# Suggested Answers, Problem Set 5 ECON 30331 

## Bill Evans <br> Spring 2010

1. The program that generates these results is called q1_ps5.do. Below are a few tables that summarize the results for this problem. Please note that the variables v2 and v3 that are used to construct the new variables are produced from draws to a random number generator. Each time you run a program, the computer will generate a different sequence of random numbers so your results will differ slightly. Given the sample sizes, the mean and standard deviation of v2 should close to 0 and 1 respectively, while the same values for v 3 should be 0 and 2 .

Means, Standard Deviations, and Variances of Key Variables

| Variable | Mean | Std. deviation | Variance |
| :--- | :--- | :--- | :--- |
| years_educ | 13.16 | 2.80 | 7.84 |
| v2 | -0.0011 | 0.997 | 0.994 |
| v3 | -0.0006 | 1.996 | 3.985 |
| educ2 | 13.16 | 2.97 | 8.82 |
| educ3 | 13.16 | 3.43 | 11.76 |
| ln(weekly_earn) | 6.067 | 0.513 | 0.263 |
| y2 | 6.066 | 1.118 | 1.250 |
| y2 | 6.068 | 2.057 | 4.231 |

OLS Estimates

|  | Dependent <br> Problem | Independent <br> Variable | Parameter on <br> independent | Std error on <br> independent |
| :--- | :--- | :--- | :--- | :--- |
| 1a | Ln(weekly_earn) | years_educ | 0.0741 | 0.0012 |
| 1c | Ln(weekly_earn) | educ2 | 0.0653 | 0.0011 |
| 1d | Ln(weekly_earn) | educ3 | 0.0483 | 0.0010 |
| 1e | y2 | years_educ | 0.0745 | 0.0028 |
| 1e | y3 | years_educ | 0.0763 | 0.0052 |

1a) When education does not have measurement error, the coefficient on that variable is 0.0741 indicating that each additional year of education increases earnings by 7.4 percent.

1b) The random variable z 2 has a mean of roughly zero and a variance of approximately 1 . Therefore, the new constructed variable educ2 has a mean of 13.16 which is exactly the mean of years_educ, but now the variance of years_educ has increased by approximately 1 , from 7.84 to 8.82 .

1c) When $\ln$ (weekly earn) is regressed on educ2, notice that the coefficient on the education variable falls to 0.0653 . Notice also that the ratio of this estimate to the one without measurement error is simply $0.0653 / 0.0741=0.881$. Is this to be expected? Yes. Recall two facts. First, in large samples, when there is random measurement error in $x$, the coefficient on $x$ falls by the size of the reliability ratio. Notice that the variance of educ 2 is simply the variance of years_educ plus the variance of v 2 . Therefore, the reliability ratio is $\theta=\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{v}^{2}}=7.84 / 8.82=0.888$. the reliability ratio suggests that the coefficient on educ2 should be about 12 percent lower and it is roughly 12 percent lower.

1d) Educ3=years_educ+v3 and notice that the variance for educ3 is about 4 larger than the variance of years_educ. Therefore, the reliability ratio in this context is $\theta=\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{v}^{2}}=7.84 / 11.76=0.666$. This is the devil's number but it also suggests that using educ3 instead of years_educ should reduce the coefficient on education by 33 percent. Notice that the ratio of the new to the original estimate is $0.0483 / 0.0741=0.651$ or about 35 percent lower.

1e) On problems sets 2 and 3, we demonstrated that with random measurement error in the dependent variable, the estimate for $\beta_{1}$ is still unbiased (problem set 2 ) but the standard error should rise considerably. In this problem, notice that the two variables with measurement error ( y 2 and y 3 ) have essentially the same mean as ln_weekly_earn but the variance increases by 1 and 4 respectively over the initial value.
Therefore, when we replace ln_weekly_earn with y2 and y3, we see little change in the coefficient estimate for $\beta_{1}$ but a large change in the estimate for the standard error of $\beta_{1}$.
2. a) Notice also that if $y_{t}=\rho y_{t-1}+\varepsilon_{t}$ and $y_{t-1}=\rho y_{t-2}+e_{t-1}$ then

$$
y_{t}=\rho y_{t-1}+\varepsilon_{t}=\rho\left(\rho y_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t}=\rho^{2} y_{t-2}+\rho \varepsilon_{t-1}+\varepsilon_{t}
$$

And since $y_{t-2}=\rho y_{t-3}+\varepsilon_{t-2}$ then you can also show that

$$
y_{t}=\rho^{3} y_{t-3}+\rho^{2} \varepsilon_{t-2}+\rho \varepsilon_{t-1}+\varepsilon_{t}
$$

Doing this multiple times, we then generate that identify that

$$
y_{t}=\rho^{n-1} y_{1}+\varepsilon_{t}+\rho \varepsilon_{t-1}+\rho^{2} \varepsilon_{t-2}+\rho^{3} \varepsilon_{t-3}+\ldots \ldots . .=\rho^{n-1} y_{1}+\sum_{j=1}^{n-2} \rho^{j-1} \varepsilon_{t-j+1}
$$

b) Taking expectations of the equation above, note that

$$
\begin{aligned}
& E\left[y_{t}\right]=E\left[\rho^{t-1} y_{1}\right]+E\left[\varepsilon_{t}\right]+E\left[\rho \varepsilon_{t-1}\right]+E\left[\rho^{2} \varepsilon_{t-2}\right]+E\left[\rho^{3} \varepsilon_{t-3}\right]+\ldots . . . \\
& E\left[y_{t}\right]=\rho^{t-1} y_{1} \\
& \text { Because } E\left[\rho^{j-1} \varepsilon_{t-j+1}\right]=\rho^{j-1} E\left[\varepsilon_{t-j+1}\right]=0 \text { and } \rho^{t-1} y_{1} \text { is a constant }
\end{aligned}
$$

Note that when 10 observations, the expected value of the $10^{\text {th }}$ observation still has some information about the $1^{\text {st }}$ observation. In particular, $E\left[y_{10}\right]=\rho^{9} y_{1}$. How much information still persists is a function of the value of $\rho$. If $\rho=0.25$, then $0.25^{9}=3.81 \mathrm{e}-6$ and virtually none Y1 persists until period 10 . However if $\rho=0.5, \rho^{9}=0.002$ and if $\rho=0.9, \rho^{9}=0.39$.
c) If $\rho=1$, then note that $E\left[y_{t}\right]=\rho^{t-1} y_{1}=y_{1}$ and regardless of the period in the future, the best prediction of Y will always be $\mathrm{y}_{1}$.
3. a) A regression of the form $\hat{\varepsilon}_{t}=\rho \hat{\varepsilon}_{t-1}+v_{t}$ will generate the estimate $\hat{\rho}=\frac{\sum_{t=2}^{T} \hat{\varepsilon}_{t-1} \hat{\varepsilon}_{t}}{\sum_{t=2}^{T} \hat{\varepsilon}_{t-1}^{2}}$.
b) There is no constant in the model because we assume $E\left[\varepsilon_{t}\right]=0$ and we know that within our sample $\overline{\hat{\varepsilon}}=0$
4. Start with the Durbin-Watson Statistic and complete the square in the numerator:

$$
\hat{d}=\frac{\sum_{t=2}^{n}\left(\hat{\varepsilon}_{t}-\hat{\varepsilon}_{t-1}\right)^{2}}{\sum_{t=1}^{n} \hat{\varepsilon}_{t}^{2}}=\frac{\sum_{t=2}^{n}\left(\hat{\varepsilon}_{t}^{2}-2 \hat{\varepsilon}_{t} \hat{\varepsilon}_{t-1}+\hat{\varepsilon}_{t-1}^{2}\right)}{\sum_{t=1}^{n} \hat{\varepsilon}_{t}^{2}}=\frac{\sum_{t=2}^{n} \hat{\varepsilon}_{t}^{2}}{\sum_{t=1}^{n} \hat{\varepsilon}_{t}^{2}}-2 \frac{\sum_{t=2}^{n} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t-1}}{\sum_{t=1}^{n} \hat{\varepsilon}_{t}^{2}}+\frac{\sum_{t=2}^{n} \hat{\varepsilon}_{t-1}^{2}}{\sum_{t=1}^{n} \hat{\varepsilon}_{t}^{2}}=a-2 b+c
$$

Notice that ratios (a) and (c) are both approximately equal to 1 and ratio $b$ is approximately equal to $\hat{\rho}$, so $\hat{d} \approx 2(1-\hat{\rho})$.
5. We hope to estimate the model $y_{t}=\beta_{0}+x_{t} \beta_{2}+\varepsilon_{t}$ and there is third order autocorrelation,

$$
\varepsilon_{t}=\rho_{1} \varepsilon_{t-1}+\rho_{2} \varepsilon_{t-2}+\rho_{3} \varepsilon_{t-3}+v_{t}
$$

Step 1: estimate $y_{t}=\beta_{0}+x_{t} \beta_{2}+\varepsilon_{t}$ by OLS and generate an estimate of $\hat{\varepsilon}_{t}=y_{t}-\hat{\beta}_{0}-x_{t} \hat{\beta}_{1}$

Step 2: Lag $\hat{\varepsilon}_{t}$ three times then run the regression $\hat{\varepsilon}_{t}=\rho_{1} \hat{\varepsilon}_{t-1}+\rho_{2} \hat{\varepsilon}_{t-2}+\rho_{3} \hat{\varepsilon}_{t-3}+v_{t}$ to obtain estimates for $\hat{\rho}_{1}, \hat{\rho}_{2}$, and $\hat{\rho}_{3}$

Step 3: rho-difference the data three times

$$
\begin{aligned}
& y_{t}^{*}=y_{t}-\hat{\rho}_{1} y_{t-1}-\hat{\rho}_{2} y_{t-2}-\hat{\rho}_{3} y_{t-3} \\
& x_{t}^{*}=x_{t}-\hat{\rho}_{1} x_{t-1}-\hat{\rho}_{2} x_{t-2}-\hat{\rho}_{3} x_{t-3} \\
& v_{t}=\varepsilon_{t}-\hat{\rho}_{1} \varepsilon_{t-1}-\hat{\rho}_{2} \varepsilon_{t-2}-\hat{\rho}_{3} \varepsilon_{t-3}
\end{aligned}
$$

Step 4: run the synthetic regression

$$
y_{t}^{*}=\beta_{0}^{*}+x_{t}^{*} \beta_{2}+v_{t}
$$

Notice that by rho-differencing the data three times, we generate the error term $\mathrm{v}_{\mathrm{t}}$ in step 4.
6. The program and results are in the files okun.do and okun.log respectively.
a) Regressing unemp on its lag generates a lag coefficient of 0.734 on lagged unemployment and the $95 \%$ confidence interval is only $0.558,0.910$ ) so we can reject the null the coefficient on the lag is 1 it does not look like
unemployment is a stationary series. In contrast, the regression of lgdpr on its lag produces an estimate of 0.992 on the lagged lgdpr and the confidence interval contains 1 so we cannot reject the null the coefficient on

. test unemp1=1
( 1) unemp1 = 1
$\mathrm{F}(1, \quad 57)=9.12$ Prob $>\mathrm{F}=0.0038$
. reg lgdpr lgdpr1

| Source | SS | df MS |  |  |  | $\begin{aligned} & \text { Number of obs } \\ & \text { F( 1, 57) } \end{aligned}$ | $=\quad 59$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $=29288.15$ |
| Model | 18.3867782 | 1 | 18. | 867782 |  | Prob > F | $=0.0000$ |
| Residual | . 035783977 | 57 | . 00 | 627789 |  | R -squared | $=0.9981$ |
|  |  |  |  |  |  | Adj R-squared | $=0.9980$ |
| Total | 18.4225622 | 58 | . 31 | 630383 |  | Root MSE | $=.02506$ |
| lgdpr | Coef. | Std. Err. |  |  | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| lgdpr1 | . 9920535 | . 0057 | 968 | 171.14 | 0.000 | . 9804456 | 1.003661 |
| _cons | .1000495 | . 0490 | 175 | 2.04 | 0.046 | . 0018935 | . 1982054 |

. test lgdpr1=1
( 1) lgdpr1 = 1
$\begin{array}{rll}\mathrm{F}(1, \quad 57) & =1.88 \\ \text { Prob }>F & =0.1758\end{array}$
b) The Durbin Watson statistic is estimated to be 0.038 which is incredibly low. In this case $\mathrm{k}=2$ and $\mathrm{N}=60$ (roughly) so the lower and upper values of the DW test statistic are 1.51 and 1.662 , respectively, and since $\hat{d}<1.514$, we can easily reject the null of no autocorrelation.
. estat dwatson
Durbin-Watson d-statistic ( 2, 60) = . 0383833
c) Okun's law looks pretty good after all these years. A regression of dlgdpr on dunemp peoduce a coefficient on dunemp of -1.98 and since the confidence interval is ( $-2.3,-1.6$ ), we cannot reject the null that the coefficient equals -2 as originally proposed by Okun almost 46 years ago. We cannot reject the null the constant equals 3 and we cannot reject the joint null hypothesis $H_{0}: \beta_{1}=-2$ and $\beta_{0}=3$. The

| Source | SS | df |  | MS |  | Number of obs $=59$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | 260.614306 | 1 | 260 | . 614306 |  | F ( 1, Prob P F |  | $\begin{aligned} & 136.26 \\ & 0.0000 \end{aligned}$ |
| Residual | 109.022975 | 57 | 1.91 | 268377 |  | R-squared |  | 0.7051 |
| Total | 369.637281 | 58 | 6.37 | 305657 |  | Adj R-squared Root MSE |  | 0.6999 1.383 |
| dlgdpr | Coef. | Std. | Err. | t | $P>\|t\|$ | [95\% Conf. |  | nterval] |
| dunemp | -1.98189 | . 169 | 861 | -11.67 | 0.000 | -2.321881 |  | 1.641899 |
| _cons | 3.33389 | . 180 | 074 | 18.51 | 0.000 | 2.973298 |  | 3.694482 |

```
. test dunemp=-2
```

( 1) dunemp $=-2$
F (1, 57) = 0.01
Prob $>\mathrm{F}=0.9154$
. test _cons=3
( 1) _cons = 3
$F(1,57)=3.44$ Prob $>\mathrm{F}=0.0689$
. test (dunemp=-2) (_cons=3)
( 1) dunemp $=-2$
( 2) _cons $=3$
$\begin{aligned} \mathrm{F}\left(\mathrm{L}^{2,} 57\right) & =1.73 \\ \text { Prob }>\mathrm{F} & =0.1868\end{aligned}$

- estat dwatson

Durbin-Watson d-statistic (2, 59) = 2.003222
d) The Durbin-Watson statistic is 2 and with $\mathrm{k}=2$ and $\mathrm{n}=59$, the lower and upper critical values of the DW test statistic are 1.514 and 1.652 , respectively, so we cannot reject the null that $\rho=0$ (no autocorrelation) in the data.
7.
a) $\mathrm{N}=95, \mathrm{k}=6, \hat{d}=1.85$, lower $=1.535$, upper $=1.805$, since $\hat{d}>$ upper, we cannot reject that the null $\rho=0$ (no autocorrelation)
b) $\mathrm{N}=33, \mathrm{k}=15, \hat{d}=0.51$, lower $=0.488$, upper $=2.796$, since lower $<\hat{d}$ <upper, the test is inconclusive
c) $\mathrm{N}=55, \mathrm{k}=2, \hat{d}=1.55$, lower $=1.49$ upper $=1.641$, since lower $<\hat{d}$ <upper, the test is inconclusive

