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1. Introduction

ConsIDER a Z,-homology manifold M™ without boundary but perhaps not
compact. Since the link of every point has the Z, homology of the (m —1)
sphere, M is an integral Euler space in the sense of Halperin and Toledo
[6] and thus has homology characteristic classes s,(M)e€ Hy'(M; Z,). To
define these classes, consider the sum of all the p-simplices in a barycen-
tric subdivision. This chain is in fact a cycle and the resulting homology
class, denoted s,(M), is a PL invariant [2].

On the other hand, a Z,-homology manifold satisfies Poincaré duality
with Z, coefficients and so we can define Stiefel-Whitney classes w,(M)e
HF(M; Z,) following Wu [14]. To wit, define v, so that v, U x = Sq”x for
all xe H" P(M; Z,) where H! is cohomology with compact supports.
Poincaré duality produces a unique v, € H?(M; Z,) with the above prop-

o
erty. w,= 2 Sq'v,_;.
i=0

Stiefel conjectured that when M is a smooth manifold, w,(M) and
Sm—p(M) are Poincaré dual. This was proved by Whitney [13], Cheeger
[5], and Halperin-Toledo [6], all by about the same meyhod. In 1973,
Blanton and Schweitzer [3] almost produced a proof using a new method.
Our goal is to use this new method to prove.

THEOREM. Let M be a Z,-homology manifold without boundary of dimen-
sion m. Then w,(M) and s,,_,(M) are Poincaré dual.

A Z,-homology manifold satisfies Poincaré duality with Z., coeffi-
cients (Z,=rationals with odd denominators) where the cohomology
groups may have to be taken with twisted coefficients. The Z,, twisting
gives rise to a unique integral twisting, so let Z” denote the integers with
this twist. There is a (non-unique) class in H2'(M; Z") which reduces to
the fundamental class with twisted Z,, coefficients. Let [M] denote any
such class. Halperin and Toledo have shown that s,_(,.(M) has a
natural (untwisted) integral representative, S,,_,+1,(M). There is a Bock-
stein 8:H*(M; Z,) > H*"'(M; Z") and we define W,,,,(M) to be
dw,, (M).

CoroOLLARY. Wy, ((M)N[M]=S,, 2,41 (M).
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Remarks. Halperin and Toledo define an Sy(M) for all m and prove it
is dual to the twisted Euler class for smooth manifolds. Since the Euler
class is an unstable class and since as yet we have only a stable tangent
bundle for Z,-homology manifolds, we are unable to deduce a similar
result.

M does have a tangent, 2-local, spherical fibration, M — BGZ,, (see
Quinn [11]). W,,.,(M) (resp. w,,(M)) is the primary obstruction to
factoring this map through BGZ,, (k—1), k=2p+1 (resp. 2p). BGZ,
(k—1) is the classifying space for 2-local, (k —2)-dimensional, spherical
fibrations. This remark will be substantiated in §4.

2. Axioms for homology characteristic classes

Blanton’s and Schweitzer’s idea was to assume the existance, for
manifolds, of homology characteristic classes which satisfied certain ax-
ioms. Then they showed that these axioms gave a unique set of such
classes for smooth manifolds, The last step is to show that both the s, and
the Poincaré duals of the w, satisfy the axioms. By altering their axioms
slightly we can show uniqueness for Z,-homology manifolds and we can
show that both the s, and the Poincaré duals of the w, satisfy the axioms.

So let us assume given classes

o,(M)e Hy'(M; Z,) for all p and for all Z,-manifolds M without
boundary. Further assume

(A1) LetU< M be an open subset with f: U— M the inclusion. Then
f*(Poincare dual of o,(M))N[U]=0o,(U).

P

(A2) 0,(MXN)= Y 0;(M)X ,_(N).

i=0

(A3) If the dimension of M is m and if M is compact and connected,
oo(M)e HY(M; Z,)=Z, is just the Euler characteristic of M reduced
mod 2.

(Ad) o, (M) is the fundamental class.

(A5) Bo,(M)= o, (M) when p=m (mod 2) and where B is the Bock-
stein associated to 0 > Z, —» Z,— Z,— 0.

(A6) o(RP?)#0. Instead of (A5) we could assume

(A'5) For all m=2, o,_,(RP™")N[RP™]=the p-th Stiefel-Whitney
class of RP™ for all p.

The Poincaré duals of the w, are known to satisfy (A1)-(A4) and
(A'S). The s, satisfy (A1)-(A6). (A1) is clear upon a little reflection; (A3)
and (A4) are clear. (A2) is in [7] and (AS5) is in [6]. (A6) is a calculation
safely left to the reader.

Hence the proof of the theorem comes down to proving that there is a
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unique set of classes satisfying (A1)-(A6); a unique set satisfying (A1)-
(A4) and (A’'S); and that these two sets are equal.

3. The proof of the theorem

F. Quinn [11] has produced a bundle theory suitable for use with
Z,-homology manifolds. These bundles have a classifying space B(PL)y
in Quinn’s notation. We wish K to be all primes except 2 and we denote
the resulting space by BH.

Our first step is to produce cohomology characteristic classes v,(&) for
£:X — BH a bundle over X, a finite CW complex. Then we produce
universal classes v, € H?(BH; Z,) satisfying

(1) &y, =7,(&).

p
(2) w*y,= ¥ vi %Xy, ; where w:BHxBH — BH is the Whitney sum
P i (o
map. =0
(3) yo=1.
4) (tyy,) N[M]= o,,_,(M) where my;: M — BH is the stable tangent
bundle.

For (3) to make sense, BH had best be connected. My favorite proof of
this is to observe that by transversality, the Hurewicz theorem, and the
Thom isomorphism, we have that Hy(BH; Z,) is isomorphic to the 0
dimensional cobordism group of Z,-manifolds, which is clearly Z,. Quinn
[11] yields a Thom complex, MH, and the necessary transversality
theorem.

Since BH is connected, inverse bundles exist over finite complexes (see
[9] for an adaptable proof). To define 7,, we define instead the normal
bundle. In Quinn’s notation, B=M X I and E is a regular neighborhood
of B in some large Euclidean space. The required stratification exists
([12] Theorem 2.1) and is essentially unique ([12] Theorem 3.1).

Notice (4) shows that distinct o,’s give rise to distinct ,’s, so that if we
can show vy, is unique we are done.

We relegate the task of producing these y,(£) and v, to the last section.
There we will also describe an H-map BO — BH which takes the usual
tangent bundle for a smooth manifold to 7, as defined above. We turther
promise a map of ring spectra MO — MH such that the obvious square
involving the two Thom isomorphisms commutes.

Since we have a Thom isomorphism we can define Stiefel-Whitney
classes w, € H” (BH; Z,). w, is Sq"(1) pulled back via the Thom isomorph-
ism to H?(BH, Z,), where 1 is the generator of H(MH; Z,). We prove
¥, = W, by induction on p, which proves the theorem.
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First note y,= w, by (3) so we may start the induction. Let d = vy, —w,,
Since BH is connected, (2) and the induction hypothesis show

p¥d=1xd+dx1.

Hence, in order to show that d =0, we need only show that d vanishes on
the indecomposables in Hy(BH; Z,). There is a ring map wy(MH)—
Hy(BH; Z,) given by sending M to (7y)x[M]. There is our map
Hy(BO; Z,) - Hy(BH; Z,) and we claim that

m+(MH)® H,(BO; Z,)— H.(BH; Z,) is onto.

Thus we need only show that d vanishes on the images of Hy(BO; Z,)
and my(MH).

Granting the claim for now we show that vy, and w, agree when pulled
back to HF(BO; Z,). It follows from Milnor-Stasheff [10] that it is
enough to show that vy, (canonical bundle over RP™) is as expected for
all m=2.

Let ¢ be the canonical bundle over RP™ considered as one of Quinn’s
bundle via the map BO — BH. Then 7rp-=¢@ - @ ¢ (m+1)-times.
Using (4), (A6) and (A3), one can easily show yx(é)=1+a for m=2; a
the generator of H'(RP?; Z,). We finish by induction.

We can assume yg(€)=1+a+ca™" in HY(RP™"; Z,). If m is odd,
VYms1(RP™ ) = (c+1)a™"". (4) and (A3) show c=0.

If m is even and we have (A'5), we can assume vyg(£&)=
1+a+ca™ 1+ ba™? in H¥(RP™Z% Z,). v,.+1(RP™))=(("13)+c)a™""
so again ¢=0. If we have (AS5) it is not hard to show Sq'y,,(¢)=
Y1) U y25(£) + ¥2p+1(£). Since v,,(£) =0, v,+1(£) =0 and ¢ =0 yet again.
This finishes the induction and shows d evaluates zero on H,(BO; Z,).
By Quinn [11], m,(MH) is the cobordism group of unoriented, p-
dimensional, Z,-homology manifolds. If d evaluates non-zero on
m,(MH) there exists a p-dimensional, closed, compact Z,-homology
manifold with 7¥d# 0. But 7§y, is the mod 2 Euler class by (4) and (A3)
as is Tyw, by [10]. Hence 73d =0 and the theorem is proved, modulo
our claim.

To see the claim, consider He(MH; Z,). This is also MH.(HZ,) where
HZ, is the Eilenburg-MacLane (Z,,0) spectrum. We have maps
m(MH) — MH.(HZ,), the usual Hurewicz map, and e: MH(HZ,)—
A, the Steenrod representation map, where Ay, = Hye(HZ,; Z,). We shall
soon see that e is onto.

Given this the Atiyah-Hirzebruch spectral sequence for MH(HZ,)
collapses since it is a multiplicative spectral sequence. Ay is a polynomial
algebra [8] and hence e is split. A standard argument now shows
m(MH)® Ay — Hy(MH; Z,) is an isomorphism.

It is well-known Hg(MO; Z,) — A, is onto. Hence e must be onto and
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m(MH) @ Hy(MO; Z,) — Hye(MH; Z,) is onto. me(MH)— Hy(MH;
Z,)— Hy(BH; Z,)— H«(BH; Z,), where the last map is the
one which sends bundles to their inverses, is the map me(MH)—
Hy(BH; Z,) in our claim. The map Hy(MH; Z,) — Hy(BH; Z,) above is
an isomorphism and our claim easily follows.

4. The proof of the corollary and related remarks

To see that M has a fundamental class in H'™(M; Z"), let K= M be a
codimension 0 submanifold with boundary which is compact. There is a Z
in H, (K, dK; Z") by universal coefficients [4]. The map H™(M; Z") -
H,.(K,dK; Z") maps non-zero to this Z so there is an epimorphism
H(M; ZN) — Z which when tensored with Z,, is an isomorphism. Split
this map and let [M] be the image of 1.

To prove the corollary recall that Halperin and Toledo [6] showed
Sm—@pr1y(M) = Bs,,_»,(M) where B is now the integral Bockstein. Take
the equation s,,_,,(M) = w,,(M) N[M] from the theorem. We can use the
twisted integral class [M] since it reduces right mod. 2. Apply B to both
sides of our equation and we get B, _,, = (8w,,M)N[M] which is the
corollary.

Define W,,.;€ H**"Y(BH; Z,) as 8w,,. We can define similar classes
in H***Y(BGZ,; Z) and H**(BO; Z). 1t is easy to show TWapi1 =
W2p+1(M)'

The kernel of H*(BGZ)); R)— H*(BGZ,(k—1); R), where R is
ZN or Z,, is W11 O w,, depending on whether k is odd or even. One
sees this by using the fact that this is known for BO and BO(k —1) and
using the fact that the square

BO(k—-1)—— BO

BG(k - 1)——> BG

is highly connected. Hence W,,,, or w,, is the primary obstruction to
lifting. To be completely precise, the primary obstruction lies in
H*(BGZ,); Z{,) for k odd, but since W, has order 2 this distinction is
rarely important.

If 7y,: M — BGZ,,, factors through BG, W, (M) or wy,(M) is the
primary obstruction to factoring through BG(k —1). The high connectiv-
ity of the above square shows that if 7,, factors through BO we obtain the
result of Halperin and Toledo [6].

5. The cohomology characteristic classes

In Quinn’s description of a bundie over a finite complex X there
appears a pair of spaces (E, B) with B a Z,-homology manifold and a
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regular neighborhood of X with 9B N X = ¢. E is a PL manifold which is
a regular neighbourhood of (B,dB). We can normalize so that E is
parallelizable. This pair has more structure but we have given all we need.

The promised H-map BO— BH is given by the following natural
transformation of vector bundles to Quinu’s bundles over finite com-
plexes. Given £ a vector bundle over X, a finite complex, let B be —§&
pulled back over a regular neighbourhood of X in some Euclidean space.
Let E be ¢ pulled back over B. Then (E, B) is a bundle in Quinn’s sense
with our normalization. This gives a map BO — BH,[1]. Since this
construction also gives a map BO(n) — BH(n) weakly compatible with
Whitney sum, we also get a map of ring spectra MO — MH and it is clear
that these maps have all the claimed properties.

Given a bundle £:X — BH, there is also a bundle —§:X — BH. Let
(E, B) be a total space for — ¢ with our normalization. v.(£) e HY (X Z,) is
the unique class which when pulled into H?(B; Z,) is Poincare dual to
oy, (interior B).

We must show v, (¢) is independent of which total space we have chosen
for —£& If D" D' is the standard inclusion of discs, we may replace
(E, B) by (ExD™* Bx D"). By (A2) and (A4), v,(¢) is unchanged.

Another change is to have a pair (E, B) over X X I with total spaces
(Eq, By) over Xx0 and (E,, B,) over Xx 1. If we can prove v,(£) is
unchanged after replacing (E,, By) by (E,, B;) we are done since by a
combination of the two types of changes we have considered we can go
from any total space for —¢ to any other total space for —¢&.

Let (E', B') be (E,, By)x[—1, 0]U(E, B)U(E,, B;) x[1, 2]. The lemma
below proves v,(£) is well-defined.

Lemma. Let (E, B) be a total space of a bundle ¢ over Y. Let X x[0, 1]
be a subcomplex of Y and suppose that there is a bundle m, with total space
(D, A) over X with (D, A)x[0,1]=(E,B) as codimension 0 sub-
manifolds. Let f: X x1— Y be the inclusion. Then n = f*£ and f*(y,(£)) =
¥p(m)-

Proof. That n = f*¢ follows from Quinn [11]. That f*(y,(&)) = vy,(n) is
merely a translation of (A1) applied to A x(0, 1)< B.

The lemma is also used to prove naturality. Let M(f) be XX [—1,1]U
Y %[0, 1] where we have identified (x,1) and (f(x),0) for some map
f:X — Y. A bundle £ over Y extends to a bundle over the usual mapping
cylinder so that, restricted to Y the bundle is £ and restricted to X X (0 the
bundle is f*& Extend this bundle over M(f) so as to be a product on
Y x[0,1] and Xx[—1,0]. Then the lemma easily shows

(N) f*(7,(8)) = 7, (f*&).

Now let ¥ be the collection of finite subcomplexes of BH. X is a direct
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system and over each KeX we have the restriction of the universal
bundle. Hence we get a homomorphism v, (¢ | K): H,(K; Z,) = Z,. (N)
shows that these homomorphisms piece together to get a homomorphism
H,(BH; Z,)— Z, since H,(BH; Z,) is the direct limit over ¥ of the
H,(K; Z,). Since H?(BH, Z,)=Hom(H,(BH : Z,), Z,), we have defined
universal classes y, € H?(BH; Z;). (N) now shows 1

Since the external Whitney sum of (E, B) over X and (E,, B;) over Y
is just (EXE,;, BXxB) over XXY, it is easy to see from (A,) that

P
Y, (EDB )= Y 1€)X y,_(n). (2) now follows since any deviation from
i=0

the claimed formula can be detected by a Whitney sum over a finite
complex.

(4) is easily seen from our description of 7y.

(3) follows from (4) and (A4) since BH is connected.
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