NDPMine: Efficiently Mining Discriminative Numerical
Features for Pattern-Based Classification

Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, andekaAbdelzaher

Department of Computer Science,
University of Illinois at Urbana-Champaign,
Urbana IL 61801, USA
{hkim21,kim71,weningel,hanj,zaher }@illinois.edu

Abstract. Pattern-based classification has demonstrated its powecémt stud-
ies, but because the cost of mining discriminative pattasigeatures in clas-
sification is very expensive, several efficient algorithrasenbeen proposed to
rectify this problem, such d@DPMine[3], corrmine[14], andgPLS[17]. DDP-
Mine obtains its efficiency by iteratively pruning the input datthereby po-
tentially losing important information. Other methodscislasgBoost[18], are
either memory efficient or computationally efficient, but hoth. These algo-
rithms also assume that feature values of the mined patéeensinary, i.e., the
pattern either exists or not. In some problems, such as amdtivehavior analy-
sis, the number of times a pattern appears is more informétan whether the
pattern appears or not. To resolve these deficiencies, wmgeoa mathemati-
cal programming method that directly mines discriminapia¢terns as numerical
features for classification. We also propose a novel seaatesshrinking tech-
nigue which addresses the inefficiencies in iterative patteining algorithms.
Finally, we show that our method is an order of magnitudeefastignificantly
more memory efficient and more accurate than current appesac
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1 Introduction

Pattern-based classification is a process of learning aifitagion model where pat-
terns are used as features. Recent studies show that cltssifimodels which make
use of pattern-features can be more accurate and more tam#able than the original
feature set [2, 3]. Pattern-based classification has beapted! to work on data with
complex structures such as sequences [12,9, 15, 6, 20],raptig[17, 18, 16], where
discriminative frequent patterns are taken as featuresitd bigh quality classifiers.
These approaches can be grouped into two settings: binamyroerical. Binary
pattern-based classification is the well-known problentirgptin which the feature
space is{0, 1}%, whered is the number of features. This means that a classification
model only uses information about whether an interestiritgepaexists or not. On the
other hand, a numerical pattern-based classification risdféakure space &¢, which
means that the classification model uses information aboartrhany times an inter-
esting pattern appears. For instance, in the analysis tad traces loops and other
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repetitive behaviors may be responsible for failures. &fee, it is necessary to deter-
mine the number of times a pattern occurs in a sequence.

Pattern-based classification techniques are prone to a @féigiency problem to
the exponential number of possible patterns. Severalesutive identified this issue
and offered solutions [3, 6]. However, to our knowledge ¢hleas not been any work
addressing this issue in the case of numerical featureshétanore, these solutions
achieve their efficiency by removing patterns that couldehasen features.

Recently a boosting approach was proposed by SgtigbcalledgBoos{18]. Their
algorithm employs a linear programming approach to bogsisa base algorithm com-
bined with a pattern mining algorithm. The linear programgiapproach to boosting
algorithm (LPBoost) [5] is shown to converge faster than Aadst [7] and is proven
to converge to a global solutiogBoostworks by iteratively growing and pruning a
search space of patterns via branch and bound search. Inpriorko gBoost[16] by
the same authors, the search space is erased and rebuity dadh iteration. However,
in their most recent work, the constructed search spacaigecein each iteration to
minimize computation time; the authors admit that this apph would not scale but
were able to complete their case study with 8GB main memory.

The high cost of the finding numerical features along withdbeuracy issues of
binary-only features motivates us to investigate an adtidra approach. What we wish
to develop is a method which is both efficient and able to minmerical features
for classification. This leads to our proposal ofiamerical drect pattern miningap-
proach,NDPMine. Our approach employs a mathematical programming methaid th
directly mines discriminative patterns as numerical feeguWe also address the fun-
damental problem of iterative pattern mining algorithms] @ropose a novel search
space shrinking technique to prune memory space withoutvig potential features.
We show that our method is an order of magnitude faster, fiigntly more memory
efficient and more accurate than current approaches.

The structure of this paper is as follows. In Section 2 we g brief background
survey and discuss in further detail the problems t2PMine claims to remedy. In
Section 3 we introduce the problem setting. Section 4 dessour discriminative pat-
tern mining approach, pattern search strategy and seaeate shrinking technique.
The experiments in Section 5 compare our algorithm withentrmethods in terms of
efficiency and accuracy. Finally, Section 6 contains ourcagions.

2 Background and Related Work

The first pattern mining algorithms originated from the domwd association rule min-
ing in which CBA [11] and CMAR [10] used thi&wo-step pattern mining process to
generate a feature set for classification. Chenal. [2] showed that, within a large set
of frequent patterns, those patterns which have higlsariminativepower,i.e. had
higher information gain and/or Fisher score, are usefulassification. With this in-
tuition, their algorithm MMRFS selects patterns for inclusion in the feature set based
on the information gain or Fisher score of each pattern. DHeviing year, Chengt

al. [3] showed that they could be more efficient if they perforrpattern-based classifi-
cation by adirect processwhich drectly mines dscrim-inative @tterns DPDPMineg). A
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separate algorithm by Faat al. (calledM/°T) [6], developed at the same time BBP-
Mine, uses a decision tree-like approach, which recursivelysgpie training instances
by picking the most discriminative patterns.

As alluded to earlier, an important problem with the manyrapphes is that the
feature set used to build the classification model is egtlvglary. This is a significant
drawback because many datasets rely on the number of oncasref a patternin order
to train an effective classifier. One such dataset comes fhemealm of software be-
havior analysis in which patterns of events in softwaredsaare available for analysis.
Loops and other repetitive behaviors observed in prograces may be responsible for
failures. Therefore, it is necessary to mine not only thecatien patterns, but also the
number of occurrences of the patternsdtal.[12] proposed a solution to this problem
(hereafter called SoftMine) which minetosed unique iterative patterrisom normal
and failing program traces in order to identify software madies. Unfortunately, this
approach employs the less efficient two-step process whithustively enumerates a
huge number of frequent patterns before finding the mostidistative patterns.

Other approaches have been developed to address spedfedator time series
classification, Ye and Keogh [20] used patterns called detpto classify time-series
data. Other algorithms include DPrefixSpan [15] which dfaess action sequences,
XRules [21] which classifies trees, and gPLS [17] which dfeessgraph structures.

Table 1. Comparison of related work

Binary Numerical
Two-step MMRFS SoftMine, Shapelet
Direct |DDPMine, M°T, gPLS NDPMine
DPrefixSpan, gBoost

Table 1 compares the aforementioned algorithms in termieopattern’s feature
value (binary or numerical) and feature selection process-§tep or direct). To the
best of our knowledge there do not exist any algorithms whiale patterns as numer-
ical features in a direct manner.

3 Problem Formulation

Our framework is a general framework for numerical patteased classification. We,
however, confine our algorithm for structural data classif such as sequences,
trees, and/or graphs in order to present our framework miealg. There are sev-
eral pattern definitions for each structural data. For exanfpr sequence datasets,
there are sequential patterns, episode patterns, iteraditterns, and unique iterative
patterns [12]. The pattern definition which is better forsslfication depends on each
dataset, and thus, we assume that the definition of a pattegivén as an input. Let
D = {z;,y;}_, be adataset, containing structural data, wherie an object ang; is
its label. LetP be the set of all possible patterns in the dataset.

We will introduce several definitions, many of which are freqtly used in pattern
mining papers.

A patternp in P is a sub-pattern of if ¢ containsp. If p is a sub-pattern of, we
sayq is a super-pattern gf. For example, in a sequence, a sequential pattérB)
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is asub-patternof a sequential patterfd, B, C') because we can fin(i, B) within
(A, B, C).

The number of occurrences of a given pattein a datax is denoted bycc(p, ).
For example, if we count the number of non-overlapped oetwes of a pattern, the
number of occurrences of a pattera= (A, B) in adatax = (A4, B,C,D, A, B) is 2,
andocc(p, ) = 2. Since the number of occurrences of a pattern in a data depenal
user’s definition, we assume that the functien is given as an input.

The supportof a patternp in D is denoted bysup(p, D), where sup(p, D) =
ZwieD occe(p, z;). A patternp is frequentif sup(p, D) > 6, whered is a minimum
support threshold.

A function f on P is said to posses thepriori propertyif f(p) < f(q) for any
patternp and all its sub-patterng

With these definitions, the problem we present in this papesifollows: Given
a dataseD = {x;,y;}" ;, and an occurrence functiemc with the apriori property,
we want to find a good feature set of a small number of discane patterng’ =
{p1,p2,-..,pm} C P so that we ma into N space to build a classification model.
The training dataset iN™ space for building a classification model is denotedty=
{x}, yi}i1, wherez}; = occ(pj, ;).

4 NDPMine

From the discussion in Section 1, we see the need for a metimichvefficiently
mines discriminative numerical features for pattern-dadassification. This section
describes such a method called NDPMiheifnericalDiscriminativePattern Mining).

4.1 Discriminative Pattern Mining with LP

For direct mining of discriminative patterns two propestare required: (1) a measure
for discriminative power of patterns (2) a theoretical bdwfithe measure for pruning
search space. Using information gain and Fisher s@ip&Mine successfully showed
the theoretical bound when feature values of patterns avaryiHowever, there are
no theoretical bounds for information gain and Fisher sadnen feature values of
patterns are numerical. Since standard statistical mes$oir discriminative power are
not suitable in our problem, we take different approach: etdhsed feature set mining.
Model-based feature set mining find a set of patterns as arteaét while building a
classifier. In this section, we will show thBiDPMinehas the two properties required
for direct mining of discriminative patterns by formulagiand solving an optimization
problem of building a classifier.

To do that, we first convert a given dataset into a high-dinoerad dataset, and learn
a hyperplane as a classification boundary.

Definition 1. A pattern and class label paifp, ¢) is called class-dependent pattern,
wherep € P andc € C = {—1,1}. Then, the value of a class-dependent patfetm)
for datax is denoted by.(p, z), wheres.(p, z) = ¢ - occ(p, x).
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Since there ar@|P| class-dependent patterns, we hay®2| values for an object
x in D. Therefore, by using all class-dependent patterns, we amamin D into
x; in N?IPI space, where!; = s, (p;,«}). One way to train a classifier in high di-
mensional space is to learn a classification hyperplaae ¢ bound with maximum
margin) by formulating and solving an optimization proble@&iven the training data
D’ = {z},y;},, the optimization problem is formulated as follows:

max p
a,p
s.t. Z Yiop cSe(p, i) > p, Vi
(p,c)ePxC (1)
ape=1, apc>0,
(p,c)ePXC

wherea represents the classification boundary, amlthe margin between two classes
and the boundary.

Let & andp be the optimal solution for (1). Then, the prediction rularteed from
(1) is f(x') = sign(x’ - &), wheresign(v) = 1if v > 0 and -1, otherwise. B(p, c) €
PxC:a,. =0, f(z')is notaffected by the dimension of the class-dependergmpatt
(p,c). LetF = {p|3c € C, &, . > 0}. If we useF instead ofP in (1), we will have the
same prediction rule. In other words, only the small numifgratterns inF', we can
learn the same classification model as the one learndel hith this observation, we
want to mine such a pattern set (equivalently: a featurefset) build a classification
model.

In addition, we wantf" to be as small as possible. In order to obtain a relatively
small feature set, we need to obtain a very sparse vectahere only few dimensions
are non-zero values. To obtain a sparse weight vectare adopt the formulation from
LPBoost [5].

max p— w0, &
a.g,p

st Y giges(@lip,o)+& > p, Vi
(p,c)ePxC (2)

Z Qp.c = 1, Qpc > 0
(p,c)ePxC

&>0, i=1,....n

,wherep is a soft-marging = V—ln andv is a parameter for misclassification cost. The
difference between here is that (2) allows mis-classificetiof the training instances to
costw, where (1) does not. To allow mis-classifications, (2) idtroes slack variables
&, and makesgy sparse in its optimal solution [5].

Next, we do not know all patterns iR unless we mine all of them, and mining all
patterns inP is intractable. Therefore, we cannot solve (2) directlytéioately, such a
linear optimization problem can be solved dglumn generatior a classic optimiza-
tion technique [13]. The column generation technique, eddled the cutting-plane al-
gorithm, starts with an empty set of constraints in the duabfem and iteratively adds
the most violated constraints. When there are no more @dlednstraints, the optimal
solution under the set of selected constraints is equale@timal solution under all
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constraints. To use the column generation technique in mbigm, we give the dual
problem of (2) as shown in [5].

min y
By

S.t Zﬂzyzsc p,x;) <7, V(p,c)e PxC 3)

Sl 0Sm<w i=l..n

.whereu can be interpreted as a weight vector for the training irctan

Each constrain®"}"_ | uyisc(p, ;) < ~ in the dual 3 corresponds to a class-
dependent patterfp, ¢). Thus, the column generation finds a class-dependent patter
at each iteration whose corresponding constraint is \@dite most. LeH (*) be the
set of class-dependent patterns found so far atthiseration. Letu(*) and~(*) be the
optimal solution fork™ restricted problem:

i (k)
u !
S.t. ZM yise(p, ;) < 'Y( ) V(p,c) € H® (4)

Zu(k)—l §,u§k)§w, i1=1,....n

After solving thek!" restricted problem, we search a class-dependent patteret)
whose corresponding constraint is violated the most by fienal solutiony*) and
%), and addp*, ¢*) to H®),

Definition 2. For a given(p, ¢), letv = 7 u{¥ y;s.(p, 2]). If v < 4®), the corre-
sponding constraint fy, ¢) is not violated by, *) andu* becaus& """ | Mz( Vyise(p, @) =
v < 4", If v > ) then we say the corresponding constraintafc) is violated by
~%) and (*), and the margin of the constraint is defineduas ~*).

In this view, (p*, ¢*) is the class-dependent pattern with the maximum margin, Now
we define our measure for discriminative power of class-déest patterns.

Definition 3. We defingyain functionfor a given weighj as follows:
gazn D, C; ,u Z/Lzyzsc p,x

For giveny®) andu(*), choosing the constraint with maximum margin is the same
as choosing the constraint with maximum gain. Thus, we &efairca class-dependent
pattern with maximum gain in each iteration until there av@ore violated constraints.
Let £* be the last iteration. Then, we can get the optimal solugi@md & for (2) by



Title Suppressed Due to Excessive Length 7

Algorithm 1 Discriminative Pattern Mining

1 HO

2: 40 0

3 =1/n Vi=1,...,n

4: fork=1,... do

5 (p*,c") = argmax, e pxc gain(p,c; p* V)
6: if gain(p®,c’; u(kfl)) —~¥=D < ¢ then

7: break

8: endif

9:

H® — H*D Uy {(p™,c")}

10:  Solve the:" restricted problem (4) to get’*) and p(*)
11: end for

12: Solve (5) to ge&

13: F «+ {p|Fc € C,ap,. > 0}

solving the following optimization problem and settiag, ., = 0 for all (p,c) ¢
HE),

min —p+w I &

a.tp
st Y wipes@iipo)+& >p, Vi
(pc)EHO (5)
Z ape=1, ap.>0
(p,c)eH*™)

EZZO, i:l,...,n

The difference is that now we have the training instancé#liti )| dimensions, not in
2| P| dimensions. Once we have, as explained before, we can make a featurefset
such thatF" = {p|3c € C, &, . > 0}. As a summary, the main algorithm BDPMine
is presented in Algorithm 1.

4.2 Optimal Pattern Search

As in DDPMine and other direct mining algorithms, our search strategyhsaach-
and-bound approach. We assume that there is a canonicahsader forP such that

all patterns inP are enumerated without duplication. Many studies have deee for
canonical search orders for most of structural data sucle@sesice, tree, and graph.
Most of the pattern enumeration methods in these canoréeaith orders create the
next pattern by extending the current pattern. Our aim iswbdipattern with maximum
gain. Thus, for efficient search, it is important to prunedhaecessary or unpromising
search space. Letbe the current pattern. Then, we compute the maximum gaindou
for all super-patterns gf and decide whether we can prune the branch or not based on
the following theorem.
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Algorithm 2 Branch-and-bound Pattern Search
Global variablesmaxGain, max Pat
procedure search_optimal pattern(u, 6, D)

1: maxGain < 0

2: mazPat + 0

3: branch_and_-bound(®, u, 0, D)

function branch_and_-bound(p, u, 0, D)
1: for ¢ € {extended patterns @fin the canonical ordér do

2:  if sup(q, D) > 0 then

3: for ce {—1,+1} do

4: if gain(q,c; p) > mazxGain then

5: maxGain < gain(q,c; p)

6: mazPat < (g, c)

7 end if

8: end for

9: if gainBound(p; p) > mazGain then
10: branch_and_-bound(q, u, 0, D)
11: end if
12:  endif
13: end for

Theorem 1. If gainBound(p; ) < ¢g* for someg*, then
gain(q, c; u) < g* for all super-patterng of p and allc € C, where

gainBound(p; ) =
max Z i - OCC(p, (E;), Z Hi - OCC(p, :E;)
{ilyi=+1} {ilyi=—1}

Proof. We will prove it by contradiction. Suppose that there is aesypatterny of p
such thayain(q, ¢; u) > gainBound(p; p). If ¢ = 1,

gain(q, c; p) Zﬂzyzsc (@ Zuzyzocc g,
Z pioce(q, @) — Y mioce(q, )
{ilyi=1} {ily=—1}
< > mioce(q i) <Y pioce(p, )
{ilyi=1} {ilyi=1}

< gainBound(p; )

Therefore, it is a contradiction. Likewise,df= —1, we can derive a similar contradic-
tion. Note thabec(q, z}) < oce(p, x;) becausecc hasapriori property.

If the maximum gain among the ones observed so far is gréeegtin Bound(p; ),
we can prune the branch of a patternThe optimal pattern search algorithm is pre-
sented in Algorithm 2.
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No Shrinking % é % %
search space space savings
3 4

Iteration 1

Fig. 1. Search Space Growth with and without Shrinking TechniquarkDregions represent
shrinked search space (memory savings).

4.3 Search Space Shrinking Technique

In this section, we explain our novel search space shrintéggnique. Mining dis-
criminative patterns instead of frequent patterns cang@rmare search space by using
a bound functioryain Bound. However, this requires an iterative procedure like in
DDPMine which builds a search space tree again and again. To aveitefetitive
searchinggBoost[18] stores the search space tree of previous iteration in mam-
ory. The search space tree keeps expanding as iteratiorbgoasse it needs to mine
different discriminative patterns. This may work for smdditasets on a machine with
enough main memory, but is not scalable.

In this paper, we also store the search space of previowid@er but introduce
search space shrinking technique to resolve the scajaissitie.

In each iteratiork of the column generation, we look for a pattern whose gain is
greater thany/(*—1) | otherwise the termination condition will hold. Thus, if aternp
cannot have greater gain thaff—"), we do not need to considgrin the k™ iteration
and afterwards becausé€® is non-decreasing by the following theorem.

Theorem 2. v(¥) is non-decreasing ak increases.

Proof. In each iteration, we add a constraint that is violated bypittevious optimal
solution. Adding more constraints does not decrease the\alobjective function in
a minimization problem. Thus,*) is not decreasing.

Definition 4. maxGain(p) = max gain(p, ¢; ), wherec € C, andVi 0 < p; < w.
m,c

If there is a patterp such thatnazGain(p) < v*), we can safely remove the
pattern from main memory after thd" iteration without affecting the final result of
NDPMine By removing those patterns, we shrink the search space iim mamory
after each iteration. Also, sineg®) increases during each iteration, we remove more
patterns ag increases. This memory shrinking technique is illustrateeigure 1.

In order to computenazGain(p), we could consider all the possible values.of
by using linear programming. However, we can computecGain(p) efficiently by
using the greedy algorithgreedymaxGainpresented in Algorithm 3.

Theorem 3. The greedy algorithngreedy-maxGain(p) gives the optimal solution,
which is equal tonazGain(p)
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Algorithm 3 Greedy Algorithm formaxGain
Global Parametety
function greedy-mazGain(p)

1: mazxGain™ + greedy mazrGainSub(p,+1)
2: mazGain~ < greedy-mazrGainSub(p, —1)
3: if maxGain® > maxGain~ then
4:  return mazxGain™
5
6
7

. else
return maxGain~
:endif

function greedy-maxzGainSub(p, c)
1: mazGain < 0
2: weight + 1
3 X« {z],75,...,70,}
4: while weight > 0 do
5. Thest = argmax,c x Vi - sc(p,xh)
6: if weight > wthen
7 maxGain < mazGain + w - Ypest * Sc(P, Thest)
8 weight < weight — w

9. else
10: maxGain < mazxGain + weight - Ypest * Sc(D, Thest)
11: weight < 0
12:  endif
130 X+ X —{x}.s}
14: end while

15: return maxGain

Proof. ComputingmaxzGain(p) is very similar to continuous knapsack problem (or
fractional knapsack problem) — one of the classic greedplpros. We can think our
problem as follows: Suppose that we havéems, each with weight of 1 pound and
a value. Also, we have a knapsack with capacity of 1 pound. &vehave fractions
of items as we want, but not more thanThe only difference from continuous knap-
sack problem is that we need to have the knapsack full, andaiues of items can be
negative. Therefore, the proof of the optimality@tedy_maxrGain can be easily de-
rived from the proof of the optimality of the greedy algonttior continuous knapsack
problem.

5 Experiments

The major advantages of our method is that it is accuratejesitiin both time and
space, produces small number of expressive features, aaratep on different data
types. In this section, we evaluate these claims by testiagtcuracy, efficiency and
expressiveness on two different data types: sequencesessl For comparison-sake
we re-implemented the two baseline approaches describ8ddtion 5.1. All experi-
ments are done on a 3.0GHz Pentium Core 2 Duo computer withrB&B memory.
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5.1 Comparison Baselines

As described in previous sectioi$DPMineis the only algorithm that uses the direct
approach to mine numerical features, therefore we conigBfMineto the two-step
process of mining numerical features in computation time @x@mory usage. Since
we have two different types of datasets, sequences and wees-implemented the
two-stepSoftMinealgorithm by Loet al.[12] which is only available for sequences. By
showing the running time dDPMine and SoftMine we can appropriately compare
the computational efficiency of direct and two-step appheac

In order to show the effectiveness of the numerical feataheas used biNDPMine
over the effectiveness of binary feature values, we re-émginted the binafpDPMine
algorithm by Chenget al. [3] for sequences and tredBDPMine uses the sequential
covering method to avoid forming redundant patterns in &feaset. In the original
DDPMinealgorithm [3], both the Fisher score and information gaimeniatroduced as
the measure for discriminative power of patterns; howedeerfair comparison of the
effectiveness witlsoftMing we only use the Fisher scoreDDPMine

By comparing the accuracy of both methods, we can apprefyiabmpare the
numerical features mined WyDPMinewith the binary features mined lyDPMine.

In order to show the effectiveness of the memory shrinkitptéque, we imple-
mented our framework in two different versions, one with noeyrshrinking technique
and another one without it.

5.2 Experiments on Sequence Datasets

Sequence data is a ubiquitous data structure. Examplegjoésee data include text,
DNA sequences, protein sequences, web usage data, andusofiwecution traces.
Among several publicly available sequence classificataiaskts, we chose to use soft-
ware execution traces from [12]. These software trace d&a@entained sequences of
nine different software traces. More detail descriptionihaf software execution trace
datasets is available in [12].

The goal of this classification task was to determine whedhmogram’s execution
trace (represented as an instance in the dataset) confaihs@or not. For this task, we
needed to define what constitutes a pattern in a sequenceani ltount the number
of occurrences of a pattern in a sequence. We defined a pattdrthe occurrences of
a pattern the same as in [12].

5.3 Experiments on Tree Datasets

Datasets in tree structure are also widely available. Wednig@nts in XML are good
examples of tree datasets. XML datasets from [21] are ondeftommonly used
datasets in tree classification studies. However, we defllea very interesting tree
dataset for authorship classification. In informationiestil and computational linguis-
tics, authorship classification is one of the classic pnoisleAuthorship classification
aims to classify the author of a document. In order to attetimistdifficult problem
with our NDPMinealgorithm, we randomly chose 4 authors — Jack Healy, ErilDas
Denise Grady, and Gina Kolata — and collected 100 documentsach author from
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NYTimes.coniThen, using the Stanford parser [19], we parsed each saniteio a tree
of POSPart of Speech) tags. We assumed that these trees refleetadthor’s writing
style and thus could be used in authorship classificatioreesa document consisted of
several sentences, each document was parsed into a setletiatees.

From this we had a forest, or a set of trees, as a represenfativa document
where its author’'s name is the label. We used induced suptterns as features in
classification. The formal definition of induced subtreetgrais can be found in [4].
We defined the number of occurrences of a pattern in a docuisiéng number of
sentences in the document that contained the pattern. WegadCMTreeMiner[4],
the-state-of-art tree mining algorithm, to mine frequawiticed subtree patterns.

Since the goal of this classification task was to determireatithor of each docu-
ment, all pairs of authors and their documents were combimethke two-class clas-
sification dataset.

5.4 Parameter selection

Besides the definition of a pattern and the occurrence augifitinction for a given
datasetNDPMinealgorithm needs two parameters as input: (1) the minimunpsup
thresholdd and (2) the misclassification cost parameteThed parameter was given
as input. Ther parameter was tuned in the same way SVM tunes its paramesins;
cross-validation on the training dataset.

DDPMineandSoftMineare dependent on two parameters: (1) the minimum support
thresholdd, and (2) the sequential coverage threshblBecause we were comparing
these algorithms thlDPMinein accuracy and efficiency, for sequence and tree datasets,
we selected parameters which were best suited to each task.

First, we fixedd = 10 for the sequence datasets as suggested in [12]pard
20 for the tree datasets. Then, we found the appropriate mmiswpport? in which
DDPMine andSoftMineperformed their best. Thus, we get= 0.05 for the sequence
datasets anfl = 0.01 for the tree datasets.

5.5 Computation Efficiency Evaluation

We discussed in Section 1 that some pattern-based classificaodels can be inef-
ficient because they use the two-step mining process. We amtghe computation
efficiency of the two-step mining algorith®oftMinewith NDPMineas# varies. The
sequential coverage threshold is fixed to the value fromi@eét4. Due to the limited
space, we only show the running time for each algorithm orstieduledataset and
the (D. Grady, G. Kolatadataset in Figure 2. Other datasets showed similar results.

We see from the graphs in Figure 2 théDPMine outperformsSoftMineby an
order of magnitude. Although the running times are simitarlarger values o, the
results show that the direct mining approach usedPMineis computationally more
efficient than the two-step mining approach use8daftMine

5.6 Memory Usage Evaluation

As discussed in Section BIDPMineuses memory shrinking technique which prunes
the search space in main memory during each iteration. Weiadea the effective-
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Fig. 2. Running Time and Memory Usage

ness of this technique by comparing the memory usadgé¢¥Minewith the memory
shrinking technique tbiIDPMinewithout the memory shrinking technique. Memory us-
age is evaluated in terms of the number of the size (in megapyf the memory heap.
Figure 2 shows the memory usage time for each algorithiscbedulelataset andD.
Grady, G. Kolata dataset. We sét = 0 in order to use as much memory as possible.
We see from the graphs in Figure 2 tiNDPMinewith memory shrinking technique is
more memory efficient thaNDPMinewithout memory shrinking technique. Although
the memory space expands roughly at the same rate initiadl\search space shrinking
technique begins to save space as soof(&sincreases. The difference between the
sequence dataset and the tree dataset in Figure 2 is bekbawssatch spaces of the tree
datasets are much larger than the search spaces of the segiatasets.

5.7 Accuracy Evaluation

We discussed in Section 1 that some pattern-based clasisifigdgorithms can only
mine binary feature values, and therefore may not be ablkeatm lan accurate classifi-
cation model. For evaluation purposes, we compared theaogof the classification
model learned with features froNDPMineto the classification model learned with fea-
tures fromDDPMineandSoftMinefor the sequence and tree datasets. After the feature
set was formed, a SVM (from the LIBSVM [1] package) was useleéson a classifica-
tion model. The accuracy of each model was also measureddlg Sross validation.
Table 2 shows the results for each algorithm in the sequestesekts. Similarly, Table 3
shows the results in the tree datasets. The accuracy is defrtee number of true pos-
itives and true negatives over the total number of exampled,determined by 5-fold
cross validation.



14 Hyungsul Kim, Sangkyum Kim, Tim Weninger, Jiawei Han, diadek Abdelzaher

Table 2. The summary of results on software behavior classification

Accuracy Running Time |Number of Patterns
Software  |DDPMingSoftMingNDPMing SoftMineNDPMine SoftMingNDPMine
x11 93.2 100 100 0.002 | 0.008 17.0 6.6

cvsomission 100 100 100 0.008 | 0.014 88.8 3.0
cvsordering] 96.4 96.7 96.1 0.025 | 0.090 | 103.2 24.2
CVS.Mix 96.4 94.2 97.5 0.020 | 0.061 34.6 10.6
tot.info 92.8 91.2 92.7 0.631 | 0.780 | 136.4 25.6
schedule 92.2 92.5 90.4 | 25.010| 24.950 | 113.8 16.2
printtokens| 96.6 100 99.6 | 11.480| 24.623 | 76.4 27.4

replace 85.3 90.8 90.0 0.325 | 1.829 51.6 154
mysql 100 95.0 100 0.024 | 0.026 11.8 2.0
Average 94.8 95.6 96.2 4170 | 5.820 70.4 145

Table 3. The summary of results on authorship classification

Accuracy Running Time |Number of Patterns
Author Pair DDPMing SoftMineNDPMing SoftMineNDPMine SoftMineNDPMing
(J. Healy, E. Dash 89.5 91.5 93.5 43.83 1.45 42.6 24.6
(J. Healy, D. Grady 94.0 94.0 96.5 52.84 1.26 47.2 19.4
(J. Healy, G. Kolata | 93.0 95.0 96.5 46.48 0.86 40.0 8.8

(E. Dash, D. Grady 91.0 89.5 95.0 35.43 1.77 32.0 28.2
(E. Dash, G. Kolata | 92.0 90.5 98.0 45.94 1.39 43.8 18.8
(D. Grady, G. Kolata  78.0 84.0 86.0 71.01 6.89 62.0 53.4
Average | 89.58 | 90.75 | 94.25 | 49.25 2.27 44.6 25.53

These results confirm our hypothesis that numerical festlike those mined by
NDPMineandSoftMinge may be used to learn more accurate models than binary fea-
tures like those mined HyDPMine We also confirm that feature selection by LP results
in a better feature set than feature selection by sequentiarage.

5.8 Expressiveness Evaluation

We also see from the results in Tables 2 and 3 that the numbegtterns mined by
NDPMineare typically smaller than those &obftMine yet the accuracy is similar or
better. Becaus®iDPMine and SoftMineboth use SVM and mine numerical features
in common, we can conclude that the feature set mine8lbMine must be more
expressive than the features minedSnftMine

Also, we observed thalDPMine mines more discriminative patterns for harder
classification datasets and fewer for easier datasets uwhdesame parametefsv.
We measured this by the correlation between the hardneswedflassification task
and the size of feature set mined N{pPMine Among several hardness measures [8]
we determine the separability of two classes in a given da@s follows: (1) mine
all frequent patterns, (2) build a SVM-classifier with linéarnel, and (3) measure the
margin of the classifier. Note that SVM builds a classifier égrshing the classification
boundary with maximum margin. The margin can be interpratethe separability of
two classes. If the margin is large, it implies that the dfastion task is easy. Next, we
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computed the correlation between the hardness of a claggifictask and the feature
set size oNDPMineby using Pearson product-moment correlation coefficieMtGE)

— a widely used correlation measures in statistics. A laR}ICC implies stronger
correlation; conversely, a PMCC of 0 implies that there isooelation between two
variables. We investigated on the tree dataset, and dre@0tpeints in Figure 3 (there
are six pairs of authors and each pair has 5 testdata). Thi re$igure 3 shows a
correlation of -0.831 foNDPMineand -0.337 foiSoftMine Thus, we confirmed that
NDPMinemines more patterns if the given classification task is mdfewlt. This is

a very desired property for discriminative pattern minihgoaithms in pattern-based
classification.

6 Conclusions

Frequent pattern-based classification methods have st Yery effective at clas-
sifying large and complex datasets. Until recently, ergtinethods which mine a set
of frequent patterns either use the two-step mining proedssh is computationally
inefficient or can only operate on binary features. Due toetkgdosive number of po-
tential features, the two-step process poses great cotigngbchallenges for feature
mining. Conversely, those algorithms which use a dirediepatmining approach are
not capable of mining numerical features. We showed thaitineber of occurrences of
a pattern in an instance is more important than whether amadkists or not by exten-
sive experiments on the software behavior classificatiaharthorship classification
datasets.

To our knowledge, there does not exist a discriminativegpatinining algorithm
which canbothdirectly mine discriminative patterns as numerical feasum this study,
we proposed an pattern-based classification approach wffictently mines discrimi-
native patterns as numerical features for classificatibPMine A linear programming
method is integrated into the pattern mining process, arrdach and bound search is
employed to navigate the search space. A shrinking techrigjapplied to the search
space storage procedure which reduces the search spaifeaidly. AlthoughNDP-
Mineis a model-based algorithm, the final output from the albarits a set of features
that can be used independently for other classification tsode

Experimental results show thdDPMineachieves: (1) orders of magnitude speedup
over two-step methods without degrading classificatiomgszy, (2) significantly higher
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accuracy than binary feature methods, and (3) better effigin space by using mem-
ory shrinking technique. In addition, we argue that thedfezg mined bjNDPMinecan
be more understandable than current techniques.
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