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Definition of the Massey triple product
The Massey triple product is defined whenever there are three
classes xi ∈ Hmi (X ; R), i = 1, 2, 3 such that x1 ∪ x2 = 0 = x2 ∪ x3.
The triple product is a reflection of how these products are zero.
To define it, choose cochain representatives for the xi . Since
x̂1 ∪ x̂2 is a coboundary, choose X12 so that δ(X12) = x̂1 ∪ x̂2.
Similarly choose X23 so that δ(X23) = x̂2 ∪ x̂3. Form the cochain

m = X12 ∪ x̂3 − (−1)m1 x̂1 ∪ X23

and check that it is a cocycle. The choices of X12 and of X23 are
not unique. Precisely either can be altered by a cocycle. Define the
ideal

J∗{x1},{x3} = x1 ∪ H∗−m1(X ; R) + H∗−m3(X ; R) ∪ x3 ⊂ H∗(X ; R)

The cocycle m can be altered by any element in Jm+m2+m3−1
{x1},{x3} .

For convenience define the annihilator ideal

am
{x1},{x3} = {x ∈ Hm(X ; R) | x1 ∪ x = 0 = x ∪ x3} •



Definition of the Massey triple product

For any x2 ∈ a{x1},{x3}, define

〈x1, x2, x3〉 ∈ Hm1+m2+m3−1(X ; R)/Jm+m2+m3−1
{x1},{x3}

to be the class of m = X12 ∪ x̂3 − (−1)m1 x̂1 ∪ X23 in the quotient
group.

The Massey triple product can also be thought of as a map

am2
{x1},{x3} −−−−−→ Hm1+m2+m3−1(X ; R)/Jm+m2+m3−1

{x1},{x3}

This map is R-linear. Since w ∪ 〈x1, x2, x3〉 ⊂ ±〈x1, (w ∪ x2), x3〉,

the Massey triple product is an H∗(X ; R) module map up to sign.
•



Previous results
Massey seems to have first announced the triple product at the
November 1950 meeting of the AMS in Evanston.
Uehara and Massey [15] used the triple product to settle the signs
in the Jacobi identity for Whitehead products. (1956)
Massey [7] used the triple product to elucidate some of the cup
product structure of sphere bundles. (1958)
The Borromean rings

The Borromean rings Massey [8]. (1968)
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3 Let xi be the Hom-dual to x∗i .

Then xi ∪ xj = 0 and
0 /∈ 〈x1, x2, x3〉

•



More previous results

I Some Massey triple products of Pontryagin classes of normal
bundles to foliations vanish. Shulman [12] (1974).

I Massey triple products vanish in a compact Kähler manifold.
Deligne, Griffiths, Morgan and Sullivan [2] (1975).

I Massey triple products in an algebraic variety need not vanish
mod p. Ekedahl [3] (1983).

I Symplectic manifolds can have non-trivial rational Massey
triple products. Babenko & Tamanov [1] and Rudyak & Tralle
[11] (2000).

I Non-trivial Massey triple products in Borel cohomology
restrict to non-trivial triple products on the fixed sets for
symplectic S1 actions. Stepien & Tralle [13] (2004).

I . . .

•



Difficulties with the Massey triple product

Computing the triple product is a two step process.
I First compute a class m ∈ 〈x1, x2, x3〉.
I Then compute Jm1+m2+m3−1

{x1},{x3}
and decide whether m ∈ J{x1},{x3} or not.
Say 〈x1, x2, x3〉 is trivial if m ∈ J{x1},{x3} and non-trivial if
m /∈ J{x1},{x3}.

Naturality has difficulties. Let f : X → Y .
Then

f ∗
(
〈y1, y2, y3〉

)
⊂ 〈f ∗(y1), f ∗(y2), f ∗(y3)〉

but it can definitely happen that 0 /∈ 〈y1, y2, y3〉 but
0 ∈ 〈f ∗(y1), f ∗(y2), f ∗(y3)〉. Even worse, it can happen that
0 /∈ f ∗(〈y1, y2, y3〉) but 0 ∈ 〈f ∗(y1), f ∗(y2), f ∗(y3)〉.

•



A way to control the previous difficulties
It is hard to believe that this next idea can really lead to much but
I hope to convince you that it does. Suppose the Massey triple
product 〈x1, x2, x3〉 is defined (which means x2 ∈ a{x1},{x3}).

Suppose further that there is a class x0 such that
x0 ∪ x1 = 0 = x0 ∪ x3 or equivalently x0 ∈ a{x1},{x3}. Then

x0 ∪ 〈x1, x2, x3〉 ∈ Hm0+m1+m2+m3−1(X ; R)

is a single cohomology class.

Computation: find one element m ∈ 〈x1, x2, x3〉 and compute
x0 ∪m. If x0 ∪m 6= 0 then 〈x1, x2, x3〉 is non-trivial.

Naturality: Let f : X → Y . Let 〈y1, y2, y3〉 be defined and suppose
y0 ∈ a{y1},{y3}. Then

f ∗
(
y0 ∪ 〈y1, y2, y3〉

)
= f ∗(y0) ∪ 〈f ∗(y1), f ∗(y2), f ∗(y3)〉 •



A bonus: new Massey triple products from old ones
Suppose x0, x2 ∈ a{x1},{x3}. Then x1, x3 ∈ a{x0},{x2} and

x0 ∪ 〈x1, x2, x3〉 = ± x3 ∪ 〈x0, x1, x2〉

Remarks: This follows from May [9] or can be proved directly.
The symmetry can be applied twice more: x2 ∪ 〈x3, x0, x1〉 and
x1 ∪ 〈x2, x3, x0〉 are also equal to the first two up to sign and all
four are a single cohomology class.
If all the xi have different degrees, all four Massey triple products
are in different dimensions.
By Kraines [5], 〈x3, x2, x1〉 = ±〈x1, x2, x3〉 , so one of the equalities
is

x0 ∪ 〈x1, x2, x3〉 = ± x2 ∪ 〈x1, x0, x3〉
If m0 6= m2, then the two Massey triple products are in different
degrees. If m0 = m2, then both Massey triple products are
elements of the same quotient group. •



Some results on x0 ∪ 〈x1, x0, x3〉

To try to distinguish the two triple products when m0 = m2,
compute x0 ∪ 〈x1, x0, x3〉.

Theorem (Milgram [10])
In H∗(X ;Z/2Z)

x0 ∪ 〈x1, x0, x3〉 = x1 ∪ x3 ∪ Sqm2−1(x0)

Theorem (Kraines [5])
If m2 = 2m + 1, then in H∗(X ;Z/3Z),

x0 ∪ 〈x2, x2, x2〉 = x0 ∪ βPm(x2)

•



Some results on x0 ∪ 〈x1, x0, x3〉

Theorem
If m0 = 2m,

2 x0 ∪ 〈x1, x0, x3〉 = 0

Proof.
Compute 〈x0, x1, x0〉 instead. Since m0 = 2m,
〈x0, x1, x0〉 = −〈x0, x1, x0〉, Kraines [5]. Hence
x3 ∪ 〈x0, x1, x0〉 = −x3 ∪ 〈x0, x1, x0〉

Corollary
Suppose that m0 = m2 = 2m. If furthermore 2 x0 ∪ 〈x1, x2, x3〉 6= 0,
then 〈x1, x0, x3〉 and 〈x1, x2, x3〉 are distinct and non-trivial.

•



Massey triple products in manifolds

Let X = M be a closed, compact, connected manifold of
dimension n, oriented with coefficients in a field F. Actually M
only needs to be a Poincaré duality space.
All that is used is that the cup product gives a non-singular pairing

Λ: Hn−r (M;F)× H r (M;F) −−−−→ F

Theorem
Cup product gives a non-singular pairing

Λ: an−r
{x1},{x3} ⊗ H r (M;F)

/
Jr
{x1},{x3} −−−−→ F

•



Λ: an−r
{x1},{x3} ⊗ H r (M;F)

/
Jr
{x1},{x3} −−→ F

Proof.
Standard results on pairings reduces the result to showing(
Jr
{x1},{x3}

)⊥ = an−r
{x1},{x3}.

If x ∈ an−r
{x1},{x3} then x ∪ x1 = 0 = x ∪ x3. If y ∈ Jr

{x1},{x3} then
x ∪ y = 0. Since this holds for all y ∈ Jr

{x1},{x3}, x ∈
(
Jr
{x1},{x3}

)⊥.
Suppose z ∈

(
Jr
{x1},{x3}

)⊥. Then for all y ∈ Jr
{x1},{x3}, z ∪ y = 0. If

z ∪ x1 6= 0, there exists t ∈ H∗(M;F) such that t ∪ z ∪ x1 6= 0.
But t ∪ x1 ∈ Jr

{x1},{x3} so t ∪ z ∪ x1 = 0, which is a contradiction.
Hence z ∪ x1 = 0 and similarly z ∪ x3 = 0.

•



A duality between values of Massey triple products
Fix x1 and x3 and let s = m1 + m3 − 1. The Massey triple product
defines a linear map

ar
{x1},{x3} −−−−−→ H r+s(M;F)/Jr+s

{x1},{x3}

Let Mr
{x1},{x3} denote the image in degree r .

Theorem
There is a non-singular pairing

Mr
{x1},{x3} ⊗Mn+s−r

{x1},{x3} −−−−→ F

Remarks: The pairing is either symmetric or skew-symmetric. If
n + s is divisible by 4 (so r = n+s

2 is even) the pairing
Mr
{x1},{x3} ⊗Mr

{x1},{x3} → F is skew-symmetric and hence has even
rank. •



The universal integral example for dimension one
Suppose x1, x2 and x3 are to be 1-dimensional, integral
cohomology classes. Then 〈x1, x2, x3〉 is 2-dimensional. The
universal example of this situation is the oriented 5-manifold

T 2 → M5 → T 3

where the two one dimensional generators of H1(T 2;Z) transgress
to x1 ∪ x2 and x2 ∪ x3 where x1, x2 and x3 are a basis for
H1(T 3;Z). The cohomology is torsion free. The Poincaré series is
1 + 3t + 6t2 + 6t3 + 3t4 + t5. By construction 〈x1, x2, x3〉 is
non-trivial. There is a class t ∈ a3

{x1},{x3} ⊂ H3(M5;Z) so that
t ∪ 〈x1, x2, x3〉 6= 0.

I M2
{x1},{x3}

∼= Z ∼= M4
{x1},{x3}

I M4
{t},{x2} has rank 2 and the pairing is symmetric.

I There is a basis for H2(M5;Z) consisting of elements from
distinct triple products. •
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