Fast, Exact Graph Diameter Computation
with Vertex Programming

Corey Pennycuff

Tim Weninger

University of Notre Dame
{cpennycu, tweninge}@nd.edu

ABSTRACT

In graph theory the diameter is an important topological
metric for understanding size and density of a graph. Un-
fortunately, the graph diameter is computationally difficult
to measure for even moderately-sized graphs, insomuch that
approximation algorithms are commonly used instead of ex-
act measurements. In this paper, we present a new algo-
rithm to measure the exact diameter of unweighted graphs
using vertex programming, which is easily distributed. We
also show the practical performance of the algorithm in
comparison to other, widely available algorithms and imple-
mentations, as well as the unreliability in accuracy of some
pseudo-diameter estimators.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory— Graph al-
gorithms; D.1.3 [Programming Techniques]: Concurrent
Programming— Parallel programming

General Terms

Algorithms, Performance

Keywords

Vertex-centric computing, graph analytics, diameter

1. INTRODUCTION

As datasets increase in size, we need new algorithms and
paradigms in order to take advantage of advances in com-
puter architecture and systems. Vertex computation is one
such paradigm in which algorithms are constructed from the
perspective of a vertex within a graph. In the vertex pro-
gramming paradigm, the algorithm is not omniscient in re-
gards to the graph structure, but rather vertices perform
computations using messages that are exchanged with their
neighbors along their incident edges. The advantage to this
vertex-centric approach is that the algorithms running on
each vertex may be easily parallelized across a network with-
out knowing the overall structure of the graph of which it is
a member.

The diameter of a graph is a foundational metric of graph
theory that is routinely considered when analyzing real-world

This work is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License

http://dx.doi.org/10.5821/hpgmi15.2

HPGM'’15, August 10, Sydney, Australia.

networks (see, for example, [3]). It is a global (single-valued)
statistic of the graph which, when taken singularly or in
combination with other metrics, help to distill and commu-
nicate information about the graph. It exists for all graphs,
directed or undirected, real-world or generated. It has been
used to evaluate graph generation models [2], and studied
for its relation to other graph metrics[12, 6].

Measuring the Diameter of a graph is computationally ex-
pensive. Exact solutions are often implemented using either
Floyd-Warshall or Johnson’s algorithm, which have com-
plexities of O(|V|*) and O(|V|? log |V | 4|V || E|) respectively,
and are not easily distributable. Because of the computa-
tional complexity, the diameter of medium and large-sized
graphs can only be estimated using pseudo-diameter mea-
surements, which have varying degrees of accuracy. Thus,
it is not practical (and in some cases, impossible) to know
the exact diameter of such large graphs as social networks,
the Web, etc. We begin to address these problems by de-
veloping a vertex programming algorithm for measuring the
exact diameter of a graph.

In graph theory, the eccentricity e(v) of a vertex v is the
greatest geodesic distance between v and any other vertex in
the graph. It may also be viewed as the depth of a breadth
first search, rooted at v. The graph diameter d is defined as
the largest graph eccentricity for all nodes in a graph (i.e.,
the largest shortest path within a graph) and may be ex-
pressed as d = minyev €(v). All exact algorithms solve the
all pairs shortest paths (All-Pairs Shortest Path (APSP))
problem, and it is still an open problem as to whether or
not a diameter may be exactly measured without calculat-
ing APSP [4]. As a graph metric, the diameter may be com-
bined with other metrics to indicate the overall structure of
the graph. As such, the accuracy of the measurement is of
importance to network scientists.

Graph diameter measurement algorithms fall into two cat-
egories: exact and approximate, and can be further catego-
rized as sequential or parallel in nature. Exact, serial al-
gorithms include Floyd-Warshall and Johnson’s algorithms.
The Floyd-Warshall algorithm uses dynamic programming,
while Johnson’s combines Bellman-Ford and Dijkstra’s sin-
gle source shortest path (Single-Source Shortest Path (SSSP))
algorithm and generally performs better than Floyd-Warshall
especially on sparse graphs. Both algorithms are defined se-
rially, although parts of them may be parallelizable.

Parallel algorithms for exact diameter measurement have
been developed using parallel graph libraries [7] and shared-
memory strategies [14], however all of the algorithms pre-
sented are variants and extensions of Dijkstra’s original SSSP

70% 70% 4
60% | pueneeneee I - 60% -
50% | 50% 4
40% 40% 4
30% 30% 4
20% 20%
10% | 10% 4
0% 0% 4

Percent Error
Percent Error

70% 4
60% o
50% 4
40% 4
30% 1
20%
10%

Percent Error

~20%

0%

“10%] Fe=—e -10% -10%1 —
10% m——ge___ T ;Z; ;2; }'f ______ %“ I Graph Type
~—_ -20% R LT T T TereeeoTm e ER Undirected
—a0% 4 1 -30% 30%1 F * ——— ERDirected
—40%- -40% 4 ~40%
—_—— e—_—- 00— T ——Ma— e SF Undirected

T T T
1,000 10,000 100,000 100
Number of Vertices

(a) HADI

T
100

T
1,00 10,000
Number of Vertices

(b) Reverse Cuthill-McKee

T v
1,000 10,000 100,000
Number of Vertices

(c) Random BFS

T T
100,000 100

Figure 1: Algorithm Error by Graph Type. Algorithms are explained in Section 3.

with no improvement in computational complexity. A paral-
lel solution does exist for SSSP on graphs with non-negative
edge weights using A-stepping on specialized hardware ar-
chitectures [11], but we are not aware of such implementa-
tions available for commodity systems.

As opposed to exact diameter algorithms, approximation
algorithms are substantially less computationally intensive.
Simple approximation schemes, like reverse Cuthill-McKee [5],
sample paths starting from peripheral vertices (i.e., vertices
at the edge of the graph), as paths between peripheral ver-
tices are an intuitive estimation for the graph diameter [8].
An even simpler estimation is to iteratively find path-lengths
between random pairs of vertices and record the longest such
path as the approximate diameter. The recent popularity of
network science and graph theory as resulted in a slew of new
approximation schemes, including an algorithm with time
complexity of O(EV?/3) (where V and E are the number of
vertices and edges) [4]. Despite the improved performance,
the resulting approximations can be wildly inaccurate, al-
though each pseudo-diameter algorithm typically defines a
bounded error rate.

For perspective, Figure 1 shows the average error rate
observed between the pseudo-diameter’s value and the ac-
tual, exact diameter. This behavior is more varied when
viewed by the graph type (e.g., Erdés-Rényi (ER) and Scale-
free (SF)). These results show the wildly inconsistent perfor-
mance of the various algorithms as they operate on various
graph structures, and further underscores the necessity for
faster, exact diameter measurements.

In this paper we present a fast, exact method for calcu-
lating the diameter of a graph using vertex computing. The
algorithm leverages the near-linear scaling of vertex comput-
ing to decrease the algorithmic time complexity by a factor
of V.

1.1 Vertex-Centric Computing

Vertex-centric computing is a computational paradigm
that iteratively executes a user-defined program simulta-
neously over all vertices of a graph. The vertex program
is designed from the perspective of a vertex, receiving as
input the vertex’s data as well as data from adjacent ver-
tices and incident edges. The vertex-centric programming
model is less expressive than conventional graph-omniscient
algorithms, but is easily scalable with more opportunity for
parallelism.

Vertex-centric computing is heavily influenced by distri-
buted algorithm theory. Indeed, many graph problems can
be solved by both a sequential, shared-memory algorithm as

well as a distributed, vertex-centric algorithm. For example,
both Dijkstra’s and the Bellman-Ford algorithms iteratively
replace distance estimates with more accurate values until
eventually reaching the solution. Both variants have a su-
perlinear time complexity: Djisktra’s runs in O(E log E+V)
and Bellman-Ford’s runs in O(E x V'). Perhaps more impor-
tantly, both procedural, shared-memory algorithms keep a
large state matrix resulting in a space complexity of O(V?)
for both variants. The requirement for a shared state ma-
trix is a drawback for the common algorithms in that, even
though parts of their inner loops may be parallelized, each
process must access and modify the same (shared) memory
structure.

In contrast, our algorithm allows each vertex to man-
age their own history, which makes it easy to distribute
the algorithm across many machines. To solve the same
single-source shortest path problem in the vertex computa-
tion model (VC-SSSP) we perform the following for each
vertex in parallel: (1) a vertex determines the minimum
value among all messages received (initially, the source ver-
tex receives a message of ‘0’), (2) the vertex adopts the min-
imum value as its shortest path length, and (3) the vertex
sends the new path length plus respective edge weights to
its outgoing neighbors. If a vertex does not receive any new
messages, then it becomes inactive. When all vertices are
inactive the process halts.

The number of superstep-iterations required for this SSSP
implementation gives the eccentricity of the source vertex
e(v) and sends at least E messages to all V' vertices. We
measure the complexity of VC-SSSP by the number of mes-
sages sent, which is on the order of O(E), even though there
were only €(v) iterations. Because the diameter of a graph
can be defined as the largest vertex eccentricity, it is possi-
ble to repeat the SSSP process V-times to find the largest
eccentricity and, by definition, the exact diameter of the
graph.

Note that we do not consider the complexity of the Ver-
tex Computing framework itself, as the complexities for the
different stages may vary depending on implementation for
all algorithms using that framework.

2. FAST EXACT GRAPH DIAMETER

Rather than finding the largest vertex eccentricity one-
by-one, vertex-centric computing provides a framework for
parallel computing. Thus, the diameter algorithm works by
computing the eccentricity of every vertex simultaneously.

(a) Initial State

(b) Superstep 0

(c) Superstep 1 (d) Superstep 2

Figure 2: Computing the eccentricity of vertex A.

Algorithm 1: Diameter Vertex Program Apply Func-
tion
Data: incoming = A set of message IDs received from
neighbors

1 if superstep = 0 then

2 outgoing <+ {self.id};

3 history.add(self.id);

4 else

5 | outgoing + {};

foreach id € incoming do

if id ¢ history then
history.add(id);

L outgoing.add(id);

10 send(outgoing);

2.1 The Vertex Computation Exact Diameter
Algorithm

The vertex’s compute() function is described in Alg 1, and
operates with the following process: 1) initially, each vertex
adds it’s own unique id to the outgoing-message and history
sets, which reside in vertex-local memory; 2) after the ini-
tial superstep, the algorithm operates by iterating through
the set of received ids, which correspond to the vertex that
sent the original message; 3) the receiving vertex then con-
structs a set of outgoing messages by adding each element of
the incoming set which has not yet been seen. The reason
for keeping a history of the originating ids that have been
received is to prevent a message from being re-propagated
to the same vertices. If the vertices did not keep a history
set, then all messages would be repeatedly passed back and
forth among all pairs of adjacent vertices without halting.
The history set also serves to prune the set of total mes-
sages by eliminating message paths that would never result
the vertex’s eccentricity.

Certain frameworks allow for asynchronous or synchronous
supersteps. However, the exact diameter algorithm must
use the synchronous approach to assure that a message is
propagated from its source in a breadth-first manner. Asyn-
chronous timing would allow random messages to reach ver-
tices out of order, thereby eliminating the distance guaran-
tees. Each vertex has knowledge of the global superstep,
but has no other knowledge of the overall graph structure
other than its immediate neighbors and the messages that
are exchanged along their incident edges.

2.1.1 Example: Computing the Eccentricity of a Sin-
gle Vertex

Without loss of generality, Figure 2 shows execution of the
above algorithm from the perspective of a message originat-
ing from a single vertex (A) in an undirected graph. The
numbers of a node indicate the superstep on which the ver-
tex received a message originating at vertex A; the colors
of a node, white, grey, black, indicate if the node is unseen,
active, or finished respectively in terms of the message origi-
nating from A. The initial state of the graph is shown in Fig.
2a, and the message that is passed will originate from vertex
A. In superstep 0 (Fig. 2b), vertex A initializes itself by rec-
ognizing that the first superstep is taking place, creating a
message which contains the unique identifier of that vertex.
Because the vertex originates the first message, the message
is added to its history and outgoing queue. The message is
then sent to its neighbors (B, C, D, and E). (Note: The
presence or absence of the message value within the history
set is sufficient for the algorithm to function. Additional
information is present as an aide for the reader.)

In superstep 1 (Fig. 2c), vertices B, C, D, and E have
received the message from A. They have not seen this mes-
sage, so they add it to their respective histories and outgo-
ing queues. They then pass the message to their respective
neighbors.

In superstep 2 (Fig. 2d), vertices A, D, and E have re-
ceived the message, but because the message already exists
in their history, they disregard it. Vertices F' and G, how-
ever, have not seen the message, so it is added to their re-
spective history and outgoing queue. In superstep 3 (not
shown), vertices B and D receive the message, but have al-
ready seen it, and therefore no further propagation occurs.
Thus, all processing stops after superstep 3, and we are guar-
anteed that the eccentricity of vertex A is the number of
supersteps (3) except the final non-processing superstep (1)
of this example (3 —1 =2, so €(A) = 2).

2.1.2 From Eccentricity to Diameter

While the previous example computed the eccentricity of
vertex A, the same algorithm be followed to compute the
eccentricity of vertex B at the same time. The only changes
are that both A and B will originate a unique message on
superstep 0, and that all of the vertices will now have to
store 2 pieces of information in their respective histories:
Whether or not they have seen the message from vertex A,
and whether or not they have seen the message from vertex
B. In this particular example, the algorithm will run for one
superstep longer than before, because the €(B) = 3, whereas
the e(A) = 2 (as stated previously).

We can further extend this idea by having all vertices
originate a unique message in superstep 1, all vertices main-
taining a history of which messages they have and have not
seen, and continuing the algorithm until there are no more

messages to propagate. If the graph is connected, then each
vertex will process a message from each originating vertex
exactly once. Because the computation completes when the
largest eccentricity is calculated, the diameter of the graph
is equal to the number of supersteps (minus 1, for the final,
non-processing superstep). In the same example as above,
the message originating from vertex G will arrive at I after
4 supersteps, (and vice versa in this undirected graph, i.e.,
the message originating at F' will arrive at G after 4 super-
steps as well). Thus, the program will halt after 5 supersteps
indicating a full, exact diameter of (5 — 1 =)4.

Special considerations are required for directed graphs be-
cause it is possible for a vertex in a directed graph to have
no outgoing edges (i.e., it is a sink). In such a case, it is
necessary to transform the graph by adding a self-loop on
any sink. The addition of a self-loop on a sink is necessary
because it is possible that the message originating at the
vertex with the maximum eccentricity may terminate at a
sink, causing the algorithm to complete 1 superstep early.
The simple addition of self-loops to sinks allow the algorithm
to proceed normally.

Because the process works by counting supersteps, graphs
with weighted edges are not supported for this algorithm. In
weighted graphs, counting supersteps cannot ensure that the
synchronous propagation of messages through the network
will reveal the actual diameter in all cases, although further
exploration in this area is possible.

2.2 Analysis

From this simple example, we find that the diameter of
the graph can be calculated by having all vertices originate
a unique message on superstep 0, and then let the algo-
rithm proceed iteratively until no more messages are sent.
There are therefore ©(]V]) unique messages present in the
graph, each originating from a single vertex. For all graphs,
each message will be passed O(|E|) times. In an undirected
graph a message will be passed along each edge exactly twice
(once for the initial message, once for the return that is disre-
garded) resulting in a total message complexity of O(|V|| E|).
In a directed graph, each message will be passed along an
edge exactly once, as messages are only sent along outgoing
edges, also resulting in a message complexity of O(|V||E]).

The entirety of the messages will propagate through the
graph in O(d) supersteps, where d is the diameter of the
graph. Although the number of messages that each vertex
relays is not constant from one superstep to the next, and
will vary according to the topology of the graph, the total
number of messages that will be passed is constant.

Given that each vertex must store a history of the mes-
sages received, each vertex must store O(|V]) vertex IDs.
The total memory requirement of the algorithm, then, is
O(JV[*). Because vertex programming frameworks often
permit the vertices to be distributed across multiple ma-
chines, the memory requirement may also be partitioned
across these machines.

2.3 Batch Processing To Reduce Memory Use

The O(|V|*) memory requirement is not insignificant. It
is possible, however, to reduce the parallelism and therefore
reduce the concurrent memory requirement. This reduction
is achieved by breaking apart the simultaneous eccentricity
measurements in a series of batches. Assume, for example,
that the memory requirement to compute the diameter of

a graph is M = O(]V|?) and that this computation is to
be performed in b batches, where | J!_, B; = V, and |Bo| =
|Bi| = ... = |By| = %. During each batch B;, only v €
B; will initiate its message in superstep 0 of that batch.
Each vertex, then, only has to maintain a history of size
|B;|. Batches are processed serially, in which the history of
a previous batch may be discarded. It is simple to see that
the total memory usage is |V||B;|, or equivalently, 4.

While this change does not reduce the runtime complexity
of the algorithm, it provides a practical relief of memory use
in the implementation. The memory used in B; is, in effect,
recycled for use by B;+1, and thoughtful implementation of
this feature requires limited additional computation. The
only performance penalty with such an approach is in the
overhead of each batch’s creation; there is no increase in
the overall total number of messages that will be passed or
processed in the compute() stage.

2.4 Correctness

To show the correctness of the algorithm for computing
eccentricity, we demonstrate that the propagation of a mes-
sage from a single vertex in the manner described in the
algorithm is equivalent to a breadth-first traversal of the
graph from the originating vertex. As per the algorithm
description from Alg. 1, a vertex may only send a message
which it has received from a neighboring vertex, save for
the special case in which it originates its own message on
superstep 0. A vertex may only send messages to another
vertex with whom it has an incident edge in an undirected
graph, or along its outgoing edges in a directed graph. This
stepwise propagation ensures that, for any vertex that is a
distance of d from the message-origin, the vertex will send
a message to its neighbors. If the neighbor has not seen
the message before, then the neighbor is guaranteed to be a
distance of d 4+ 1 from the message-origin. If the neighbor
has already seen the message, then it has a distance < d+1
from the origin, so the message is discarded.

If the message originator has a distance of 0 from itself,
then its neighbors will have a distance of 1. Thus, we see
by induction that the message propagates outward from the
message origin in a breadth-first manner, and because of
the breadth first nature of the propagation, the depth of the
BFS tree (i.e., the number of synchronous supersteps) must
be equal to the eccentricity of the originating vertex.

2.5 Implementation Details

The Vertex Computation Exact Diameter (VCED) algo-
rithm, described above, was implemented in the PowerGraph
2.2 framework® using the gather, apply, scatter model [9].
All scripts, source code, and test graphs are available at our
GitHub repository?.

3. EXPERIMENTS AND RESULTS

To test the comparative performance of VCED, we mea-
sured its performance with an analysis of several types of
graphs of different sizes, and compared this to the perfor-
mance of diameter calculations of other established algo-
rithms. In terms of graph topology, we created two classes of

! Available at https://github.com/graphlab-code/
graphlab/tree/v2.2

% Available at https://github.com/nddsg/graphlab/tree/
diameter-v1.0

100,000.000 o
10,000.000 4
1,000.000 4
100.000 4
10.000 4
1.000 4

0.100 4

Seconds of Execution

0.0104
0.0014

T T
1,000 10,000

Number of Vertices

(a) Wall time usage.

T
100,000

Seconds of Execution

100,000.000 4
10,000.000 4
1,000.000 4
100.000
10.000 4
1.000 4

0.100 4

0.0104

0.0014

T T
1,000 100,000

Number of Vertices

(b) User time usage.

T
1,000 10,000
Number of Vertices

(c) Percentage of CPU use.

T
100,000

T T T v
10 100 1,000 10,000 100,000
Number of Vertices

(d) Maximum RAM usage.

Algorithm
VCED eeeeas APSP === HADI
----- Reverse Cuthill-McKee -—--— Random-BFS

Figure 3: Algorithm Performance on Undirected Erdos-Reyni Graphs (p = 32%).

graphs: ER undirected, and SF undirected. All graphs were
constructed using node counts of 10, 100, 1000, 10000, and
100000. For ER graphs, we created graphs with node:edge
ratios of 1:32. For SF graphs, we created graphs using a k
parameter of 2.0. We created five random examples of each
graph.

We compared VCED to the exact graph measurement al-
gorithms APSP as implemented by NetworkX. We also com-
pared it to pseudo-diameter algorithms HAdoop DIameter
and radii estimator (HADI) [10], reverse Cuthill-McKee [5]
and random BFS as implemented by PowerGraph, Graph-
Tool, and SNAP respectively. Experiments were performed
on a single virtual machine with 58 cores at 2.4GHz each
and 256GB of RAM. We measured User Time and Wall-
Clock time for all tests as well as maximum RAM usage.
All variants of ER and SF graphs had similar performance
profiles, with vertex and edge count being the only factors
significantly affecting the results. It should be noted that
we fully expect all pseudo diameter methods to be much
faster and more efficient than exact measurements. It should
also be noted that algorithms from NetworkX failed when
graphs were not connected, which is a frequent occurrence
in smaller, randomly generated graphs.

Figures 3a and 4a show the wall time performance of the
algorithm on a log-log axis (lower is better). Wall time, de-
fined as the amount of time that passes as measured by a
clock on the wall, highlights the advantage of parallelism
provided by our algorithm as opposed to the serial nature of
APSP. We expected our algorithm to perform slightly bet-
ter than shown here due to its better runtime complexity,
however some anticipated performance gains were thwarted
by the framework’s implementation. Most of the perfor-
mance overhead when exchanging messages could be at-
tributed to the overabundance of very small memory alloca-
tions and deallocations when compiling and sending mes-

sages between vertices (especially in the gather() step).
Furthermore, some of the backing structures for message
passing had O(logN) performance, which may have further
inflated the time. We acknowledge, however, that dealing
with such large memory structures is inherently slow due to
the heavily fragmented memory access patterns and poor lo-
cality of reference. Future research may be able to improve
the memory performance of this algorithm.

Figures 3b and 4b show the user time performance of the
algorithm, also graphed on a log-log axis. User time is the
sum of the processing time for all processors used by a pro-
gram (lower is better). The advantage of user time is that
it forces all processor usage to be accounted for, and reveals
whether or not performance gains are merely the benefit of
adding more cores to an easily-parallelizable problem. This
graph, which is based on the same graph set as figure 3a
and 4a, shows the order-of-magnitude performance gain of
our algorithm over APSP in large graphs. Figures 3b and
4b also demonstrate the overhead of the vertex-computing
framework when applied to smaller graphs in both vertex-
centric approaches, i.e., VCED and HADI.

Figures 3c and 4c shows the efficiency of each algorithm in
its use of the available processing power. Single threaded so-
lutions are at an obvious disadvantage here. Vertex-centric
computing (used in VCED and HADI) utilize the available
CPU power effectively in large graphs, but this might also
indicate that vertex-centric frameworks have a significant
amount of overhead as graph sizes grow. These graphs also
indicate that VCED and HADI have a large initial overhead
in setup, which dominates the percentage of use when pro-
cessing the smaller graphs.

Figures 3d and 4d show a log-log graph of the RAM usage
by the different algorithms. All algorithms use more RAM
as the graph grows, and VCED memory requirements grow
faster than the APSP algorithm, which is expected. The

100,000.000 o
10,000.000 4
1,000.000 4
100.000 4
10.000 4
1.000 4

0.100 4

Seconds of Execution

0.0104
0.0014

e 100,000.000 4
10,000.000 4

Seconds of Execution

T T
10 100

1,000
Number of Vertices

(a) Wall time usage.

T
10,000

T
100,000

1,000.000 4
100.000 4
10.000 4
1.000 4
0.100 4
0.0104
0.0014

(b) User time usage.

T T
10,000 100,000

80% 32Gb 4
70% 16Gb
8Gb 1
Foo L o]
5 50% 2 2Gb+
§>40% ERRIE
Zom]
&)20%< 128Mb -
10% 64Mb
32Mb A
0% N , . N - 16Mb - - § . .
10 100 1,000 10,000 100,000 10 100 1,000 10,000 100,000
Number of Vertices Number of Vertices
(c) Percentage of CPU use. (d) Maximum RAM usage.
Algorithm
VCED eeeees APSP ———. HADI
----- Reverse Cuthill-McKee -—--— Random-BFS
Figure 4: Algorithm Performance on Undirected Scale Free Graphs (k = 2).
Pseudo-Diameter (Error£StdDev)
Graph Nodes | Edges | Diameter | Wall Time (m:s) | Mem (Mb) | Rand BFS | Rev C-K | HADI
Facebook 4,039 88,234 8 00:01 63 0+0 0+0 +5.2+ .84
ca-HepPh 12,008 | 118,521 13 01:22 2,772 00 0+0 —3.6£.54
ca-CondMat | 23,133 | 93,497 15 01:38 7,518 -1+0 0+0 —5.0=£0
email-Enron | 36,692 | 183,831 13 00:44 3,500 —-2£0 0£0 —4.6 + .54
loc-gowalla 196,591 | 950,327 16 23:23 118,481 —-2+0 0+0 —6.0£0

Table 1: Results of Diameter processing on 5 real world graphs. Results from Pseudo-diameter algorithms are shown at right.
Each pseudo-diameter algorithm was executed 5 times, the error of the mean result is shown as well as the standard deviation

of the five executions.

nature of VCED requires each vertex to keep a record of
which messages it has received, which is a O(|V|?) space
requirement. Although the memory requirement is a clear
drawback to our algorithm, recall that the memory burden
may be shared by multiple machines, and that the VCED
algorithm may also be run in several small batches if needed.
For these experiments, we did not use multiple batches in
order to reduce the memory footprint.

We further used VCED to compute the diameters of five
reasonably sized graphs randomly chosen from the SNAP
datasets®. The wall time and memory usage of VCED are
reported in Table 1 showing that the performance results
obtained on artificial graphs do indeed generalize to real
world graphs. The right three columns in Table 1 show
how much the mean diameter result of five repetitions differs
from the exact diameter (£ the standard deviation). The
pseudo-diameter algorithms, all of which ran in less than
10 seconds on our test graphs, show reasonable accuracy in
some cases and poor performance in others.

4. OTHER APPLICATIONS

3http://snap.stanford.edu/data/

The benefits of our algorithm is not only in determining
the exact diameter, but also in the ability to examine the
individual histories of each vertex. The first, obvious use is
that the eccentricity for each node is easily determined. If
the history contains a record of when (on which superstep)
an individual message is received, then a more nuanced pic-
ture of the graph emerges.

The neighborhood of each vertex (the number of nodes
that are reachable within a certain number of hops) is triv-
ial to calculate. If the graph is undirected, then the node
must only look into its own history to count the nodes whose
messages it received within the designated number of hops.
If the graph is directed, then a map-reduce job can inspect
all the nodes to determine if the message from the source
node arrived within the designated number of hops. In ei-
ther case, the query is O(|V]) after the exact diameter has
been determined. While approximation functions have been
developed for this task[1, 13], an exact solution is still com-
putationally intensive.

Our algorithm could also be modified to act as an approx-
imation algorithm. One approximation would be to only
activate a small subset of the graphs (similar to the batch
approach discussed earlier) and take the largest eccentricity

as the approximation. The overall benefit to this approach
is that immense graphs could be analyzed, while each ver-
tex is only required to store a small history representing the
subset of nodes which initialized a message.

5. CONCLUSIONS

Currently, computing the exact diameter of even medium-
sized graphs is often viewed to be impractical. Indeed most
requests to determine this metric is typically discarded prima
facie because of the computational difficulty posed by the
task.

As a remedy to this problem, this paper presents a paral-
lel algorithm able to compute the exact diameter of a non-
weighted graph using a manageable O(|V||E|) messages. We
report the performance of our algorithm as compared to
other exact and approximation algorithms, and we show the
accuracy of the pseudo-diameter measurement algorithms
and its volatility in relation to the type of graph being mea-
sured.

We finally note that the PowerGraph framework used to
implement the VCED did posses severe memory allocation
issues pertaining to mallocs during growth in the vertex
data, which is further exacerbated by the immense mem-
ory requirements of analyzing large graphs. Nevertheless,
vertex-centric platforms are in their infancy; progress in sys-
tem design and future updates are sure to alleviate these
performance issues and improve the running time of VCED
and other related vertex-centric methods significantly.

In terms of practicality, we observed that, for smaller
graphs, a naive, non-parallelized APSP can be faster than
the VCED approach, due to the framework overhead. We
also see the speed at which larger graphs can be processed,
however at the cost of large memory requirements.

Further research will involve decreasing the memory foot-
print of the algorithm, as well as exploring vertex partition-
ing algorithms to better group vertices and reduce inter-
process and inter-machine communication.

6. ACKNOWLEDGEMENTS

We thank Baoxu Shi and Garrett McGrath for their help
and discussion. This research is sponsored by the Air Force
Office of Scientific Research FA9550-15-1-0003.

7. REFERENCES

[1] P. Boldi, M. Rosa, and S. Vigna. Hyperanf:
Approximating the neighbourhood function of very
large graphs on a budget. In Proceedings of the 20th
international conference on World wide web, pages
625-634. ACM, 2011.

[2] B. Bollobds and O. Riordan. The diameter of a
scale-free random graph. Combinatorica, 24(1):5-34,
2004.

[3] U. Brandes and T. Erlebach. Network analysis:
methodological foundations, volume 3418. Springer
Science & Business Media, 2005.

[4] S. Chechik, D. H. Larkin, L. Roditty, G. Schoenebeck,
R. E. Tarjan, and V. V. Williams. Better
approximation algorithms for the graph diameter. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’14, pages
1041-1052. STAM, 2014.

[5] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proceedings of the 1969
2/th National Conference of the ACM, ACM ’69,
pages 157-172, New York, NY, USA, 1969. ACM.

[6] A. H. Dekker and B. D. Colbert. Network robustness
and graph topology. In Proceedings of the 27th
Australasian conference on Computer science-Volume
26, pages 359-368. Australian Computer Society, Inc.,
2004.

[7] N. Edmonds, A. Breuer, D. Gregor, and
A. Lumsdaine. Single-source shortest paths with the
parallel boost graph library. The Ninth DIMACS
Implementation Challenge: The Shortest Path
Problem, Piscataway, NJ, pages 219-248, 2006.

[8] N. E. Gibbs, J. Poole, William G., and P. K.
Stockmeyer. An algorithm for reducing the bandwidth
and profile of a sparse matrix. STAM Journal on
Numerical Analysis, 13(2):236-250, 1976.

[9] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In Presented as part
of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages 17-30,
Hollywood, CA, 2012. USENIX.

[10] U. Kang, C. E. Tsourakakis, A. P. Appel,

C. Faloutsos, and J. Leskovec. Hadi: Mining radii of
large graphs. ACM Trans. Knowl. Discov. Data,
5(2):8:1-8:24, Feb. 2011.

[11] K. Madduri, D. A. Bader, J. W. Berry, and J. R.
Crobak. Parallel shortest path algorithms for solving
large-scale instances. 2006.

[12] B. Mohar. Eigenvalues, diameter, and mean distance
in graphs. Graphs and combinatorics, 7(1):53-64, 1991.

[13] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. Anf:
A fast and scalable tool for data mining in massive
graphs. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 81-90. ACM, 2002.

[14] G. Vaira and O. Kurasova. Parallel bidirectional
dijkstra’s shortest path algorithm. In Proceedings of
the 2011 Conference on Databases and Information
Systems VI: Selected Papers from the Ninth
International Baltic Conference, DBEIS 2010, pages
422-435, Amsterdam, The Netherlands, The
Netherlands, 2011. IOS Press.

