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Abstract 
We address the problem of predicting links and link change in friends 
networks and introduce a new supervised learning method for both 
types of prediction. This extends previous based on directed graph 
features such as the indegree of candidate friends and pair dependent 
relational features such as common interests. In this new work, we 
consider how differential user data, such as that produced using 
regular crawls from a social network site, can be used to produce a 
time series with which we can identify prediction problems over both 
links and link change. A key issue we address is the rarity of change 
between two successive versions of a social network, resulting in 
severe imbalance between positive and negative examples of change. 
We compare existing approaches towards coping with this problem, 
present positive results on new crawls of LiveJournal, and consider 
how temporal data can enhance the relational link mining process. 

 
 
INTRODUCTION   

The problem of predicting links between entities such as users and communities in a 
friends network can be treated as one of supervised inductive learning for classification. 
In previous work (Hsu et al. 2007), we introduced a system for classifying pairs of users 
who were known to lie within a radius of 2 of one another as friends or friends of friends. 
This classification task was defined on a data sets consisting of 1000 and 4000 users from 
the blog service LiveJournal. Analysis of the graph structure and pair-dependent sets 
(e.g., mutual friends and common interests) produced a set of 12 features for each 
candidate pair. From this set of features, an effective predictor for link existence could be 
learned. However, there were two key limitations to this approach. First, the features 
made available to machine learning algorithms included certain information that is not 
always available for prediction tasks. For example, in many social networks such as 
Facebook and LinkedIn, a user who has been added to the friend set of another is 
prompted for whether to issue a reciprocal link, whereas realistic prediction may require 
link existence to be identified before such information is known. Thus, some latency is 
inherent in realistic prediction task specifications. Second, a key unaddressed problem in 
this and other related work is that treating link existence as a function of a single snapshot 
of the friends network fails to take into account the full history of the graph. We show in 
this paper that data about changes to the link structure over time can provide an effective 
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set of indicators for future change. Therefore, we formulate the problem of link existence 
prediction in terms of predicting change, given the recent history of: graph topology, user 
features, and features of candidate friends. This approach provides the features required 
for machine learning algorithms to be able to learn predictive cues about imminent 
change in link existence – i.e., addition and deletion of friendships. Our experiments 
demonstrate that predictors learned from atemporal data tend to grossly oversimplify the 
conditions of link change, resulting in poor generalization quality. By using temporal 
data, we capture both graph-based and user-based indicators of imminent link change, 
resulting in much higher prediction accuracy, precision, and recall.  

The novel contribution of this time series formulation is that it makes available the 
full information contained in regularly collected snapshots of a social network site. This 
information, in turn, supports more robust learning to predict link change than for a single 
crawl. 
 

 
BACKGROUND 
Friends Networks from User Profiles 

In our original study of link prediction by classification (Hsu et al. 2006), we 
defined a simple data model for a feature set (i.e., an attribute vector or tuple). Each tuple 
corresponds to a candidate pair. We first enumerated tuples of seven graph features such 
as indegree of candidate friend from LiveJournal’s friends network, and augmented this 
schema with five relational attributes such as number of mutual interests. This system 
precomputes data for supervised inductive learning whose objective is to classify 
candidate friendships based on observable features of the source entity u and a target 
entity v. Some features, such as degree, were dependent on only u or only v; others, such 
as backward distance, were measured between v and u. The most basic prediction task is 
to take as input an unlabeled instance (tuple of all 12 node-dependent and pair-dependent 
attributes) and label (u, v) as existing or not. Ground truth, i.e., whether (u, v) א E, is 
known. We refer the interested reader to (Hsu et al. 2007) for full documentation of these 
attributes and the inductive learning experiments conducted. 

 
Link prediction versus change prediction 

The link prediction problem has been studied as a classification problem (Popescul 
and Ungar 2003), with applications of relational link extraction by clustering becoming 
prevalent in recent research (Getoor and Diehl 2005). Our technical objective in this new 
work was to extend the problem definition, from classification on static instances to 
classification of instances in a sequence as being examples of change or no change in 
link structure. We henceforth refer to this problem as link change prediction.  

The key contribution of our original work (Hsu et al. 2006) was that it identified a 
set of graph features that could be used to learn to classify two users known to lie within a 
radius of 2 of each other as being distance 1 apart (friends) or distance 2 apart (friends of 
friends). The test set accuracy of decision surfaces learned using this data was in excess 
of 97% on 1000-node data sets, while the precision and recall were in excess of 80% 
each. Limitations of this work were that it provided only a method for predicting whether 
two users were friends given that their entire set of mutual friends, the overall degree of 
both the initiating friend and receiving friend, and the reciprocity of the friendship. This 
does not provide as fully realistic a training scenario as a real incremental crawl of a 
social networking site would, because for a typical u and v where the existence of (u, v) 
in the edge set E is being predicted, a) the candidates are not necessarily known to lie less 
than or equal to two nodes apart and b) it is not necessarily known whether (v, u) is 
already in E. (v, u) א E is a triggering event for adding one friendship (or breaking 
others), and is employed in social networks that send notifications and prompt the user to 
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choose whether to reciprocate, as is the case with Facebook (shown in Fig. 1), LinkedIn, 
and Flickr. 

 
 

 
Figure 1. Facebook reciprocation dialogue 

 
 

The key novel advance of the second work (Hsu et al. 2007) was that it derived 
algorithms for computing graph features efficiently, in time quadratic in the number of 
nodes, i.e., O(kn) = O(k |V|), where k is the square of the average degree of a node in the 
friends network. We bounded this number empirically to be between 20 and 30 on 
average for LiveJournal, although there are some “islands”, i.e., users with indegree and 
outdegree 0. Such users’ profiles cannot be crawled due to their being in separate 
strongly connected components and due to LiveJournal’s lack of random access to users’ 
records by number. The record for indegree was over 5000, held by iharthdarth, the 
author of a popular web comic. 

In the second paper, we still used the “distance 1 vs. 2” problem as a benchmark, but 
recognized the need for better tests. In exploratory experiments at this time, we found that 
ab initio classification of user pairs by expected distance yielded poor results for the 
exact case, and mediocre results for learning an upper bound. 

 
 

Methodologies for link mining 
In addition to the classification approach of Popescul and Ungar (2003), we studied 

the SUBDUE system of Mukherjee and Holder (2004), which uses graph algorithms to 
find frequently occurring subgraphs as a preprocessing step for supervised inductive 
learning. Bhattacharya and Getoor (2004) similarly use statistical relational learning from 
data to address the deduplication problem. 

Our approach to link mining is based on classical inducers for supervised learning, 
such as J48, Logistic Regression, and OneR (Holte 1993). However, the learning 
framework introduced in (Hsu, et al. 2006), and extended in (Hsu et al. 2007) and this 
work, is extensible to other approaches, such as the inductive logic programming (ILP) 
system compared against SUBDUE by Ketkar, Holder, and Cook (2005). 
 
 
EXPERIMENT DESIGN 
Data Acquisition: LJCrawler v3 

LJCrawler v3 is a multi-threaded, parallel HTTP crawler that effectively gathered 
user information in a breadth-first manner beginning with LiveJournal user darthvader, 
which was randomly selected. Specifically, the crawler queried user data including, but 
not limited to, user age, interests, friends, schools, communities, etc. Running on a single 
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computer, LJCrawlerv3 is bounded by only by network capacity, and was shown to crawl 
at most 200 users per second. Keeping within the LiveJournal terms of service, we 
limited the crawling capacity to generally five users per second. 

The crawler was run for a total of three hours every six hours for seven days from 
00:00 CST on September 27, 2007, to 18:00 CST on October 03, 2007, for a total of 28 
crawls. 

 
 

Prediction tasks 
We identified two prediction tasks – one based on a single feature set from a single 

run of LJCrawlerv3 and another based on all 28 crawls. Both tasks shared the target 
concept of a newly-added friendship. That is, a candidate pair (u, v) was labeled as 
positive if and only if (u, v) ב Et-1 and (u, v) א Et. Specifically, the first task (atemporal) 
was based on the friendships in the initial crawl from 00:00 CST on September 27, 2007, 
as compared to the friendships that existed in the final crawl at 18:00 CST on October 03, 
2007. 

Alternatively, the second task (temporal) was based on learning from the 
incremental differences between each successive pair out of the 28 crawls. In order to 
learn from successive pairs, we structured the training features in the following manner: 

 
௧݂ିସ, ௧݂ିଷ, ௧݂ିଶ 
௧݂ିଷ, ௧݂ିଶ, ௧݂ିଵ 
௧݂ିଶ, ௧݂ିଵ, ௧݂ 

 
where ௧݂ି௞ is the feature tuple from the crawl at time t – k (k crawls ago). 
 
 
Handling imbalanced data 

The problem of imbalance between the frequency of positive and negative examples 
is endemic to change prediction in many domains. For example, Kubat, Holte, and 
Matwin observed that certain anomaly detection problems such as detecting oil spills in 
satellite images involved a vastly greater number of negative examples than positive 
(1998). Similarly, we encounter many more cases where a user neither adds nor deletes 
friends during a short period of a few days or weeks. Anecdotally, users often delete 
friends as a regular mass action (such as a “friends cut”) or add entire social groups or 
cliques upon their own arrival at a blog or social network service, or when a friend joins 
who is known offline to the user. 

The approach commonly taken to cope with imbalance is to downsample negative 
examples or upsample positive examples. (Kubat and Matwin 1997). Our approach 
effectively upsamples positive examples by taking all available instances of change: 
known additions of friends-links for users who were not friends previously, or retractions 
of links for users who were. We then generate random cases (predominantly negative for 
“change”) either according to a: 

1. Fixed Ratio (FR), where the number of positive and negative cases is 
deliberately equalized, i.e., kept at a 1-to-1 ratio 

2. Fixed Count (FC), where the number of positive and negative cases are 
sampled randomly from among the population. 

For example, given a hypothetical population size of 1000 with 900 negative 
examples and 100 positive examples, if we wished to find a sample of size 100 the FR-
sample would contain exactly 50 negative and 50 positive examples, whereas the FC-
sample would contain approximately 90 negative examples and only 10 positive 
examples. Note, the FR-sample does not maintain the original distribution of the 
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population in order to provide more positive training examples, whereas the FC-sample is 
a simple random sampling of the population. Therefore, we propose that an effective and 
prudent evaluation of our prediction problem is to use the FR-sample as training data and 
the FC-sample as test data. 

 
 

Atemporal data set 
We adapt a feature set first derived in (Hsu et al. 2006): 
1. Indegree of u: popularity of the user 
2. Indegree of v: popularity of the candidate 
3. Outdegree of u: number of other friends besides the candidate; saturation of 

friends list 
4. Outdegree of v: number of existing friends of the candidate besides the user; 

correlates loosely with likelihood of a reciprocal link 
5. “Forward deleted distance“: minimum alternative distance from u to v in the 

graph without the edge (u, v) 
6. Backward distance from v to u in the graph 
7. Number of mutual interests between u and v 
8. Number of mutual friends w such that u → w ר w → v 
9. Number of schools that u and v list in common  
The last feature is a new one adopted by LiveJournal in recent years. 
We refer the reader to (Hsu et al. 2007) for details of efficient feature analysis. The 

new implementation of bidirectional breadth-first search produces a speedup of several 
times. 

We concentrated in this work on predicting additions only rather than additions and 
deletions. The target feature is the Boolean variable BecameFriends. 
 
 
Temporal data set 

The novel contribution of this research, specifically, is the use of graph and link 
features, and their changes through time. In order to describe the temporality of the graph 
data the feature set of each pair is shown in a three time-tick window starting with T0, T1, 
T2, and the proceeding feature set row is shifted to exclude the first time tick and include 
the next. This is done until the final time tick is reached, giving 25 feature tuples for each 
pair u, v. 

Enumerating the differences in 28 individual time ticks was shown to be 
computationally expensive, effectively magnifying the complexity of the temporal feature 
extraction by the number of time ticks. 

Temporal data was thus gathered for 1000, 2000 and 4000 u, v pairs. And four 
training sets were created: FR and FC with and without link features for each size in the 
same manner as described in the above section on the atemporal data set. 
 
 
EXPERIMENTAL RESULTS 
Experiment Design 

Data was generated for 1000, 2000 and 4000 u, v pairs. Furthermore, we modified 
the feature extraction algorithm to generate four total sets of training data for each size:  

1. Fixed Ratio (FR) with Graph Features 
2. FR without Graph Features 
3. Fixed Count (FC) with Graph Features 
4. FC without Graph Features 
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The nominal attribute becameFriends is denoted as yes if pair u, v was not friends 
before T0 and was friends after T28, and no otherwise. As proposed in the previous 
section, our atemporal experiment was evaluated in two ways: (1) trained with FR-
sample data and tested with FC-sample data (FR/FC), (2) 10-folds cross validation on 
FC-sampled data (FC/FC). 

With this atemporal data the WEKA implementation of the J48 algorithm was run. 
The results are shown in Table 1. 

 
 

Table 1. J48 results, atemporal data set 

FR/FC FC/FC 
Graph Features (%) All Features (%) Graph Features (%) All Features (%) 

m Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. 
1000  83.0 2.0 100.0 83.0 2.0 100.0 99.5 0.0 0.0 99.3 0.0 0.0 
2000 90.7 4.6 90.0 92.1 5.0 90.0 99.5 0.0 0.0 99.4 33.3 2.0 
4000 95.1 2.0 66.7 92.6 2.0 100.0 99.9 0.0 0.0 99.7 11.1 16.7 

 
 
FC/FC results were expectedly poor because in many cases the training sample had 

only 4 or 5 positive examples for training. In fact, FC/FC on graph features recorded 0 
positive examples correctly through all sample sizes. However, when FR-sample data is 
used for training (FR/FC) the results are noticeably higher. Furthermore, the differences 
in results of experiments with graph features only and experiments with all features are 
minimal; this observation is consistent with earlier work. 
 
 
New results: time series task 

Data was again generated for 1000, 2000 and 4000 u, v pairs similar to the 
atemporal results except that each feature tuple was replicated as ௧݂ି௞భ, ௧݂ି௞మ, etc. as 
described in the earlier sections. This realignment allows the inducer to learn temporal 
actions that may lead to changes in the friendship status of a pair. This hypothesis is 
empirically shown to be true in Tables 2-4. 

 
 

Table 2. Results for all inducers, FR/FR, time series 

 J48 Logistic OneR 
m Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. 

G
ra

ph
 

Fe
at

ur
e 1000 99.0 100.0 87.5 100.0 100.0 100.0 100.0 100.0 100.0 

2000 98.9 100.0 90.1 93.2 71.7 60.6 99.4 100.0 94.4 
4000 99.4 99.8 97.8 77.9 58.4 27.3 95.1 88.9 90.9 

A
ll 

Fe
at

ur
es

 1000 99.0 100.0 87.5 100.0 100.0 100.0 100.0 100.0 100.0 

2000 98.9 100.0 90.1 95.2 75.0 84.5 99.4 100.0 94.4 

4000 99.3 99.5 97.5 83.1 75.1 43.7 95.1 88.7 90.9 

 
 

Specifically, Table 2 shows that when FR-samples are cross validated (FR/FR) very 
high scores are the result. However, by training and testing on population-inconsistent 
data inherent in the FR-sample these results are likely skewed by overfitting and the 
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resulting prediction rules may not be suitable for real-world data. Table 3 shows more 
sound results because the inducer is tested with FC-sample data. 
 
 

Table 3. Results for all inducers, FR/FC, time series 

 J48 Logistic OneR 
m Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. 

G
ra

ph
 

Fe
at

ur
e 1000 59.9 1.5 75.0 67.3 1.8 74.0 50.7 1.2 75.0 

2000 85.5 2.9 49.3 80.1 0.6 14.1 80.2 1.7 37.4 

4000 84.3 2.3 41.0 80.6 0.4 8.7 77.5 2.1 54.3 

A
ll 

Fe
at

ur
es

 1000 59.9 1.5 75.0 59.9 1.5 75.0 50.7 1.2 75.0 

2000 84.9 2.0 90.1 89.1 0.9 84.5 79.6 1.0 94.4 

4000 84.0 1.0 20.0 79.3 0.5 13.9 76.9 1.5 46.7 

 
 
Table 3 shows promising results, in that, even though very few positive examples 

were used in validation because the FC-sample data contains only ൎ5% positive 
examples (which correspond to the population’s original distribution). 

In our final experiment, we train and cross validate inducers with FC-sample data. 
The results are shown in Table 4. 

 
 

 Table 4. Results for all inducers, FC/FC, time series 

 J48 Logistic OneR 
m Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. 

G
ra

.
Fe

at
. 1000 100.0 100.0 100.0 99.2 100.0 3.5 99.4 83.7 36.0 

2000 99.9 100.0 99.1 99.1 65.5 4.3 99.3 93.6 26.2 

A
ll 

Fe
at

. 1000 100.0 100.0 100.0 99.3 69.9 29.0 99.4 67.9 45.5 

2000 100.0 100.0 100.0 99.4 66.2 35.5 99.5 78.9 57.9 

 
 
Interpretation 

As table 4 shows, J48 is able to learn a predictor for the time series problem 
documented in earlier sections that achieves 100% accuracy, precision, and recall on (10-
fold) cross validation data.  This performance is far superior to that of logistic regression 
and OneR, as well as compared to that of the atemporal predictor whose results are 
shown in earlier in this section.  
 
 
CONTINUING WORK 
Integrating relational and temporal features 

Relational attributes include pair-dependent attributes such as mutual interests, 
friends, schools, etc. and link-dependent attributes such as causal explanations for a 
friendship (how two people met and what their relationship is) and reported outcomes of 
the friendship (what they self-identify as having done together). 
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There are two ways in which our time series and relational data models can be 
combined to produce an enriched overall data model for link change prediction: 

1. Incorporate previously derived relational attributes into the time series. This 
can be done using classical time series analysis methods such as: 

a. windowing: expanding the definition of a tuple or "feature vector" (attribute 
vector) to include values of a feature at different time lags 

b. smoothing: finding an exponential trace or moving average of an attribute 
2. Incorporate summative attributes of the time series into the relational model. 

This can be done using time series filters and aggregation methods such as: 
a. moment analysis: finding the mean, variance, skewness, and kurtosis of 

specific quantitative variables over time and using these moment values as attributes 
b. queuing theoretic parameter estimation: using statistical inference with a 

process model (e.g., Poisson or Weibull analysis) to find waiting times for events 
such as adding or deleting friends (or groups of friends) 
We are continuing to add relational features cf. [HKPW07] that are part of the 

overall data model. 
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