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The goal is to introduce two approaches to understanding the
homotopy type of configuration spaces.

Before explaining these two methods, let us introduce some
notation that will make formulas to follow easier to write out.
Let S be a finite set. Define

Conf (X ,S)

to be the space of injective functions S → X , topologized as a
subset of the product space XS . (If S has cardinality k, we
often write S = {1, · · · , k} and write a point in Conf (X ,S) as
(x1, · · · , xk) with xi 6= xj for i 6= j .)
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Using arbitrary finite sets simplifies notation.

For instance, if
φ : S2 → S1 is injective, composition clearly induces a map

pφ : Conf (X ,S1)→ Conf (X ,S2)

The symmetric group action, ΣS , on Conf (X ,S) is just
composition of permutations so the action is a right action.
These conventions require that the multiplication of cycles in a
symmetric group is the composition multiplication:
(123)(12) = (13) NOT (23).
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The fibration method

Fix a subset S2 ⊂ S1 and consider the induced map

p : Conf (X ,S1)→ Conf (X ,S2)

An arbitrary point in Conf (X ,S2) is an injection ι : S2 → X .
Let Qι ⊂ X be the image of ι. Then the fibre over ι is

p−1(ι) = Conf (X −Qι,S1 − S2)

Theorem (Faddel and Neuwirth, 1962)
If X is a paracompact, finite dimensional manifold, all the
p−1(ι) are homeomorphic and p is a fibre bundle.
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To compute homology or cohomology, one can apply the Serre
spectral sequence. This requires knowledge of the monodromy
of the fibration. At its lowest level, the monodromy of a
fibration F → E → B is a homomorphism

π1(B, b)→ Aut (F)

where F is the fibre over B and Aut (F) is the group of
homotopy classes of automorphisms of F .

If E → B has a
section, the monodromy can be promoted to a homomorphism

π1(B, b)→ Aut∗ (F)

In general the monodromy is non-trivial. One important case is
the case in which S2 has cardinality one less than the
cardinality of S1.

In this case the fibre is X −Qι, which is just the original
manifold punctured |S2|-times.



To compute homology or cohomology, one can apply the Serre
spectral sequence. This requires knowledge of the monodromy
of the fibration. At its lowest level, the monodromy of a
fibration F → E → B is a homomorphism

π1(B, b)→ Aut (F)

where F is the fibre over B and Aut (F) is the group of
homotopy classes of automorphisms of F . If E → B has a
section, the monodromy can be promoted to a homomorphism

π1(B, b)→ Aut∗ (F)

In general the monodromy is non-trivial. One important case is
the case in which S2 has cardinality one less than the
cardinality of S1.

In this case the fibre is X −Qι, which is just the original
manifold punctured |S2|-times.



To compute homology or cohomology, one can apply the Serre
spectral sequence. This requires knowledge of the monodromy
of the fibration. At its lowest level, the monodromy of a
fibration F → E → B is a homomorphism

π1(B, b)→ Aut (F)

where F is the fibre over B and Aut (F) is the group of
homotopy classes of automorphisms of F . If E → B has a
section, the monodromy can be promoted to a homomorphism

π1(B, b)→ Aut∗ (F)

In general the monodromy is non-trivial.

One important case is
the case in which S2 has cardinality one less than the
cardinality of S1.

In this case the fibre is X −Qι, which is just the original
manifold punctured |S2|-times.



To compute homology or cohomology, one can apply the Serre
spectral sequence. This requires knowledge of the monodromy
of the fibration. At its lowest level, the monodromy of a
fibration F → E → B is a homomorphism

π1(B, b)→ Aut (F)

where F is the fibre over B and Aut (F) is the group of
homotopy classes of automorphisms of F . If E → B has a
section, the monodromy can be promoted to a homomorphism

π1(B, b)→ Aut∗ (F)

In general the monodromy is non-trivial. One important case is
the case in which S2 has cardinality one less than the
cardinality of S1.

In this case the fibre is X −Qι, which is just the original
manifold punctured |S2|-times.



To compute homology or cohomology, one can apply the Serre
spectral sequence. This requires knowledge of the monodromy
of the fibration. At its lowest level, the monodromy of a
fibration F → E → B is a homomorphism

π1(B, b)→ Aut (F)

where F is the fibre over B and Aut (F) is the group of
homotopy classes of automorphisms of F . If E → B has a
section, the monodromy can be promoted to a homomorphism

π1(B, b)→ Aut∗ (F)

In general the monodromy is non-trivial. One important case is
the case in which S2 has cardinality one less than the
cardinality of S1.

In this case the fibre is X −Qι, which is just the original
manifold punctured |S2|-times.



If X is non-compact then

X −Qι = X ∨|S2| S
n−1

and if X is compact, X minus a point is non-compact.

If |S2| > 2 then for homology/cohomology with coefficients in a
ring R, the coefficients are non-trivial unless X is orientable for
cohomology with coefficients in a ring R. If X is orientable,
then the coefficients in this spectral sequence are trivial if
H 1(X ;R) = 0. If H 1(X ;R) 6= 0, and X is compact, then the
coefficients are non-trivial.

In particular, the spectral sequence has trivial coefficients for
n-dimensional Euclidean space, Rn . Moreover Rn punctured
|S2|-times is a wedge of |S2| (n − 1)-dimensional spheres. There
are no differentials and the additive structure of
H ∗
(
Conf (Rn ,S2) ; Z

)
is easily worked out.

Additional structure will be described later.
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A different approach to the Fadell-Neuwirth theorem observes
that Top(X) acts diagonally on Conf (X ,S) and if X is a
paracompact manifold and the dimension n > 2 then the action
is transitive.

The isotropy subgroup of the point ι ∈ Conf (X ,S)
is Top(X ,Qι), the subgroup of homeomorphisms fixing ι. Hence

Conf (X ,S) ∼= Top(X)/Top(X ,Qι)

and there is a fibre bundle

Conf (X ,S)→ BTop(X ,Qι)→ BTop(X)

Hence information on configuration spaces informs on the
difference between the group of homeomorphisms and the
subgroup which fixes a finite set of points.
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The cofibration method

In the cofibration approach, one starts with a finite set S1 and a
subset S2 with one fewer elements.

Let W (X ,S1,S2) be the
subspace of all ι : S1 → X which are injective when restricted to
S2. The space W (X ,S1,S2) is homeomorphic to
X × Conf (X ,S2) and so by induction can be assumed
understood.

The inclusion Conf (X ,S1) ⊂ XS1 lands in W (X ,S1,S2) and is
an open subset if X is Hausdorff. To understand the inclusion
Conf (X ,S1) ⊂ W (X ,S1,S2) we will construct a Mayer-Vietoris
sequence.
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For each t ∈ S2 there is a diagonal map
∆t : Conf (X ,S2)→W (X ,S1,S2) induced from the diagonal
map ∆t : XS2 → XS1 defined by

∆t(ι)(s) =
{
ι(s) s ∈ S2

ι(t) s ∈ S1 − S2

If X is Hausdorff, the image of ∆t is closed and restricted to
Conf (X ,S2) the different images are disjoint.

Assuming X is a
metric ANR, so are all the other spaces under consideration and
so there are disjoint open sets Ut ⊂ W (X ,S1,S2) which are
mapped into one another by the evident ΣS2 action with Ut a
neighborhood of the image of ∆t . Let ∂Ut denote Ut minus the
image of ∆t .

Then
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t∈S2

Ut⊥⊥
t∈S2

∂Ut

Conf (X ,S1) W (X ,S1,S2)

⊂

⊂

∩ ∩

is a Mayer-Vietoris square.

This means that W (X ,S1,S2) is
homotopy equivalent to the double mapping cylinder of the
green inclusions. It further follows that the mapping cone of the
horizontal green inclusion is homotopy equivalent to the
mapping cone of the black horizontal inclusion. Let Ct be the
mapping cone of the inclusion

W (X ,S1,S2)−∆t
(
Conf (X ,S2)

)
⊂ W (X ,S1,S2)
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Hence
Conf (X ,S1) ⊂ W (X ,S1,S2)

ρ−−→ ∨
s∈S2

Cs

is a homotopy cofibration sequence.

The map ρ followed by a
projection ∨

s∈S2
Cs → Ct is the map ρt .

Theorem
If X is a finite-dimensional paracompact manifold without
boundary, then Ct is the Thom complex of the tangent bundle of
X, pulled back to Conf (X ,S2) via the projection onto the t
coordinate.
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Conf (X ,S1) ⊂ W (X ,S1,S2)
ρ−−→ ∨

s∈S2
Ct

In cohomology with coefficients in a ring R, the above sequence
is a sequence of H ∗

(
W (X ,S1,S2) ;R

)
-modules so the map ρ is

completely determined in cohomology by the images of the
Thom classes, ρ∗t (Ut).

If X is closed, compact and oriented, and if R is a field F,
Milnor-Stasheff, Thm. 11.11, p. 128, work out this image,
∆ ∈ H ∗(X{1,2},F). Once there is a reason to do so, working out
the general case is not difficult. In any case, naturality shows

ρ∗t (Ut) = ι∗t,x(∆)

where {x} = S1 − S2. For any s1, s2 ∈ S1 let ∆s2,s1 = ι∗s2,s1(∆).
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The case X = M × R2

The map Conf (X ,S1) ⊂ W (X ,S1,S2) has a retraction
r : W (X ,S1,S2)→ Conf (X ,S1) such that the composition

W (X ,S1,S2)
r−−→ Conf (X ,S1) ⊂ W (X ,S1,S2)

is homotopic to the identity. It comes from an
orientation-preserving embedding e1 ⊥⊥ e2 : R2 ⊥⊥ R2 ⊂ R2:

r(ι)(s) =
{
e1
(
ι(s)

)
s ∈ S2

e2
(
ι(s)

)
otherwise

Note any cohomology class U with r∗(U ) = 0 comes from a
unique class in the mapping cone. In the manifold case, the
mapping cone is a Thom space. If X is also orientable of
dimension n, then there exists a unique element
U ∈ H n−1(Conf (X , {1, 2}) ; Z

)
such that r∗(U ) = 0 and U

comes from the Thom class.
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The case X = M × R2

For every ordered pair of elements (s1, s2) with s1, s2 ∈ S define
ιs2,s1 : {1, 2} → S by ιs2,s1(j) = sj , j = 1, 2. Let ιs2,s1 also denote
the induced map of configuration spaces. Define

As2,s1 ∈ H n−1(Conf (X ,S) ; Z
)

as ι∗s2,s1(U ).

With field coefficients H ∗
(
Conf (X ,S) ; F

)
is the quotient of

S[As2,s1 ]⊗H ∗(M ; F)⊗S modulo the relations below. Here
S[As2,s1 ] is the graded symmetric algebra on the elements As2,s1 ,
s1, s2 ∈ S . The relations are

I As2,s1 = (−1)n−1As1,s2

I A2
s2,s1 = 0

I As2,s1As3,s1 = As2,s1

(
As3,s1 −As3,s2

)
I Given m ∈ H r(M ; F) and s ∈ S let [m]s denote the element

1⊗ · · · ⊗m ⊗ · · · ⊗ 1 ∈ H r(M ; F)⊗S which has a 1 in every
position but the sth where it is m. Then
[m]s2As2,s1 = [m]s1As2,s1
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A decomposition of the suspension of Conf (M × R, S1)
The inclusion Conf (M × R,S) ⊂ W (M × R,S1,S2) is also
split.

The cofibre of this inclusion is the Thom complex of the
tangent bundle to M × R pulled back to Conf (M × R,S2),
which is the suspension of the Thom complex of the tangent
bundle to M pulled back to Conf (M × R,S2). Denote the
Thom complex of the tangent bundle to M pulled back to
Conf (M × R,S2) by Ts(τM ). It follows that

ΣConf (M × R,S1) ∼= ΣW (M × R,S1,S2) ∨ ∨
s∈S2

ΣTs(τM )

One can apply the cofibration method to bundles over XS and
eventually see that ΣConf (M × R,S1) is a wedge to Thom
complexes of sums of pulled back tangent bundles over products
of copies of M .

In particular ΣConf (Rn ,S1) is a wedge of spheres. We will
return to the question of enumerating these Thom spaces later.
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The Totaro spectral sequence for manifolds
Given any graded commutative ring, B, we can form a new
graded commutative ring S[As2,s1 ]⊗ B⊗S modulo the four
relations

I As2,s1 = (−1)n−1As1,s2

I A2
s2,s1 = 0

I As2,s1As3,s1 = As2,s1

(
As3,s1 −As3,s2

)
I Given m ∈ B and s ∈ S [m]s2As2,s1 = [m]s1As2,s1

Theorem (Totaro 1993-6)
Let M be a manifold of dimension n > 2. The Leray spectral
sequence for the inclusion Conf (M ,S) ⊂ M S with field
coefficients F has E2 term given by applying the construction
above with B = H ∗(M ; F). The d2 differential is determined by
d2(As2,s1) = ∆s2,s1 where ∆s2,s1 = ι∗s2,s1(∆) and where ∆ is the
diagonal class ∆ ∈ H n(M {1,2}; F). The spectral sequence
converges as a ΣS -algebra to H ∗(Conf (M ,S) ; F).
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The Totaro spectral sequence (continued)
Remark: Totaro shows that if M is a smooth complex
projective variety and F has characteristic zero, d2 is the only
differential. Felix and Thomas prove the same result for any
formal manifold, which extends the result to spaces like
products of spheres.

Remark: If ∆ = 0, the Totaro spectral sequence collapses.

Remark: If F has characteristic zero and if M has non-trivial
Massey triple products, Felix and Thomas show that there may
be additional differentials. An example is the tangent sphere
bundle to S2 × S2.

Remark: Longoni and Salvatore show that even though the
lens spaces L7,1 and L7,2 are homotopy equivalent, their
configuration spaces are not whenever |S | > 2.
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The Totaro spectral sequence (continued)

Remark: Aouina & Klein and Cohen & Taylor show that
homotopy equivalent manifolds give stably-homotopy equivalent
configuration spaces. In particular, their Totaro spectral
sequences have the same E2, the same d2 and the same
⊕

p+q=r
Ep,q
∞ for each r .

It is tempting to conjecture that the spectral sequences are
isomorphic even though there is no obvious map between them.



More results in the M × R case (START HERE)
To describe the various Thom spaces which go into the
decomposition of ΣConf (M ,S), begin by discussing
1-dimensional CW complexes.

Given a finite set S , an ordered
1-complex Γ is a CW complex with vertex set S and a set of
edges E(Γ). Each edge is oriented and the set of edges is
ordered.
Given an edge e ∈ E(Γ) define Ae = As2,s1 where e starts at
vertex s1 and ends at vertex s2. Define AΓ = Ae1 · · ·Aek where
e1, . . . , ek are the edges of Γ in order. These conventions set up
a bĳection between products of the A’s and ordered
1-complexes. It can be shown that

AΓ 6= 0 if and only if H1(Γ) = 0.

Hence AΓ 6= 0 if and only if each path component of Γ is a tree
or a single vertex. If we continue the arboreal theme by calling
components with single vertices seeds, then AΓ 6= 0 if and only
if Γ is a forest.
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The key to the proof of the previous result is the graphical
version of the three-term relation which can be described using
ordered 1-complexes.

Say that a vertex s3 supports an incoming
three-term relation provided there are at least two edges which
have s3 as an incoming end. There may well be additional
vertices and edges which are not drawn in the picture.

s3

s2s1

e1 e2

Draw a new edge from s1 to s2, provided e1 < e2, to get the
triangle on the next page.
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The three-term relation says that a combination of three
ordered 1-complexes is 0. They are obtained by combining the
three ways of deleting an edge from the triangle, and reordering
an edge or two.
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Theorem
Given a vertex which supports a three-term relation then for the
three graphs described above

H∗(Γ3) ∼= H∗(Γ2) ∼= H∗(Γ1)

A graph partitions its set of vertices by saying two are
equivalent if and only if they lie in the same path component.
All three graphs yield the same partition.

Certain collections of ordered 1-complexes give a basis for
H ∗
(
Conf (Rn ,S) ; Z

)
. Clearly the ordered 1-complexes in a

basis must be a forest, but there are more forests than basis
elements whenever |S | > 2.
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One basis is given by the admissible forests. To define when an
forest is admissible, it is first necessary to order S . Then we can
orient an edge by starting at the smaller vertex and going to
the larger. We can order the edges using lexicographical order.
A forest is admissible provided no vertex supports an incoming
three-term relation using the above orientations and ordering.

Theorem
If A(S) is the set of admissible forests on the ordered vertex set
S then the elements AΓ for all Γ ∈ A(S) are an additive basis
for H ∗

(
Conf (Rn ,S) ; Z

)
, n > 2.

For any forest Γ there is a diagonal

∆Γ : Xπ0(Γ) → XS

defined by
(
∆Γ(ι)

)
(s) = ι

(
[s]
)
where [s] ∈ π0(Γ) is the path

component of Γ containing s. If X is a manifold, let νγ be the
normal bundle of Xπ0(Γ) in XS . Note it is a sum of various
tangent bundles of X pulled back to Xπ0(Γ).
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Let A(S) be a set of forests such that the collection AΓ,
Γ ∈ A(S) is a basis for H ∗

(
Conf (Rn ,S) ; Z

)
.

Then
ΣConf

(
M × R1,S

)
∼= ∨

Γ∈A(S)
ΣT (νΓ)

Remark: The admissible basis has an additional property that
there is an algorithm for writing any forest as a linear
combination of admissible forests.
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The top representation

The sub-group of H ∗
(
Conf (Rn ,S) ; Z

)
generated by all AΓ with

the associated partition fixed form a subgroup of
H (n−1)(|S |−r)(Conf (M ,S)); Z) where r is number of path
components of Γ, which is also the number of elements in the
partition.
Hence the highest non-trivial cohomology group of Conf (Rn ,S)
is in dimension (n − 1)(|S | − 1). Classes AΓ in this dimension
come from forests which are connected and vice versa.
From this one sees that H ∗

(
Conf (Rn ,S) ; Z

)
is built up out of

tensor products of top dimensional groups for various subsets of
S .

Example
Let S = {1, 2, 3, 4, 5} and let

{
{1, 2, 3}, {4, 5}

}
be a partition.

Then a sumand of H 3(n−1)(Conf (Rn ,S) ;Z ) is a tensor product
of the top group for 3 points tensor the top group for 2 points.



The top representation (continued)
Recall every forest partitions the set S and by taking the
cardinality of each set in the partition, we get a partition of the
integer |S |. Given any two forests with the same integer
partition, there are permutations of S which take one to the
other.
Hence under the action of the symmetric group, the
cohomology decomposes into summands corresponding to
integer partitions of |S |. The cohomological degree of the
corresponding AΓ can be determined from the integer partition.
Leher & Solomon wrote down the Poincaré character for the
rational representation on H ∗(Conf (Rn ,S) ; Q).
Fred & I worked out the representation over Z as a sum of
tensor products of representations induced from Young
subgroups: i.e. subgroups of the form

ΣS1 × · · · × ΣSk ⊂ ΣS1⊥⊥···⊥⊥Sk



The top representation (continued)

The top representation comes from the partition with one
subset (or one integer). For example, one basis for this group
consists of the admissible trees.
Notice however that a permutation applied to an admissible
tree is often not admissible.



Here is an admissible tree on {a, b, c, d, e, f } ordered
alphabetically.

a

b

c

d

e

f

1

2 4

3

5

The permutation
(
abcdef
acbdef

)
applied to the above admissible tree

gives the tree

a

c

b

d

e

f

1

2 4

3

5

which is no longer admissible: the orientation on the edge
between b and c has the “wrong” orientation.
If we reorient this edge “correctly”, then c supports an
incoming three-term relation.
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There are other bases for this top rep which are useful. A rooted
tree is a tree with a distinguished vertex. A tree is called linear
provided every vertex has valence 1 or 2. There must be exactly
two vertices of valence 1. Fix one of the vertices of valence one,
say v.
A linear rooted tree with root v is a linear tree with vertex set S
with one vertex of valence 1 being v. Direct the edges so that
you start at v and just keep going. Number the edges in the
order in which they appear along the tree starting at the root.
Here are the two rooted trees on {1, 2, 3}:

• • •
1 2 3

• • •
1 3 2

This shows that the top rep as an integral representation of the
of the symmetric subgroup of ΣS fixing v is free.



C (M ,X)

Fix a countably infinite set, say N. Given a space M and a
based space (X , ∗) consider the space of maps f : N→ M ×X .
Define the support of f to be the subset of N such that
f (s) 6= ∗. Let E (M ,X) be the subspace of functions whose
support is a finite subset, say S , and such that the composition
S f−→ M ×X → M is injective.
Define

C (M ,X) = E (M ,X) / ≈

where ≈ is the equivalence relation generated by the following
two types of relations:
1. f1 ≈ f2 if f1 and f2 have the same support and are equal

when restricted to that support
2. f1 ≈ f2 if there exists a bĳection φ : N→ N such that

f1 ◦ φ = f2



C (M ,X) (canonical identifications)
Since any two countably infinite sets are bĳectively equivalent,
the choice of set N is not usually important: if it is we will
write CN (M ,X).

Any bĳection φ : N1 → N2 induces a homeomorphism
CN2 (M ,X)→ CN1 (M ,X). Thanks to relation (2), any two φ
induce identical maps. In particular, any two versions of this
construction can be canonically identified.

In a few pages we will also need the following related remark.
Define the braid space B (M ,S) to be Conf (M ,S) /ΣS . Given
another finite set T of the same cardinality, any choice of
bĳection φ : T → S induces a homeomorphism
φ : Conf (M ,S)→ Conf (M ,T ) which descends to a
homeomorphism B (M ,S)→ B (M ,T )
The remark is that two different φ’s induced the same map on
the braid spaces so they may be canonically identified. In the
sequel we will write Bk (M ) whenever the index set has
cardinality k.



C (M ,X) (canonical identifications)
Since any two countably infinite sets are bĳectively equivalent,
the choice of set N is not usually important: if it is we will
write CN1 (M ,X).
Any bĳection φ : N1 → N2 induces a homeomorphism
CN2 (M ,X)→ CN1 (M ,X). Thanks to relation (2), any two φ
induce identical maps. In particular, any two versions of this
construction can be canonically identified.

In a few pages we will also need the following related remark.
Define the braid space B (M ,S) to be Conf (M ,T ) /ΣT . Given
another finite set T of the same cardinality, any choice of
bĳection φ : T → S induces a homeomorphism
φ : Conf (M ,S)→ Conf (M ,T ) which descends to a
homeomorphism B (M ,S)→ B (M ,T )
The remark is that two different φ’s induced the same map on
the braid spaces so they may be canonically identified. In the
sequel we will write Bk (M ) whenever the index set has
cardinality k.



C (M ,X) (canonical identifications)
Since any two countably infinite sets are bĳectively equivalent,
the choice of set N is not usually important: if it is we will
write CN1 (M ,X).
Any bĳection φ : N1 → N2 induces a homeomorphism
CN2 (M ,X)→ CN1 (M ,X). Thanks to relation (2), any two φ
induce identical maps. In particular, any two versions of this
construction can be canonically identified.

In a few pages we will also need the following related remark.
Define the braid space B (M ,S) to be Conf (M ,T ) /ΣT . Given
another finite set T of the same cardinality, any choice of
bĳection φ : T → S induces a homeomorphism
φ : Conf (M ,S)→ Conf (M ,T ) which descends to a
homeomorphism B (M ,S)→ B (M ,T )
The remark is that two different φ’s induced the same map on
the braid spaces so they may be canonically identified. In the
sequel we will write Bk (M ) whenever the index set has
cardinality k.



C (M ,X) (continued)
Filter C (M ,X) by letting Fk (M ,X) ⊂ C (M ,X) be the image
of all functions in E (M ,X) whose support has at most k
elements. Notice both relations (1) and (2) preserve the
cardinality of the support of the functions.
Define Dk (M ,X) to be the cofibre of the inclusion
Fk−1 (M ,X) ⊂ Fk (M ,X). If (X , ∗) is an NDR pair then so is(
Fk (M ,X) ,Fk−1 (M ,X)

)
and we can identify the cofibre. Fix a

finite set of cardinality k, S ⊂ N. The composition
Conf (M ,S)×XS → Fk (M ,X) is onto and factors through the
orbit space Conf (M ,S)×ΣS XS .
The map Conf (M ,S)×ΣS XS → Dk (M ,X) is onto and if
F∆ ⊂ XS is the set of points with at least one coordinate the
base point, then

Conf (M ,S)×ΣS XS/Conf (M ,S)×ΣS F∆→ Dk (M ,X)

is a homeomorphism.



C (M ,X) (continued)

Any other choice of finite set of cardinality k gives a similar
identification and any choice of bĳection induces the same map.
With a bit of fiddling, one can rewrite Dk (M ,X) as

Dk (M ,X) = Conf (M ,S) nΣS X [S ]

where X [S ] denotes the S-fold smash product.

We would like to extend the natural map
fk : Fk (M ,X)→ Dk (M ,X) to a map C (M ,X)→ Dk (M ,X)
but this is not usually possible.
It is however possible to do so stably.
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Stable splitting of C (M ,X)

To describe the extension, first try the most naive thing you can
think of: given f with support S of cardinality bigger than k,
just restrict to some subset of cardinality k and pass to the
quotient Dk (M ,X). The obvious problem is which subset to
take. The solution in situations like this where there is no
natural choice is to take all choices.

Let N′ =
(

N
k

)
denote the set of all subsets of N of cardinality

k. Note N′ is also countably infinite.



Define a map

hk : CN (M ,X)→ CN′ (Bk (M ) ,Dk (M ,X))

as follows. Recall that a point in E (M ,X) is a map
f : N→ M ×X satisfying some additional conditions. We need
to define a map hk(f ) : N′ → Bk (M )×Dk (M ,X). An element
of N′ is a set S ⊂ N of cardinality k. Hence f restricted to S is
a point in Fk (M ,X) and hence a point in Dk (M ,X), denote
this point by [f ]S . If S is not in the support of f , [f ]S is the
base point.
If S is in the support of f , let 〈f 〉S ∈ Bk (M ) denote the image
in Bk (M ) of the point in Conf (M ,S) given by the composition

S ⊂ N f−−→ M ×X → M

If S is not in the support of f , define 〈f 〉S to be any point you
like in Bk (M ). Define

hk(f )(S) = 〈f 〉S × [f ]S



Check that the support of hk(f ) is the set of all subsets of
cardinality k contained in the support of f . The additional
requirements to be a point in CN′ (B(M , k),Dk (M ,X)) can be
checked.
Since Bk (M ) is a manifold, it embeds in RK for some K and so
there is a map

hk : CN (M ,X)→ CN′
(
RK ,Dk (M ,X)

)
Moreover, Dk (M ,X) is path-connected and so a theorem of
Peter May supplies a map
CN′

(
RK ,Dk (M ,X)

)
→ ΩKΣKDk (M ,X) and so we get a map

hk : CN (M ,X)→ ΩKΣKDk (M ,X)

and a commutative diagram



Fk (M ,X) Dk (M ,X)

C (M ,X) ΩKΣKDk (M ,X)

∩

fk

hk

To belabor the point, we could adjoint hk and note

ΣK fk : ΣKFk (M ,X) ⊂ ΣKC (M ,X) adhk−−−→ ΣKDk (M ,X)

The K certainly increases as k increases, but if we pass to the
stable world we get an equivalence

QC (M ,X) ∼= Q
∞
∨

k=1
Dk (M ,X)

There are many results concerning this construction and its
pieces.



Remark: QC
(
M ,S0) = Q

∞
∨

k=1
B(M , k)

Remark: For an appropriate K there is a map

Σk·KDk (M ,X)→ Dk
(
M ,ΣKX

)
which is a homotopy equivalence.

Remark: A theorem of Jeff Caruso says

ΩC (M ,ΣX) ∼= C (M × R,X)

This generalizes the case in which M = Rn due to Peter May.



Remark: If X is path connected, then a theorem of
Bödigheimer says that C (M ,X) is weakly-homotopy equivalent
to a space of sections of a certain bundle E → M . The bundle is
formed from the tangent bundle T → M as follows. Take the
fibre-wise one point compactification of the tangent bundle:
take T ⊥⊥ M → M and topologize so that each fibre is the
one-point compactification of the fibre of T . This bundle is
denoted T̂ and it has a section at infinity. Then E is the
reduced fibre-wise smash of T̂ with X . This a bundle with fibre
the reduced suspension ΣnX . The reduced suspension has a
base point and so E has a section at infinity, σ∞. A section
σ : M → E has support the set of all points m ∈ M such that
σ(m) 6= σ∞(m). A section has compact support provided the
closure of the support is compact.
Bödigheimer says that C (M ,X) is weakly-homotopy equivalent
to the space of sections with compact support of E → M .



Corollary
C (M ,X) is a proper homotopy invariant of M.
Of course up to homotopy type C (M ,X) only depends on the
homotopy type of X .


