
NDPMine: Efficiently Mining Discriminative Numerical
Features for Pattern-Based Classification

Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, and Tarek Abdelzaher

Department of Computer Science,
University of Illinois at Urbana-Champaign,

Urbana IL 61801, USA
{hkim21,kim71,weninge1,hanj,zaher }@illinois.edu

Abstract. Pattern-based classification has demonstrated its power inrecent stud-
ies, but because the cost of mining discriminative patternsas features in clas-
sification is very expensive, several efficient algorithms have been proposed to
rectify this problem, such asDDPMine[3], corrmine[14], andgPLS[17]. DDP-
Mine obtains its efficiency by iteratively pruning the input dataset thereby po-
tentially losing important information. Other methods, such asgBoost[18], are
either memory efficient or computationally efficient, but not both. These algo-
rithms also assume that feature values of the mined patternsare binary, i.e., the
pattern either exists or not. In some problems, such as software behavior analy-
sis, the number of times a pattern appears is more informative than whether the
pattern appears or not. To resolve these deficiencies, we propose a mathemati-
cal programming method that directly mines discriminativepatterns as numerical
features for classification. We also propose a novel search space shrinking tech-
nique which addresses the inefficiencies in iterative pattern mining algorithms.
Finally, we show that our method is an order of magnitude faster, significantly
more memory efficient and more accurate than current approaches.

Keywords: Pattern-Based Classification, Discriminative Pattern Mining

1 Introduction

Pattern-based classification is a process of learning a classification model where pat-
terns are used as features. Recent studies show that classification models which make
use of pattern-features can be more accurate and more understandable than the original
feature set [2, 3]. Pattern-based classification has been adapted to work on data with
complex structures such as sequences [12, 9, 15, 6, 20], and graphs [17, 18, 16], where
discriminative frequent patterns are taken as features to build high quality classifiers.

These approaches can be grouped into two settings: binary ornumerical. Binary
pattern-based classification is the well-known problem setting in which the feature
space is{0, 1}d, whered is the number of features. This means that a classification
model only uses information about whether an interesting pattern exists or not. On the
other hand, a numerical pattern-based classification model’s feature space isNd, which
means that the classification model uses information about how many times an inter-
esting pattern appears. For instance, in the analysis of software traces loops and other

2 Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, and Tarek Abdelzaher

repetitive behaviors may be responsible for failures. Therefore, it is necessary to deter-
mine the number of times a pattern occurs in a sequence.

Pattern-based classification techniques are prone to a major efficiency problem to
the exponential number of possible patterns. Several studies have identified this issue
and offered solutions [3, 6]. However, to our knowledge there has not been any work
addressing this issue in the case of numerical features. Furthermore, these solutions
achieve their efficiency by removing patterns that could have been features.

Recently a boosting approach was proposed by Saigoet al.calledgBoost[18]. Their
algorithm employs a linear programming approach to boosting as a base algorithm com-
bined with a pattern mining algorithm. The linear programming approach to boosting
algorithm (LPBoost) [5] is shown to converge faster than ADABoost [7] and is proven
to converge to a global solution.gBoostworks by iteratively growing and pruning a
search space of patterns via branch and bound search. In workprior to gBoost[16] by
the same authors, the search space is erased and rebuilt during each iteration. However,
in their most recent work, the constructed search space is reused in each iteration to
minimize computation time; the authors admit that this approach would not scale but
were able to complete their case study with 8GB main memory.

The high cost of the finding numerical features along with theaccuracy issues of
binary-only features motivates us to investigate an alternative approach. What we wish
to develop is a method which is both efficient and able to mine numerical features
for classification. This leads to our proposal of anumerical direct pattern miningap-
proach,NDPMine. Our approach employs a mathematical programming method that
directly mines discriminative patterns as numerical features. We also address the fun-
damental problem of iterative pattern mining algorithms, and propose a novel search
space shrinking technique to prune memory space without removing potential features.
We show that our method is an order of magnitude faster, significantly more memory
efficient and more accurate than current approaches.

The structure of this paper is as follows. In Section 2 we provide a brief background
survey and discuss in further detail the problems thatNDPMineclaims to remedy. In
Section 3 we introduce the problem setting. Section 4 describes our discriminative pat-
tern mining approach, pattern search strategy and search space shrinking technique.
The experiments in Section 5 compare our algorithm with current methods in terms of
efficiency and accuracy. Finally, Section 6 contains our conclusions.

2 Background and Related Work

The first pattern mining algorithms originated from the domain of association rule min-
ing in which CBA [11] and CMAR [10] used thetwo-steppattern mining process to
generate a feature set for classification. Chenget al. [2] showed that, within a large set
of frequent patterns, those patterns which have higherdiscriminativepower, i.e. had
higher information gain and/or Fisher score, are useful in classification. With this in-
tuition, their algorithm (MMRFS) selects patterns for inclusion in the feature set based
on the information gain or Fisher score of each pattern. The following year, Chenget
al. [3] showed that they could be more efficient if they performedpattern-based classifi-
cation by adirect processwhich directly mines discrim-inative patterns (DDPMine). A

Title Suppressed Due to Excessive Length 3

separate algorithm by Fanet al.(calledM bT) [6], developed at the same time asDDP-
Mine, uses a decision tree-like approach, which recursively splits the training instances
by picking the most discriminative patterns.

As alluded to earlier, an important problem with the many approaches is that the
feature set used to build the classification model is entirely binary. This is a significant
drawback because many datasets rely on the number of occurrences of a pattern in order
to train an effective classifier. One such dataset comes fromthe realm of software be-
havior analysis in which patterns of events in software traces are available for analysis.
Loops and other repetitive behaviors observed in program traces may be responsible for
failures. Therefore, it is necessary to mine not only the execution patterns, but also the
number of occurrences of the patterns. Loet al.[12] proposed a solution to this problem
(hereafter called SoftMine) which minesclosed unique iterative patternsfrom normal
and failing program traces in order to identify software anomalies. Unfortunately, this
approach employs the less efficient two-step process which exhaustively enumerates a
huge number of frequent patterns before finding the most discriminative patterns.

Other approaches have been developed to address specific datasets. For time series
classification, Ye and Keogh [20] used patterns called shapelets to classify time-series
data. Other algorithms include DPrefixSpan [15] which classifies action sequences,
XRules [21] which classifies trees, and gPLS [17] which classifies graph structures.

Table 1.Comparison of related work

Binary Numerical
Two-step MMRFS SoftMine, Shapelet
Direct DDPMine,MbT , gPLS NDPMine

DPrefixSpan, gBoost

Table 1 compares the aforementioned algorithms in terms of the pattern’s feature
value (binary or numerical) and feature selection process (two-step or direct). To the
best of our knowledge there do not exist any algorithms whichmine patterns as numer-
ical features in a direct manner.

3 Problem Formulation

Our framework is a general framework for numerical pattern-based classification. We,
however, confine our algorithm for structural data classification such as sequences,
trees, and/or graphs in order to present our framework more clearly. There are sev-
eral pattern definitions for each structural data. For example, for sequence datasets,
there are sequential patterns, episode patterns, iterative patterns, and unique iterative
patterns [12]. The pattern definition which is better for classification depends on each
dataset, and thus, we assume that the definition of a pattern is given as an input. Let
D = {xi, yi}

n
i=1 be a dataset, containing structural data, wherexi is an object andyi is

its label. LetP be the set of all possible patterns in the dataset.
We will introduce several definitions, many of which are frequently used in pattern

mining papers.
A patternp in P is a sub-pattern ofq if q containsp. If p is a sub-pattern ofq, we

sayq is a super-pattern ofp. For example, in a sequence, a sequential pattern〈A,B〉

4 Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, and Tarek Abdelzaher

is a sub-patternof a sequential pattern〈A,B,C〉 because we can find〈A,B〉 within
〈A,B,C〉.

The number of occurrences of a given patternp in a datax is denoted byocc(p, x).
For example, if we count the number of non-overlapped occurrences of a pattern, the
number of occurrences of a patternp = 〈A,B〉 in a datax = 〈A,B,C,D,A,B〉 is 2,
andocc(p, x) = 2. Since the number of occurrences of a pattern in a data depends on a
user’s definition, we assume that the functionocc is given as an input.

The supportof a patternp in D is denoted bysup(p,D), wheresup(p,D) =
∑

xi∈D occ(p, xi). A patternp is frequentif sup(p,D) ≥ θ, whereθ is a minimum
support threshold.

A function f on P is said to posses theapriori property if f(p) ≤ f(q) for any
patternp and all its sub-patternsq.

With these definitions, the problem we present in this paper is as follows: Given
a datasetD = {xi, yi}

n
i=1, and an occurrence functionocc with theapriori property,

we want to find a good feature set of a small number of discriminative patternsF =
{p1, p2, . . . , pm} ⊆ P so that we mapD intoN

m space to build a classification model.
The training dataset inNm space for building a classification model is denoted byD′ =
{x′

i, yi}
n
i=1, wherex′

ij = occ(pj , xi).

4 NDPMine

From the discussion in Section 1, we see the need for a method which efficiently
mines discriminative numerical features for pattern-based classification. This section
describes such a method called NDPMine (NumericalDiscriminativePattern Mining).

4.1 Discriminative Pattern Mining with LP

For direct mining of discriminative patterns two properties are required: (1) a measure
for discriminative power of patterns (2) a theoretical bound of the measure for pruning
search space. Using information gain and Fisher score,DDPMinesuccessfully showed
the theoretical bound when feature values of patterns are binary. However, there are
no theoretical bounds for information gain and Fisher scorewhen feature values of
patterns are numerical. Since standard statistical measures for discriminative power are
not suitable in our problem, we take different approach: model-based feature set mining.
Model-based feature set mining find a set of patterns as a feature set while building a
classifier. In this section, we will show thatNDPMinehas the two properties required
for direct mining of discriminative patterns by formulating and solving an optimization
problem of building a classifier.

To do that, we first convert a given dataset into a high-dimensional dataset, and learn
a hyperplane as a classification boundary.

Definition 1. A pattern and class label pair(p, c) is called class-dependent pattern,
wherep ∈ P andc ∈ C = {−1, 1}. Then, the value of a class-dependent pattern(p, c)
for datax is denoted bysc(p, x), wheresc(p, x) = c · occ(p, x).

Title Suppressed Due to Excessive Length 5

Since there are2|P | class-dependent patterns, we have2|P | values for an object
x in D. Therefore, by using all class-dependent patterns, we can map xi in D into
x′
i in N

2|P | space, wherex′
ij = scj(pj , x

′
i). One way to train a classifier in high di-

mensional space is to learn a classification hyperplane (i.e., a bound with maximum
margin) by formulating and solving an optimization problem. Given the training data
D′ = {x′

i, yi}
n
i=1, the optimization problem is formulated as follows:

max
α,ρ

ρ

s.t.
∑

(p,c)∈P×C

yiαp,csc(p, x
′
i) ≥ ρ, ∀i

∑

(p,c)∈P×C

αp,c = 1, αp,c ≥ 0,

(1)

whereα represents the classification boundary, andρ is the margin between two classes
and the boundary.

Let α̃ andρ̃ be the optimal solution for (1). Then, the prediction rule learned from
(1) isf(x′) = sign(x′ · α̃), wheresign(v) = 1 if v ≥ 0 and -1, otherwise. If∃(p, c) ∈
P ×C : αp,c = 0, f(x′) is not affected by the dimension of the class-dependent pattern
(p, c). LetF = {p|∃c ∈ C, α̃p,c > 0}. If we useF instead ofP in (1), we will have the
same prediction rule. In other words, only the small number of patterns inF , we can
learn the same classification model as the one learned byP . With this observation, we
want to mine such a pattern set (equivalently: a feature set)F to build a classification
model.

In addition, we wantF to be as small as possible. In order to obtain a relatively
small feature set, we need to obtain a very sparse vectorα, where only few dimensions
are non-zero values. To obtain a sparse weight vectorα, we adopt the formulation from
LPBoost [5].

max
α,ξ,ρ

ρ− ω
∑n

i=1 ξi

s.t.
∑

(p,c)∈P×C

yiαp,cs(x
′
i; p, c) + ξi ≥ ρ, ∀i

∑

(p,c)∈P×C

αp,c = 1, αp,c ≥ 0

ξi ≥ 0, i = 1, . . . , n

(2)

,whereρ is a soft-margin,ω = 1
ν·n , andν is a parameter for misclassification cost. The

difference between here is that (2) allows mis-classifications of the training instances to
costω, where (1) does not. To allow mis-classifications, (2) introduces slack variables
ξ, and makesα sparse in its optimal solution [5].

Next, we do not know all patterns inP unless we mine all of them, and mining all
patterns inP is intractable. Therefore, we cannot solve (2) directly. Fortunately, such a
linear optimization problem can be solved bycolumn generation– a classic optimiza-
tion technique [13]. The column generation technique, alsocalled the cutting-plane al-
gorithm, starts with an empty set of constraints in the dual problem and iteratively adds
the most violated constraints. When there are no more violated constraints, the optimal
solution under the set of selected constraints is equal to the optimal solution under all

6 Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, and Tarek Abdelzaher

constraints. To use the column generation technique in our problem, we give the dual
problem of (2) as shown in [5].

min
µ,γ

γ

s.t.
n
∑

i=1

µiyisc(p,x
′
i) ≤ γ, ∀(p, c) ∈ P × C

n
∑

i=1

µi = 1, 0 ≤ µi ≤ ω, i = 1, . . . , n.

(3)

,whereµ can be interpreted as a weight vector for the training instances.
Each constraint

∑n

i=1 µiyisc(p,x
′
i) ≤ γ in the dual 3 corresponds to a class-

dependent pattern(p, c). Thus, the column generation finds a class-dependent pattern
at each iteration whose corresponding constraint is violated the most. LetH(k) be the
set of class-dependent patterns found so far at thekth iteration. Letµ(k) andγ(k) be the
optimal solution forkth restricted problem:

min
µ(k),γ(k)

γ(k)

s.t.
n
∑

i=1

µ
(k)
i yisc(p, x

′
i) ≤ γ(k), ∀(p, c) ∈ H(k)

n
∑

i=1

µ
(k)
i = 1, 0 ≤ µ

(k)
i ≤ ω, i = 1, . . . , n

(4)

After solving thekth restricted problem, we search a class-dependent pattern(p∗, c∗)
whose corresponding constraint is violated the most by the optimal solutionγ(k) and
µ(k), and add(p∗, c∗) toH(k).

Definition 2. For a given(p, c), let v =
∑n

i=1 µ
(k)
i yisc(p, x

′
i). If v ≤ γ(k), the corre-

sponding constraint of(p, c) is not violated byγ(k) andµk because
∑n

i=1 µ
(k)
i yisc(p, x

′
i) =

v ≤ γ(k). If v > γ(k), then we say the corresponding constraint of(p, c) is violated by
γ(k) andµ(k), and the margin of the constraint is defined asv − γ(k).

In this view,(p∗, c∗) is the class-dependent pattern with the maximum margin. Now,
we define our measure for discriminative power of class-dependent patterns.

Definition 3. We definegain functionfor a given weightµ as follows:

gain(p, c;µ) =

n
∑

i=1

µiyisc(p, x
′
i).

For givenγ(k) andµ(k), choosing the constraint with maximum margin is the same
as choosing the constraint with maximum gain. Thus, we search for a class-dependent
pattern with maximum gain in each iteration until there are no more violated constraints.
Let k∗ be the last iteration. Then, we can get the optimal solutionρ̃ andα̃ for (2) by

Title Suppressed Due to Excessive Length 7

Algorithm 1 Discriminative Pattern Mining

1: H(0) ← ∅
2: γ(0) ← 0
3: µ

(0)
i = 1/n ∀i = 1, . . . , n

4: for k = 1, . . . do
5: (p∗, c∗) = argmax(p,c)∈P×C gain(p, c;µ(k−1))

6: if gain(p∗, c∗;µ(k−1))− γ(k−1) < ǫ then
7: break
8: end if
9: H(k) ← H(k−1) ∪ {(p∗, c∗)}

10: Solve thekth restricted problem (4) to getγ(k) andµ(k)

11: end for
12: Solve (5) to get̃α
13: F ← {p|∃c ∈ C, α̃p,c > 0}

solving the following optimization problem and setting̃α(p,c) = 0 for all (p, c) /∈

H(k∗).

min
α,ξ,ρ

−ρ+ ω
∑n

i=1 ξi

s.t.
∑

(p,c)∈H(k∗)

yiαp,cs(x
′
i; p, c) + ξi ≥ ρ, ∀i

∑

(p,c)∈H(k∗)

αp,c = 1, αp,c ≥ 0

ξi ≥ 0, i = 1, . . . , n

(5)

The difference is that now we have the training instances in|H(k∗)| dimensions, not in
2|P | dimensions. Once we havẽα, as explained before, we can make a feature setF
such thatF = {p|∃c ∈ C, α̃p,c > 0}. As a summary, the main algorithm ofNDPMine
is presented in Algorithm 1.

4.2 Optimal Pattern Search

As in DDPMine and other direct mining algorithms, our search strategy is abranch-
and-bound approach. We assume that there is a canonical search order forP such that
all patterns inP are enumerated without duplication. Many studies have beendone for
canonical search orders for most of structural data such as sequence, tree, and graph.
Most of the pattern enumeration methods in these canonical search orders create the
next pattern by extending the current pattern. Our aim is to find a pattern with maximum
gain. Thus, for efficient search, it is important to prune theunnecessary or unpromising
search space. Letp be the current pattern. Then, we compute the maximum gain bound
for all super-patterns ofp and decide whether we can prune the branch or not based on
the following theorem.

8 Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, and Tarek Abdelzaher

Algorithm 2 Branch-and-bound Pattern Search
Global variables:maxGain, maxPat
proceduresearch optimal pattern(µ, θ,D)

1: maxGain← 0
2: maxPat← ∅
3: branch and bound(∅,µ, θ,D)

function branch and bound(p,µ, θ,D)

1: for q ∈ {extended patterns ofp in the canonical order} do
2: if sup(q,D) ≥ θ then
3: for c ∈ {−1,+1} do
4: if gain(q, c;µ) > maxGain then
5: maxGain← gain(q, c;µ)
6: maxPat← (q, c)
7: end if
8: end for
9: if gainBound(p;µ) > maxGain then

10: branch and bound(q,µ, θ,D)
11: end if
12: end if
13: end for

Theorem 1. If gainBound(p;µ) ≤ g∗ for someg∗, then
gain(q, c;µ) ≤ g∗ for all super-patternsq of p and allc ∈ C, where

gainBound(p;µ) =

max

∑

{i|yi=+1}

µi · occ(p, x
′
i),

∑

{i|yi=−1}

µi · occ(p, x
′
i)

Proof. We will prove it by contradiction. Suppose that there is a super-patternq of p
such thatgain(q, c;µ) > gainBound(p;µ). If c = 1,

gain(q, c;µ) =

n
∑

i=1

µiyisc(q, x
′
i) =

n
∑

i=1

µiyiocc(q, x
′
i)

=
∑

{i|yi=1}

µiocc(q, x
′
i)−

∑

{i|y=−1}

µiocc(q, x
′
i)

≤
∑

{i|yi=1}

µiocc(q, x
′
i) ≤

∑

{i|yi=1}

µiocc(p, x
′
i)

≤ gainBound(p;µ)

Therefore, it is a contradiction. Likewise, ifc = −1, we can derive a similar contradic-
tion. Note thatocc(q, x′

i) ≤ occ(p, x′
i) becauseocc hasapriori property.

If the maximum gain among the ones observed so far is greater thangainBound(p;µ),
we can prune the branch of a patternp. The optimal pattern search algorithm is pre-
sented in Algorithm 2.

Title Suppressed Due to Excessive Length 9

Iteration

No Shrinking

Shrinking

1 2 3

search space space savings

4

...

...

Fig. 1. Search Space Growth with and without Shrinking Technique. Dark regions represent
shrinked search space (memory savings).

4.3 Search Space Shrinking Technique

In this section, we explain our novel search space shrinkingtechnique. Mining dis-
criminative patterns instead of frequent patterns can prune more search space by using
a bound functiongainBound. However, this requires an iterative procedure like in
DDPMine, which builds a search space tree again and again. To avoid the repetitive
searching,gBoost[18] stores the search space tree of previous iteration in main mem-
ory. The search space tree keeps expanding as iteration goesbecause it needs to mine
different discriminative patterns. This may work for smalldatasets on a machine with
enough main memory, but is not scalable.

In this paper, we also store the search space of previous iteration, but introduce
search space shrinking technique to resolve the scalability issue.

In each iterationk of the column generation, we look for a pattern whose gain is
greater thanγ(k−1), otherwise the termination condition will hold. Thus, if a patternp
cannot have greater gain thanγ(k−1), we do not need to considerp in thekth iteration
and afterwards becauseγ(k) is non-decreasing by the following theorem.

Theorem 2. γ(k) is non-decreasing ask increases.

Proof. In each iteration, we add a constraint that is violated by theprevious optimal
solution. Adding more constraints does not decrease the value of objective function in
a minimization problem. Thus,γ(k) is not decreasing.

Definition 4. maxGain(p) = max
µ,c

gain(p, c;µ), wherec ∈ C, and∀i 0 ≤ µi ≤ ω.

If there is a patternp such thatmaxGain(p) ≤ γ(k), we can safely remove the
pattern from main memory after thekth iteration without affecting the final result of
NDPMine. By removing those patterns, we shrink the search space in main memory
after each iteration. Also, sinceγ(k) increases during each iteration, we remove more
patterns ask increases. This memory shrinking technique is illustratedin Figure 1.

In order to computemaxGain(p), we could consider all the possible values ofµ

by using linear programming. However, we can computemaxGain(p) efficiently by
using the greedy algorithmgreedymaxGainpresented in Algorithm 3.

Theorem 3. The greedy algorithmgreedy maxGain(p) gives the optimal solution,
which is equal tomaxGain(p)

10 Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, andTarek Abdelzaher

Algorithm 3 Greedy Algorithm formaxGain

Global Parameter:ω
function greedy maxGain(p)

1: maxGain+ ← greedy maxGainSub(p,+1)
2: maxGain− ← greedy maxGainSub(p,−1)
3: if maxGain+ > maxGain− then
4: return maxGain+

5: else
6: return maxGain−

7: end if

function greedy maxGainSub(p, c)

1: maxGain← 0
2: weight← 1
3: X ← {x′

1, x
′

2, . . . , x
′

n}
4: while weight > 0 do
5: x′

best = argmaxx′

i
∈X yi · sc(p, x

′

i)
6: if weight ≥ ω then
7: maxGain← maxGain+ ω · ybest · sc(p, x

′

best)
8: weight← weight− ω
9: else

10: maxGain← maxGain+ weight · ybest · sc(p, x
′

best)
11: weight← 0
12: end if
13: X ← X − {x′

best}
14: end while
15: return maxGain

Proof. ComputingmaxGain(p) is very similar to continuous knapsack problem (or
fractional knapsack problem) – one of the classic greedy problems. We can think our
problem as follows: Suppose that we haven items, each with weight of 1 pound and
a value. Also, we have a knapsack with capacity of 1 pound. We can have fractions
of items as we want, but not more thanω. The only difference from continuous knap-
sack problem is that we need to have the knapsack full, and thevalues of items can be
negative. Therefore, the proof of the optimality ofgreedy maxGain can be easily de-
rived from the proof of the optimality of the greedy algorithm for continuous knapsack
problem.

5 Experiments

The major advantages of our method is that it is accurate, efficient in both time and
space, produces small number of expressive features, and operates on different data
types. In this section, we evaluate these claims by testing the accuracy, efficiency and
expressiveness on two different data types: sequences and trees. For comparison-sake
we re-implemented the two baseline approaches described inSection 5.1. All experi-
ments are done on a 3.0GHz Pentium Core 2 Duo computer with 8GBmain memory.

Title Suppressed Due to Excessive Length 11

5.1 Comparison Baselines

As described in previous sections,NDPMine is the only algorithm that uses the direct
approach to mine numerical features, therefore we compareNDPMineto the two-step
process of mining numerical features in computation time and memory usage. Since
we have two different types of datasets, sequences and trees, we re-implemented the
two-stepSoftMinealgorithm by Loet al. [12] which is only available for sequences. By
showing the running time ofNDPMineandSoftMine, we can appropriately compare
the computational efficiency of direct and two-step approaches.

In order to show the effectiveness of the numerical feature values used byNDPMine
over the effectiveness of binary feature values, we re-implemented the binaryDDPMine
algorithm by Chenget al. [3] for sequences and trees.DDPMine uses the sequential
covering method to avoid forming redundant patterns in a feature set. In the original
DDPMinealgorithm [3], both the Fisher score and information gain were introduced as
the measure for discriminative power of patterns; however,for fair comparison of the
effectiveness withSoftMine, we only use the Fisher score inDDPMine.

By comparing the accuracy of both methods, we can appropriately compare the
numerical features mined byNDPMinewith the binary features mined byDDPMine.

In order to show the effectiveness of the memory shrinking technique, we imple-
mented our framework in two different versions, one with memory shrinking technique
and another one without it.

5.2 Experiments on Sequence Datasets

Sequence data is a ubiquitous data structure. Examples of sequence data include text,
DNA sequences, protein sequences, web usage data, and software execution traces.
Among several publicly available sequence classification datasets, we chose to use soft-
ware execution traces from [12]. These software trace datasets contained sequences of
nine different software traces. More detail description ofthe software execution trace
datasets is available in [12].

The goal of this classification task was to determine whethera program’s execution
trace (represented as an instance in the dataset) contains afailure or not. For this task, we
needed to define what constitutes a pattern in a sequence and how to count the number
of occurrences of a pattern in a sequence. We defined a patternand the occurrences of
a pattern the same as in [12].

5.3 Experiments on Tree Datasets

Datasets in tree structure are also widely available. Web documents in XML are good
examples of tree datasets. XML datasets from [21] are one of the commonly used
datasets in tree classification studies. However, we collected a very interesting tree
dataset for authorship classification. In information retrieval and computational linguis-
tics, authorship classification is one of the classic problems. Authorship classification
aims to classify the author of a document. In order to attemptthis difficult problem
with our NDPMinealgorithm, we randomly chose 4 authors – Jack Healy, Eric Dash,
Denise Grady, and Gina Kolata – and collected 100 documents for each author from

12 Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, andTarek Abdelzaher

NYTimes.com. Then, using the Stanford parser [19], we parsed each sentence into a tree
of POS(Part of Speech) tags. We assumed that these trees reflected the author’s writing
style and thus could be used in authorship classification. Since a document consisted of
several sentences, each document was parsed into a set of labeled trees.

From this we had a forest, or a set of trees, as a representative for a document
where its author’s name is the label. We used induced subtreepatterns as features in
classification. The formal definition of induced subtree patterns can be found in [4].
We defined the number of occurrences of a pattern in a documentis the number of
sentences in the document that contained the pattern. We employedCMTreeMiner[4],
the-state-of-art tree mining algorithm, to mine frequent induced subtree patterns.

Since the goal of this classification task was to determine the author of each docu-
ment, all pairs of authors and their documents were combinedto make two-class clas-
sification dataset.

5.4 Parameter selection

Besides the definition of a pattern and the occurrence counting function for a given
dataset,NDPMinealgorithm needs two parameters as input: (1) the minimum support
thresholdθ and (2) the misclassification cost parameterν. Theθ parameter was given
as input. Theν parameter was tuned in the same way SVM tunes its parameters:using
cross-validation on the training dataset.

DDPMineandSoftMineare dependent on two parameters: (1) the minimum support
thresholdθ, and (2) the sequential coverage thresholdδ. Because we were comparing
these algorithms toNDPMinein accuracy and efficiency, for sequence and tree datasets,
we selected parameters which were best suited to each task.

First, we fixedδ = 10 for the sequence datasets as suggested in [12], andδ =
20 for the tree datasets. Then, we found the appropriate minimum supportθ in which
DDPMineandSoftMineperformed their best. Thus, we setθ = 0.05 for the sequence
datasets andθ = 0.01 for the tree datasets.

5.5 Computation Efficiency Evaluation

We discussed in Section 1 that some pattern-based classification models can be inef-
ficient because they use the two-step mining process. We compared the computation
efficiency of the two-step mining algorithmSoftMinewith NDPMineasθ varies. The
sequential coverage threshold is fixed to the value from Section 5.4. Due to the limited
space, we only show the running time for each algorithm on thescheduledataset and
the〈D. Grady, G. Kolata〉 dataset in Figure 2. Other datasets showed similar results.

We see from the graphs in Figure 2 thatNDPMine outperformsSoftMineby an
order of magnitude. Although the running times are similar for larger values ofθ, the
results show that the direct mining approach used inNDPMineis computationally more
efficient than the two-step mining approach used inSoftMine.

5.6 Memory Usage Evaluation

As discussed in Section 3,NDPMineuses memory shrinking technique which prunes
the search space in main memory during each iteration. We evaluated the effective-

Title Suppressed Due to Excessive Length 13

 10

 20

 30

 40

 0 0.05 0.1 0.15 0.2

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

min_sup

SoftMine
NDPMine

 0

 10

 20

 30

 40

 50

 60

 0 0.05 0.1 0.15 0.2 0.25 0.3

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

min_sup

SoftMine
NDPMine

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

M
em

or
y

U
sa

ge
 (

M
b)

Iteration

No shrinking
Shrinking

 100

 200

 300

 400

 500

 0 10 20 30 40 50

M
em

or
y

U
sa

ge
 (

M
b)

Iteration

No shrinking
Shrinking

(a) Sequence (b) Tree

Fig. 2. Running Time and Memory Usage

ness of this technique by comparing the memory usage ofNDPMinewith the memory
shrinking technique toNDPMinewithout the memory shrinking technique. Memory us-
age is evaluated in terms of the number of the size (in megabytes) of the memory heap.
Figure 2 shows the memory usage time for each algorithm onscheduledataset and〈D.
Grady, G. Kolata〉 dataset. We setθ = 0 in order to use as much memory as possible.
We see from the graphs in Figure 2 thatNDPMinewith memory shrinking technique is
more memory efficient thanNDPMinewithout memory shrinking technique. Although
the memory space expands roughly at the same rate initially,the search space shrinking
technique begins to save space as soon asγ(k) increases. The difference between the
sequence dataset and the tree dataset in Figure 2 is because the search spaces of the tree
datasets are much larger than the search spaces of the sequence datasets.

5.7 Accuracy Evaluation

We discussed in Section 1 that some pattern-based classification algorithms can only
mine binary feature values, and therefore may not be able to learn an accurate classifi-
cation model. For evaluation purposes, we compared the accuracy of the classification
model learned with features fromNDPMineto the classification model learned with fea-
tures fromDDPMineandSoftMinefor the sequence and tree datasets. After the feature
set was formed, a SVM (from the LIBSVM [1] package) was used tolearn a classifica-
tion model. The accuracy of each model was also measured by 5-fold cross validation.
Table 2 shows the results for each algorithm in the sequence datasets. Similarly, Table 3
shows the results in the tree datasets. The accuracy is defined as the number of true pos-
itives and true negatives over the total number of examples,and determined by 5-fold
cross validation.

14 Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, andTarek Abdelzaher

Table 2.The summary of results on software behavior classification

Accuracy Running Time Number of Patterns
Software DDPMineSoftMineNDPMineSoftMineNDPMineSoftMineNDPMine
x11 93.2 100 100 0.002 0.008 17.0 6.6
cvs omission 100 100 100 0.008 0.014 88.8 3.0
cvs ordering 96.4 96.7 96.1 0.025 0.090 103.2 24.2
cvs mix 96.4 94.2 97.5 0.020 0.061 34.6 10.6
tot info 92.8 91.2 92.7 0.631 0.780 136.4 25.6
schedule 92.2 92.5 90.4 25.010 24.950 113.8 16.2
print tokens 96.6 100 99.6 11.480 24.623 76.4 27.4
replace 85.3 90.8 90.0 0.325 1.829 51.6 15.4
mysql 100 95.0 100 0.024 0.026 11.8 2.0
Average 94.8 95.6 96.2 4.170 5.820 70.4 14.5

Table 3.The summary of results on authorship classification

Accuracy Running Time Number of Patterns
Author Pair DDPMine SoftMineNDPMineSoftMineNDPMineSoftMineNDPMine
〈J. Healy, E. Dash〉 89.5 91.5 93.5 43.83 1.45 42.6 24.6
〈J. Healy, D. Grady〉 94.0 94.0 96.5 52.84 1.26 47.2 19.4
〈J. Healy, G. Kolata〉 93.0 95.0 96.5 46.48 0.86 40.0 8.8
〈E. Dash, D. Grady〉 91.0 89.5 95.0 35.43 1.77 32.0 28.2
〈E. Dash, G. Kolata〉 92.0 90.5 98.0 45.94 1.39 43.8 18.8
〈D. Grady, G. Kolata〉 78.0 84.0 86.0 71.01 6.89 62.0 53.4
Average 89.58 90.75 94.25 49.25 2.27 44.6 25.53

These results confirm our hypothesis that numerical features, like those mined by
NDPMineandSoftMine, may be used to learn more accurate models than binary fea-
tures like those mined byDDPMine. We also confirm that feature selection by LP results
in a better feature set than feature selection by sequentialcoverage.

5.8 Expressiveness Evaluation

We also see from the results in Tables 2 and 3 that the numbers of patterns mined by
NDPMineare typically smaller than those ofSoftMine, yet the accuracy is similar or
better. BecauseNDPMineandSoftMineboth use SVM and mine numerical features
in common, we can conclude that the feature set mined byNDPMinemust be more
expressive than the features mined bySoftMine.

Also, we observed thatNDPMine mines more discriminative patterns for harder
classification datasets and fewer for easier datasets underthe same parametersθ, ν.
We measured this by the correlation between the hardness of the classification task
and the size of feature set mined byNDPMine. Among several hardness measures [8]
we determine the separability of two classes in a given dataset as follows: (1) mine
all frequent patterns, (2) build a SVM-classifier with linear kernel, and (3) measure the
margin of the classifier. Note that SVM builds a classifier by searching the classification
boundary with maximum margin. The margin can be interpretedas the separability of
two classes. If the margin is large, it implies that the classification task is easy. Next, we

Title Suppressed Due to Excessive Length 15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50

F
ea

tu
re

 s
iz

e

Margin

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50

F
ea

tu
re

 s
iz

e

Margin

(a)SoftMine (b) NDPMine

Fig. 3. The correlation between the hardness of Classification tasks and feature sizes

computed the correlation between the hardness of a classification task and the feature
set size ofNDPMineby using Pearson product-moment correlation coefficient (PMCC)
– a widely used correlation measures in statistics. A largerPMCC implies stronger
correlation; conversely, a PMCC of 0 implies that there is nocorrelation between two
variables. We investigated on the tree dataset, and drew the30 points in Figure 3 (there
are six pairs of authors and each pair has 5 testdata). The result in Figure 3 shows a
correlation of -0.831 forNDPMineand -0.337 forSoftMine. Thus, we confirmed that
NDPMinemines more patterns if the given classification task is more difficult. This is
a very desired property for discriminative pattern mining algorithms in pattern-based
classification.

6 Conclusions

Frequent pattern-based classification methods have shown to be very effective at clas-
sifying large and complex datasets. Until recently, existing methods which mine a set
of frequent patterns either use the two-step mining processwhich is computationally
inefficient or can only operate on binary features. Due to theexplosive number of po-
tential features, the two-step process poses great computational challenges for feature
mining. Conversely, those algorithms which use a direct pattern mining approach are
not capable of mining numerical features. We showed that thenumber of occurrences of
a pattern in an instance is more important than whether a pattern exists or not by exten-
sive experiments on the software behavior classification and authorship classification
datasets.

To our knowledge, there does not exist a discriminative pattern mining algorithm
which canbothdirectly mine discriminative patterns as numerical features. In this study,
we proposed an pattern-based classification approach whichefficiently mines discrimi-
native patterns as numerical features for classificationNDPMine. A linear programming
method is integrated into the pattern mining process, and a branch and bound search is
employed to navigate the search space. A shrinking technique is applied to the search
space storage procedure which reduces the search space significantly. AlthoughNDP-
Mine is a model-based algorithm, the final output from the algorithm is a set of features
that can be used independently for other classification models.

Experimental results show thatNDPMineachieves: (1) orders of magnitude speedup
over two-step methods without degrading classification accuracy, (2) significantly higher

16 Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, andTarek Abdelzaher

accuracy than binary feature methods, and (3) better efficiency in space by using mem-
ory shrinking technique. In addition, we argue that the features mined byNDPMinecan
be more understandable than current techniques.

References

1. C.-C. Chang and C.-J. Lin.LIBSVM: a Library for Support Vector Machines, 2001. Software
is available for download athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm/ .

2. H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis for
effective classification. InICDE, 2007.

3. H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discriminative pattern mining for effective
classification. InICDE, 2008.

4. Y. Chi, Y. Xia, Y. Yang, and R. R. Muntz. Mining closed and maximal frequent subtrees from
databases of labeled rooted trees.IEEE Transactions on Knowledge and Data Engineering
(TKDE), 17(2):190–202, 2005.

5. A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column
generation.Machine Learning, 46(1-3):225–254, 2002.

6. W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S. Yu, and O. Verscheure. Direct
mining of discriminative and essential frequent patterns via model-based search tree. In
KDD, 2008.

7. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting.Journal of Computer and System Sciences, 55(1):119–139, 1997.

8. T. K. Ho and M. Basu. Complexity measures of supervised classification problems.IEEE
Trans. Pattern Anal. Mach. Intell., 24(3):289–300, 2002.

9. S. Levy and G. D. Stormo. Dna sequence classification usingdawgs. InStructures in Logic
and Computer Science, A Selection of Essays in Honor of Andrzej Ehrenfeucht, pages 339–
352, London, UK, 1997. Springer-Verlag.

10. W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient classification based on multiple
class-association rules. InICDM, pages 369–376, 2001.

11. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. InKDD,
pages 80–86, 1998.

12. D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun. Classification of software behaviors for
failure detection: A discriminative pattern mining approach. InKDD, 2009.

13. S. G. Nash and A. Sofer.Linear and Nonlinear Programming. McGraw-Hill, New York,
NY, 1996.

14. S. Nijssen, T. Guns, and L. D. Raedt. Correlated itemset mining in roc space: a constraint
programming approach. InKDD, 2009.

15. S. Nowozin and K. T. Gökhan Bakõr. Discriminative subsequence mining for action classi-
fication. InICCV, 2007.

16. H. Saigo, T. Kadowaki, T. Kudo, and K. Tsuda. A linear programming approach for molec-
ular qsar analysis. InMLG, pages 85–96, 2006.

17. H. Saigo, N. Krämer, and K. Tsuda. Partial least squaresregression for graph mining. In
KDD, 2008.

18. H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. gboost: a mathematical pro-
gramming approach to graph classification and regression.Mach. Learn., 75(1):69–89, 2009.

19. The Stanford Natural Language Processing Group.The Stanford Parser: A statistical parser.
http://www-nlp.stanford.edu/software/lex-parser.sht ml .

20. L. Ye and E. Keogh. Time series shapelets: a new primitivefor data mining. InKDD, 2009.
21. M. J. Zaki and C. C. Aggarwal. Xrules: an effective structural classifier for xml data. In

KDD, 2003.

