are done.

The same proof also establishes the following.

Remark 2.11: If ψ:T → Q/Z is a tame quadratic function and if B is any symmetric
form over Z with detB relatively prime to 2·|T/T⊥| then β(B⊗ψ) = σ2(B)·β(ψ) provided
we have that ρ4(detB) = %p(detB) for every prime p such that |(T/T⊥)p| ≡ 3 mod 4 and
%p(detB) = 0 for every p ≡ 1 mod 4 and for p = 2. One case that works is if detB = ± s2
for s ∈ Z relatively prime to 2 · |T/T⊥|.
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Kirby and Melvin [ 7 ] wanted a simple formula for β(B ⊗ 12). If B is similar to
C0 ⊥ 2C1 ⊥ · · · then B ⊗ 12 is isometric to C0 ⊗ 12 ⊥ C1 ⊗ (2 · 12) ⊥ 0 where 0 denotes
a trivial quadratic function of the appropriate rank. Now 2 · 12 is not tame so B ⊗ 12 is

tame if and only of C1 is a sum of mod2–hyperbolics and then β(B ⊗ ψ) =
σ′
2(C0)

8 , so we
want a simple way to check if C1 has any diagonal terms and if there are none to compute
σ′2(C0).

If A is any 2–adic matrix with detA ∈ Ẑ∗
2 compute σ′2(A)as follows. Let A be similar

to a reduced matrix C and let n1 (resp. n3) denote the number of diagonal elements of
C congruent to 1 (resp. 3) mod 4. Let εH denote the number of mod2–hyperbolics of C

congruent mod 4 to

(
2 1
1 2

)
. Then

σ′2(A) ≡ n1 − n3 + 4 · εH mod 8 ,

since n1 = N1 +N−3, n3 = N3 +N−1 and %2(detC) ≡ N3 +N−3 + εH mod 2.

We say B is mod 2 reduced if there is a basis, {x1, · · · , xr, e1, f1, · · · , es, fs, z1, · · · , zt}
such that B(xi, xi), 1 ≤ i ≤ r, and B(ei, fi), 1 ≤ i ≤ s are odd and all other pairings
are even. What this means is that mod 2 B looks like an orthogonal sum of rank one
forms with odd entries and some hyperbolics and a trivial form of some rank. If we apply
the Gram–Schmidt process to this basis in the given order, we get a reduced form C with
a basis {x′1, · · · , x′r, e′1, f ′1, · · · , e′s, f ′s, z′1, · · · , z′t} where x′i = xi + 2 · αi; e′i = ei + 2 · βi;
f ′i = fi + 2 · γi; z′i = zi + 2 · δi. This means that all the diagonal elements for B are
congruent mod 4 to the corresponding diagonal elements for C and hence

Theorem. If B is mod 2 reduced, B⊗12 is tame if and only if none of its diagonal entries
are congruent to 2 mod 4. If B ⊗ 12 is tame then

(2.12) β(B ⊗ 12) =
n1 − n3 + 4 · εH

8

where n1 (resp. n3) is the number of diagonal entries of B congruent to 1 (resp. 3) mod
4 and εH is the number of {ei, fi} with both B(ei, ei) and B(fi, fi) congruent to 2 mod 4.
Further note

(2.13) 4 · εH ≡
s∑

i=1

B(ei, ei) ·B(fi, fi) mod 8 .

Finally note that if the diagonal entries of B1 and B2 are congruent mod 4 and the
off–diagonal entries are congruent mod 2, then all squares are congruent mod 4 and hence
β(B1 ⊗ 12) = β(B2 ⊗ 12). Kirby&Melvin’s algorithm [ 7 ,p. 522 ] is to apply the Gram–
Schmidt process mod 4 to B until a mod 2 reduced form B′ is obtained. Then B and B′

are congruent mod 4 and B′ is mod 2 reduced so β(B ⊗ 12) can be computed from the
diagonal entries of B′. Kirby and Melvin further add 〈1〉 ⊥ 〈−1〉’s and use them to get rid
of all hyperbolics so they get (2.12) with εH = 0.
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In [ 14 ] we employed a slightly different variant of the Gram–Schmidt process to
classify arbitrary non–singular quadratic functions on a p group. Theorem 3.5 (p.268) of
[14] asserts that any non–singular ψp on a finite abelian p group is an orthogonal sum

( 2.14 ) ψp = R1 ⊗ 1p ⊥ · · · ⊥ Rk ⊗ 1pk

where each Ri is reduced and has detRi ∈ Ẑ∗
p. Furthermore, rankRi depends only on T .

Recall

β(Rs ⊗ 1ps) =




σ′p(Rs)

8
p = 2 and s odd

σp(Rs)

8
p = 2 and s even

%p(Rs)

2
p ≡ 1 mod 4 and s odd

0 p ≡ 1 mod 4 and s even

σ′p(Rs)

4
p ≡ 3 mod 4 and s odd

0 p ≡ 3 mod 4 and s even

An immediate remark is

Theorem 2.15. If ψ is tame,

4 · β(ψ) =
dimZ/2Z

(
(T/T⊥) ⊗ Z/2Z

)
2

If T is a Z/2Z vector space this is a result of Brown’s [ 2 ] and for ψ non–singular the
result is in [ 14 ].

Remark 2.16: Brown [ 2 ] defined a product of two quadratic functions on Z/2Z vector
spaces. We see no hope for defining a product in general, but given two quadratic functions
on Z/pZ vector spaces, say ψ1 = R⊗1p and q2 = S⊗1p, define ψ1 •ψ2 to be (R⊗S)⊗1p.
Check that this product is well defined. It clearly is commutative and it is not hard to
verify that if β(ψi) = αi

8 then β(ψ1 • ψ2) = α1·α2

8 . When p = 2 this is Brown’s product
and Brown’s theorem.

Given a form B and a quadratic enhancement ψ we can work out (B⊗ψ)p by finding
a matrix similar to one as in ( 2.7 ) and a quadratic enhancement ψp decomposed as in
( 2.14 ), it is clear that (B ⊗ ψ)p is an orthogonal sum of terms of the form (Ci ⊗ Rj) ⊗
(pi · 1pj ). Hence, to describe B ⊗ ψ or even just pi · ψp it suffices to describe pi · 1pr . Let
T = Z/prZ denote the domain of pi · 1pr . This form has T⊥ = pr−iT . If p is odd pi · 1pr

is tame and (pi · 1pr )
red

= 1pr−i . (Or trivial if i ≥ r). If p = 2 this still works except if
r = i. The form 2r · 12r is not tame, although Hm,n ⊗ (2r · 12r ) = 2r · (Hm,n ⊗ 12r ) is
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trivial, therefore tame. Hence 2i · ψ2 is tame if and only if Ri has no diagonal summands.
If pi · ψp is tame, we have

( 2.17 ) (pi · ψp)
red

= Ri+1 ⊗ 1p ⊥ · · · ⊥ Rk ⊗ 1pk−i

and β(pi · ψp) can be worked out from knowledge of the σp(Ri) and the %p(detRi).

Remark 2.18: Note for p odd, each σp(Ri) and each %p(detRi) is an invariant of the
isotropy class of ψp. For a matrix B similar to C0 ⊥ · · · ⊥ pwCw, each σp(Ci) and each
%p(detCi) is an invariant of B. For p = 2 the invariance fails. The form 14 ⊥ 12 is
isometric to 〈3〉 ⊗ 14 ⊥ 〈3〉 ⊗ 12: the matrices 〈1〉 ⊥ 2 · 〈1〉 and 〈3〉 ⊥ 2 · 〈3〉 are similar.
One can still choose the Rj and the Ci and work out (Ci ⊗ Rj)(p

i · 1pj ). Check that
σp(A1 ⊗ A2) = σp(A1) · σp(A2) and %p(det(A1 ⊗ A2)) = %p(detA1) + %p(detA2) mod 2 so
once the Rj and Ci are known, the calculation is straightforward.

Topology applications.

Application 3.1: (A theorem of Morita [ 13 ]) Let X be a 4k dimensional, oriented,
connected Poincaré duality space without boundary. The Pontryagin square

P:H2k(X;Z/2Z) → Z/4Z

is a quadratic enhancement of the cup product pairing H2k(X;Z/2Z)×H2k(X;Z/2Z) →
Z/2Z. Brown conjectured and Morita proved that

β(P) =
σ(X)

8
∈ Q/Z

where σ(X) denotes the signature of X.

For the proof, let B denote the bilinear form on H2k(X;Z)/torsion induced by cup
product. We use an observation of Massey’s to show P is W–equivalent to B ⊗ 12 and
then Remark 2.5 completes the proof.

Let K denote the image of the torsion in H2k(X;Z) in H2k(X;Z) ⊗ Z/2Z. An
observation of Massey [ 10 ] which he claims was well–known at the time says that, in our
notation,

K⊥/K =
(
H2k(X;Z)/torsion

)
⊗ Z/2Z .

Recall that on H2k(X;Z) ⊗ Z/2Z ⊂ H2k(X;Z/2Z) the Pontryagin square is just the
cup product square reduced mod 4. This shows that P vanishes on K and that the
enhancement induced by P on K⊥/K is just B ⊗ 12.

Application 3.2: Let X be a 4k dimensional, oriented, connected Poincaré duality space
with boundary. The Pontryagin square

P:H2k(X, ∂X;Z/2Z) → Z/4Z
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is still a quadratic enhancement of the cup product pairing. If H2k(∂X;Z) is torsion free,
then

β(P) =
σ(X)

8
∈ Q/Z

Several differences arise in the bounded case. The first is that the cup product pairing
has an annihilator: if T = H2k(X, ∂X;Z/2Z), T⊥ is the image of H2k−1(∂X;Z/2Z) in
H2k(X, ∂X;Z/2Z). A theorem of Thomas [ 15 ] calculates that the compositions

H2k−1(∂X;Z/2Z) → H2k(X, ∂X;Z/2Z) P−→ H4k(X, ∂X;Z/4Z) = Z/4Z

H2k−1(∂X;Z/2Z)
x ∪ Sq1x−−−−−−−−−−−→ H4k−1(∂X;Z/2Z) → Z/2Z ⊂ Z/4Z

are equal. Note that if H2k(∂X;Z) is torsion–free, Sq1x = 0 so P is tame in this case.
(But not in general: any oriented boundary for an RP 2k−1 is going to have P not tame.)
We can identify T/T⊥ with the image of H2k(X, ∂X;Z/2Z) in H2k(X;Z/2Z).

The cup product pairing on H2k(X, ∂X;Z/2Z) comes from a bilinear pairing

λ:H2k(X, ∂X;Z/2Z) ⊗H2k(X;Z/2Z) → Z/2Z

whose adjoint is an isomorphism. With respect to λ there is a straightforward general-
ization of Massey’s observation: if A ⊂ H2k(X;Z/2Z) denotes the image of the torsion
subgroup of H2k(X;Z) in H2k(X;Z/2Z), then A⊥ ⊂ H2k(X, ∂X;Z/2Z) is the image of
H2k(X, ∂X;Z).

We would like to relate the enhancement P to the mod 2 reduction of the integral form.
If H2k(∂X;Z) has 2–torsion much can still go wrong. For example, embed S2 ⊂ CP 2

so that the fundamental class hits twice a generator and write CP 2 = P ∪ E, where
E is the total space of the normal bundle of the embedding and P is the complement.
Then H2(P, ∂P ;Z/2Z) = Z/2Z and the P(x) = ±1/4 but H2(P, ∂P ;Z) = 0. Another

phenomenon occurs on X = (RP 3 −
◦
D3) × [0, 1]: here the boundary is RP 3#RP 3 so P is

not tame, but H2(X, ∂X;Z) = 0.
If there is no 2–torsion in H2k(∂X;Z) then we can make some progress. The image of

H2k(X, ∂X;Z) in H2k(X;Z)/torsion has a non–singular bilinear pairing and we let BX

be a matrix for it. It follows from the no 2–torsion condition and the generalization of
Massey’s observation that P and ψBX

are W–equivalent, just as in 3.1.
As we saw above one can not usually relate ψBX

to the signature of BX unless
detBX = ±1. But since H2k(∂X;Z) is torsion–free, detB = ±1.

The function x ∪ Sq1x arises in other contexts. It is the squaring homomorphism
associated to the bilinear form

R:Hk(M ;Z/2Z) ×Hk(M,Z/2Z) → Z/2Z

defined by R(x, y) = 〈Sq1x ∪ y, [M ]〉 on any oriented 2k + 1 dimensional manifold. The
form R is symmetric.
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Let M3 be a closed 3 manifold with a fixed Spin structure. In [ 8 ,p.209 ], we showed
how to quadratically enhance the linking form % on the torsion subgroup of H2(M ;Z). Let
ψ denote this enhancement. We further showed that β(ψ) is just Rochlin’s µ–invariant of
M mod 8. Spin structures on M are acted on by H1(M ;Z/2Z). For x ∈ H1(M ;Z/2Z),
define µ̂(x) to be the difference of the µ invariant forM with its given Spin structure minus
the µ invariant for M with Spin structure obtained by acting via x, all reduced mod 8.
We showed that µ̂ is a quadratic enhancement of R. (See the remark after formula 4.9,
p.213 [ 8 ]).

Now in general R is singular: in fact R⊥ is precisely the kernel of Sq1. We see that
the image of H1(M ;Z) in H1(M ;Z/2Z) acts trivially on the quadratic enhancement on
% so we get an action of H1(M ;Z/2Z)/H1(M ;Z) on this set. This group is identified
via the integral Bockstein δ with 2H

2(M ;Z) and R naturally induces a bilinear form on

2H
2(M ;Z): the enhancement µ̂ also extends to 2H

2(M ;Z).
In ( 1.8 ) we remarked that 2H

2(M ;Z) acts on the quadratic enhancements of the
linking form, and a comparison of ( 1.14 ) and the enhancement µ̂ shows that µ̂(x) =
∆β(δx) for any x ∈ H1(M ;Z/2Z). So the quadratic enhancement onR is just the quadratic
enhancement of the linking form restricted to 2H

2(M ;Z).

Application 3.3: If the torsion subgroup of H1(M
3;Z) is a Z/2Z vector space, then the

µ invariant mod 8 is β(µ̂) since µ̂ = ψ. In general, µ̂ is tame unless 4(H
2(M3;Z)) contains

an x with %(x, x) = ± 1
4 , in which case µ̂ is not tame: e.g. the lens spaces L(4,±1). For

the lens space L(8, 1), β(ψ) = 1
8 but µ̂ is trivial on 2H

2(L(8, 1);Z).

Knot theory provides a natural source of examples of mod2–hyperbolics.

Application 3.4: Given a symmetric integral matrix B with even diagonal entries we
can find matrices S such that B = S + Str. The form S(x, y) = xtrSy symmetrizes to

B and if we define ψ:V ⊗ Z/2Z → Q/Z by ψ(x) = xtrSx
2 then ψ = B ⊗ 12. If detB is

odd, it follows that ψ is tame and that β(ψ) = β(ψB,2) =  2(detB)
2 . It further follows that

det(S − Str) ∈ Ẑ∗
2 so over Ẑ2 there is a symplectic basis {e1, f1, · · · , es, fs}. Using that

same basis for B makes B mod2–hyperbolic so β(ψ) =
s∑

i=1

S(ei, ei) · S(fi, fi)

2
.

If S is a Seifert matrix for a knot κ:S4k−3 ⊂ S4k−1, then there is an integral symplectic

basis for S−Str and
s∑

i=1

S(ei, ei) · S(fi, fi)

2
is the usual definition of the Arf invariant of the

knot, Arf(κ). Moreover, detB = ∆κ(−1) is the value of the Alexander polynomial of the

knot evaluated at −1 and the formula Arf(κ) =  2(∆κ(−1))
2 is Levine’s theorem [ 9 ,p.544 ].
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