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a b s t r a c t

We exploit the discontinuity in age when children start kindergarten generated by state eligibility laws

to examine whether relative age is a significant determinant of ADHD diagnosis and treatment. Using a

regression discontinuity model and exact dates of birth, we find that children born just after the cutoff,

who are relatively old-for-grade, have a significantly lower incidence of ADHD diagnosis and treatment

compared with similar children born just before the cutoff date, who are relatively young-for-grade.

Since ADHD is an underlying neurological problem where incidence rates should not change dramati-

cally from one birth date to the next, these results suggest that age relative to peers in class, and the

resulting differences in behavior, directly affects a child’s probability of being diagnosed with and treated

for ADHD.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Nearly all critics of the U.S. healthcare system note that the U.S.

spends far more on health care than any other developed country

yet performs poorly in international comparisons on aggregate
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outcomes such as life expectancy and infant mortality.1 Some

interpret these statistics as an indication that the U.S. health care

system is on the “flat-of-the-curve” (Fuchs, 2004) in the health

production function meaning the marginal health care dollar is

of little or questionable medical value. The notion that a large

fraction of health care spending produces little return is bolstered

by data from the Dartmouth Atlas which shows that per capita

Medicare reimbursements across hospital referral regions vary

by a factor of three (Wennberg et al., 2008), yet there is little

evidence that these differences in spending lead to better quality

of care (Baicker and Chandra, 2004) or better mortality outcomes

(Fisher et al., 2003). This same research program suggests that the

U.S. could reduce Medicare spending by 30% without any drop

in medical outcomes. Similarly, the Institute of Medicine (2007)

estimates that nationwide less than half of all treatments delivered

are supported by evidence.

1 In 2006, per capita spending on health in the U.S. was $6714, more than

twice the median value for OECD countries. Despite this spending, in 2005,

the U.S. ranked 25th of 29 countries in average life expectancy and the U.S.

had the fourth highest infant mortality rate of 28 reporting countries. All

data is from the OECD’s frequently requested data series, http://www.irdes.fr/

EcoSante/DownLoad/OECDHealthData FrequentlyRequestedData.xls.

0167-6296/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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The statistics reported above have lead to a greater emphasis

on reducing waste and improving the quality of clinical decisions

as cornerstones of any health care reform initiative. For example,

$1.1 billion was earmarked for cost-effectiveness research as part

of the American Recovery and Reinvestment Act, signed into law

on February 19, 2009 by President Obama.2

The difficulty in implementing practice reform is identifying

what is and is not medically appropriate. Utilization review is now

commonplace in medicine and a large volume of research uses

chart review to identify procedures that are appropriately indicated

by medical conditions. Unfortunately, chart reviews are expen-

sive and in many instances review can only indicate whether the

treatment was appropriate given the diagnosis, not whether the

diagnosis itself was correct in the first place.

In this paper, we implement a statistical procedure to examine

the medical appropriateness of one specific diagnosis (attention-

deficit/hyperactivity disorder) and its most frequent treatment

(stimulants). The procedure is implemented using information typ-

ically gathered in claims data files or reported in surveys, which

greatly reduces the data needs compared to other forms of utiliza-

tion review.

Attention-deficit/hyperactivity disorder (ADHD) is a neurolog-

ical condition characterized by delayed brain development (Shaw

et al., 2010). According to the National Institute of Mental Health

(2008), children with ADHD are hyperactive and tend to have diffi-

culty staying focused and controlling behavior. The ADHD Booklet

explains (p. 2) “it is normal for all children to be inattentive, hyper-

active, or impulsive sometimes, but for children with ADHD, these

behaviors are more severe and occur more often.” Not only is ADHD

difficult to diagnosis, but often the diagnosis is made by a pediatri-

cian or family physician without consultation with a mental health

specialist (Safer and Malever, 2000). In the United States about

5–10% of children aged 6–18 have been diagnosed with ADHD and

some estimates suggest this number increased by 500% between

the late 1980s and early 2000s (Zuvekas et al., 2006).

In this paper, we provide evidence that the diagnosis and treat-

ment of ADHD is heavily influenced by the relative age of children in

school. Most public schools in the United States have an official “age

of start” date that indicates the time by which a child must turn 5

years old in order to enter kindergarten. Age at school start laws cre-

ate quasi-experimental variation in the age of children where those

born just before the kindergarten eligibility date may enter school

in a given year, while children born only a few days later must

wait an entire year to start school. The children born just before

the cutoff date are on average younger than their classroom peers.

The relative immaturity of these young-for-grade children may be

mistaken as ADHD due to the nature of the diagnostic guidelines

that suggest a comparison with a child’s peers. According to the

medical guidelines described by the NIMH ADHD Booklet, health

professionals are asked to consider whether the observed behaviors

(p. 6) “happen more often in this child compared with the child’s

peers?” Given age-of-start laws, a typical kindergarten class may

contain a child who just turned five and someone almost six, a dif-

ference in age of 20%. Using a regression discontinuity model, we

exploit the discrete jump in school enrollment generated by kinder-

garten eligibility laws to examine whether children’s relative age

influences their probability of being diagnosed with ADHD and, as

a result, to be prescribed stimulants.

ADHD is an underlying neurological problem and incidence

rates should not change dramatically from one birth date to the

next. If diagnosis rates do shift appreciably based on small changes

2 PL 111-5, http://www.gpo.gov/fdsys/pkg/PLAW-111publ5/pdf/PLAW-111

publ5.pdf.

in birth dates, then the diagnosis is not based entirely on underlying

conditions. Evidence consistent with increased diagnosis of ADHD

for younger children is provided in Elder and Lubotsky (2009)

who used samples from the Early Childhood Longitudinal Study –

Kindergarten cohort (ECLS-K) data to document persistent negative

consequences for younger children in school.

In this paper, we use data on ADHD diagnosis from the 1997 to

2006 National Health Interview Survey (NHIS), plus data on pre-

scription drug use of stimulants from the 1996 to 2006 Medical

Expenditure Panel Survey (MEPS), and a nationwide private health

insurance company over the 2003 through 2006 time period. In

all three samples, we find evidence children whose fifth birthday

fell just after the school eligibility cutoff date, who are therefore

more likely to be older-for-grade, have significantly lower chances

of being diagnosed with, and treated for, ADHD. The effect sizes

are large. Children born just after the cutoff date are 2.1 percent-

age points less likely to be diagnosed with ADHD and 1.6% less

likely to be treated with a stimulant, numbers that are roughly

25% smaller than their sample means. As we outline below, the

results imply that being young for your grade more than dou-

bles the chance that a student is diagnosed with or treated for

ADHD.

The basic results in this paper are quite similar to those in Elder

(this issue), who used the same techniques employed here and data

from the ECLS-K to demonstrate that children born just before the

state’s age-of-start cutoff date are 50% more likely to be diagnosed

with ADHD than those born just after. The fact that the basic results

in this paper can be replicated in four different data sets should

reassure those with concerns this finding is spurious.

2. Background on ADHD

According to the National Institutes of Mental Health (NIMH)

ADHD Booklet, the characteristic behaviors associated with ADHD

are inattention, hyperactivity and impulsivity. These symptoms

typically appear early in life and in many cases last into adult-

hood. Accurate identification of ADHD is critical since children with

ADHD are at an increased risk of academic difficulties such as a

greater incidence of learning disabilities (Mayes et al., 2000), a

higher chance of repeating a grade and lower test scores (Currie and

Stabile, 2006), and a higher dropout rate (Trampush et al., 2009).

Outside the classroom, children with ADHD have higher rates of

illegal drug use (Biederman et al., 1998), greater motor vehicle

accident rates (Woodward et al., 2000; Barkley et al., 1993), and

a greater likelihood of having other psychiatric conditions (Pliszka,

1998; Jensen et al., 1997). Data from the National Survey of Chil-

dren’s Health indicate that among youths 4–17 years of age, 7.8%

reported an ADHD diagnosis with boys having a 2.5 times greater

incidence rate than girls (Visser et al., 2007).

Treatments options for children with ADHD include medica-

tion management, behavioral treatment, routine community care,

or some combination of these regimens. In a random assignment

clinical trial, financed by the National Institutes of Mental Health,

the Multimodal Treatment Study for Children with ADHD (MTA

Cooperative Group, 1999) found a combination treatment of med-

ication management and behavioral treatment and medication

management alone produced superior results to behavioral treat-

ment or routine community care.

Despite the variety of treatment options, we focus on pre-

scription stimulant medication for the following reasons. First,

stimulants have been demonstrated to be extremely effective at

controlling the symptoms of ADHD, but stimulants do not treat

the underlying disorder or provide a cure for ADHD. As we docu-

ment below, stimulants also have a number of potential negative
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side effects. Finally, prescription medications are easy to identify

in standard claims data bases.

Data from the Medical Expenditures Panel Survey indicates that

roughly 3% of children under the age of 18 were prescribed stim-

ulants such as Ritalin in 2002, which is roughly five times the

prescription rate in 1987 (Zuvekas et al., 2006). Visser et al. (2007)

note that in 2003 roughly 55% of children diagnosed with ADHD

were taking stimulants. Using data from a large sample of privately

insured children, Castle et al. (2007) estimate that by 2005, 4.4% of

children aged 0–19 in their sample were using stimulants to treat

ADHD, with usage rates increasing by roughly 12% per year over the

2000 through 2005 period. Zito et al. (2000) note a rapid increase

in stimulant use among pre-school children.

Perhaps due to this striking increase in the diagnosis and treat-

ment of ADHD, concern has been raised by the medical community,

popular press, and parent support groups that this rise may be due

to over-diagnosis. There is no pathognomonic marker for ADHD

and the intensity of symptoms may fluctuate over time (Angold

et al., 2000), making accurate diagnosis of ADHD difficult. More-

over, diagnosis of ADHD is often made without consulting a mental

health specialist. Safer and Malever (2000) found that of Mary-

land public school students taking methylphenidate (i.e., Ritalin) at

school 63% had prescriptions from pediatricians, 17% from family

practitioners, and only 11% received a prescription from a psychi-

atrist. Diagnoses are generally made after a medical professional

considers a child’s behavior in multiple contexts, as reported by

the parent, teacher, and child.

Stimulant use and ADHD diagnosis rates vary across groups of

similarly defined youths, possibly suggesting that clinical guide-

lines for diagnosis are not being applied consistently. For example,

researchers have found large variation in stimulant use by chil-

dren across regions of the United States,3 by race and ethnicity,

and by gender.4 Comparing stimulant use among children in two

southeastern Virginia cities, LeFever et al. (1999) found tremen-

dous heterogeneity in stimulant use both within and between cities

and conclude that the (p. 975) “criteria for diagnosis of ADHD vary

substantially across U.S. populations, with potential over-diagnosis

and overtreatment of ADHD in some groups of children.” Similarly,

in a study of children in the Great Smokey Mountains, Angold et

al. (2000) found that the presence of ADHD symptoms is not well

correlated with the treatment of ADHD through prescription med-

ication and thus conclude that (p. 135) “stimulant treatment was

being used in ways substantially inconsistent with current diag-

nostic guidelines.”

This heterogeneity in diagnosis and treatment rates across gen-

der and race has been documented in many settings. In a large-scale

study specifically designed to assess the disparity in treatment,

Safer and Malever (2000) collected data on all children that

received medication for the treatment of ADHD during school hours

in the State of Maryland in 1998. They found that the boys in ele-

mentary school were 3.5 times as likely to be receiving treatment as

girls, and that black and Hispanic students were about half as likely

to be receiving treatment relative to non-Hispanic white students.

Although these studies effectively demonstrate the heterogene-

ity in diagnosis and treatment rates across different demographic

groups, it is difficult to know from these results whether this het-

3 Cox et al. (2003) demonstrated tremendous regional variation in stimulant use

in a sample of children with private insurance.
4 Castle et al. (2007) found that boys ages 0–19 were 2.3 times more likely to

receive stimulant medications than girls in a comparable age range for a sample of

children in a private prescription claims database. Visser et al. (2007) found gen-

der and race/ethnicity are related to ADHD diagnosis, but not to ADHD medication

treatment.

erogeneity is a result of genetic or environmental factors, rather

than a reflection of inappropriate diagnosis. Because the etiology

of ADHD is not well understood, risk factors for ADHD are often

based on population averages, such as a being male or having a

lower socioeconomic status. While these population averages are

somewhat consistent over time and across geographies, there is no

clear medical evidence that higher diagnosis and treatment rates

are due to a higher prevalence of the disorder in these populations.

Comparing diagnosis rates across populations may confound issues

such as access to and quality of care for any disease. This is partic-

ularly problematic for ADHD diagnosis (and the diagnosis of other

mental disorders in childhood) since there is no objective clinical

test.

The potential of inappropriate diagnosis and treatment is most

troubling when considering the biological effects of the com-

monly prescribed stimulants. The side effects of methylphenidate

use include insomnia, stomachache, headache, dizziness, and

decreased appetite (Ahmann et al., 1993). More importantly,

stimulants have been shown to increase heart rates and blood

pressure (Nissen, 2006). Less is known about the longer-term

effects. Because stimulants act to inhibit the dopamine receptors

in the brain, there is some concern and speculation that long-

term changes in cell function might result from chronic exposure

to stimulant medication, particularly during brain development in

childhood and adolescence (Volkow and Insel, 2003). In addition to

these important medical side effects of stimulant use, there is also

an economic cost associated with diagnosis and treatment. Pelham

et al. (2007) use a cost of illness framework to estimate the eco-

nomic impact of ADHD and they conclude that the cost of ADHD is

between $12,005 and $17,458 per child in 2005 dollars.

ADHD is often diagnosed after a teacher observes a child in

his/her classroom and refers the parent to have the child eval-

uated. In a survey of physicians in the Washington, DC metro

area, Sax and Kautz (2003) found that in 52% of all cases, teach-

ers and other school personnel are the first to suggest a diagnosis

of ADHD. It seems natural that teachers should compare the behav-

ior of children within a class and recent research suggests that

ADHD diagnosis rates are in fact correlated with the relative age

of students within a class. In the most detailed study to date,

Elder and Lubotsky (2009) used data from the Early Childhood

Longitudinal Study – Kindergarten cohort (ECLS-K) to examine

the impact of being older for a grade on a long list of outcomes.

The Elder–Lubotsky paper serves as the template for our work

in that they use the variation in student age generated by age of

school start models to identify their model. Using an instrumental

variables framework, the authors found that children who are an

additional year of age older at school entry have superior educa-

tional outcomes. For example, these older children tended to have

higher test scores and fewer behavioral problems. More impor-

tantly for our work, the authors demonstrated that starting school

later reduces the chance of being diagnosed with ADHD by 50%.

This work is part of a larger literature in labor economics that

explores the beneficial cognitive and labor market effects of being

among the oldest children in the classroom. Many studies have

exploited the variation in school start eligibility laws across states,

over time, and even between countries.5 For example, using inter-

national data, Bedard and Dhuey (2006) demonstrated that being

young for your class produces lower test scores through the eighth

grade. More recently, Dhuey and Lipscomb (forthcoming) find that

5 See, for example, Angrist and Krueger (1992), Bedard and Dhuey (2006), Datar

(2006), Elder and Lubotsky (2009), Dobkin and Ferreira (2010), Fertig and Kluve

(2005), Goodman et al. (2003), Lincove and Painter (2006), McEwan and Shapiro

(2008), Puhani and Weber (2007), and references therein.
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relative age in the classroom causes a higher risk of being labeled

as having a learning disability. Given this large literature on age

effects and given the stark change in ADHD diagnoses rates based

on age of school start found in the Elder and Lubotsky paper, we

also suspect a similar disparity in stimulant use rates. In this paper,

we replicate the basic results in Elder and Lubotsky (2009) using

restricted-use data from the National Health Interview Survey and

state data on age of school start legislation. We then extend these

basic models to include data on stimulant use.

While completing the work for this paper, we came across the

independent work of Elder (this issue), who used the same tech-

niques employed here and data from the ECLS-K to demonstrate

that children born just before the state’s age-of-start cutoff date

are 50% more likely to be diagnosed with ADHD than those born

just after. The robustness nature of the results across samples in

this paper and the work of Elder is encouraging and suggests that

the results presented below are not spurious but represent true

misdiagnosis of ADHD.

3. Empirical specifications

The primary question we consider is whether children that are

older for their grade are less frequently diagnosed with and treated

for ADHD. A similar set of questions has been addressed in a variety

of disciplines about whether delayed entry into school helps or

hinders academic promise. The underlying structural equation for

both questions is essentially the same. Let the unit of observation

be the individual child, indexed by i, and let Yi be a dummy variable

that equals 1 if a student is diagnosed (or treated) for a particular

condition such as having developmental problems. The focus of this

paper is ADHD and therefore, in our context, Y would equal 1 if a

child is diagnosed (or treated) for ADHD. A student is defined as

young for their grade (Youngi) if they are below some threshold

age such as the median for children in the same state, grade, and

year. The primary equation of interest is therefore

Yi = ˇ0 + xiˇ1 + Youngiˇ2 + h(zi) + �i (1)

where x is a vector of observed characteristics and � is a random

error. The function h(·) is a smooth function in z, a variable that

measures the difference in days between the child’s birth date and

the state cutoff date when that child was age five. Given a state

with a September 1st age at start cutoff, a September 1st birth date

would have a value of z = −1, a September 2nd birth date would be

z = 0 and an October 1st birth date would be have a value of zi = 29.

Following previous applications, we capture h(z) with polynomial

terms in z and interactions of these polynomials with the treatment

indicator I(zi ≥ 0).

If children of different ages were randomly assigned to classes,

ordinary least squares (OLS) estimates of the parameter of inter-

est (ˇ2) would be consistent. There is, however, good reason to

suspect that single-equation estimates of Eq. (1) are subject to an

omitted variables bias. Parents often decide their child is not ready

for kindergarten and enroll their child in school later than oth-

ers from the same birth cohort. This behavior is often referred to

as “academic redshirting.” If parents delay a child’s entrance into

kindergarten because they have difficulty sitting still or focusing on

school work, which in turn signals a greater likelihood of an ADHD

diagnosis in the future, then redshirting signals reverse causation

from diagnosis to age relative to peers and OLS estimates of Eq. (1)

would then understate the coefficient on ˇ2.

The available evidence suggests this is a real concern. West et al.

(2000) estimate that during the mid 1990s, roughly 9% of students

delayed entry into kindergarten. Males were 30% more likely than

females to have delayed entry and children with diagnosed devel-

opment problems were more than twice as likely as those without

such diagnoses to have delayed entry. The number of academic red-

shirts and the role that developmental issues play in the decision

suggests that estimating Eq. (1) by OLS will lead to inconsistent

and potentially misleading estimates of the effect of relative age

on ADHD diagnosis.6

We could obtain a consistent estimate for ˇ2 if we could some-

how mimic random assignment and alter the relative ages of

children in classes in a way that conveys no direct information

about underlying ADHD incidence. In just this fashion, we use the

distance between a child’s birthday and the age at school entry as

an instrument for relative age in class within a regression discon-

tinuity design (RDD) or an instrumental variables (IV) model.

Children born a few days apart should be, on average, simi-

lar along all characteristics (e.g., underlying intelligence, parental

backgrounds, home environment, etc.) yet because of age of school

start laws these children will have vastly different ages when they

start school. Consider a state that has a September 1st cutoff date.

In this state, children born on August 31st are more likely to begin

school as a 5 year old, but those students born just a few days later,

on September 2nd, must wait a year to begin school. This age dif-

ference in a class is relatively large in early grades. Around the start

of the school year, a class containing students with an August 31st

and a September 2nd birth date will differ in age by 20% in kinder-

garten, 14% in second grade and 10% in fifth grade. The sharp break

in age at school start generated by the interaction of child birth-

dates and the assumed similarity of children born just before and

just after the school cutoff suggests that any observed difference in

ADHD diagnosis and treatment between these two groups can be

attributed to the difference in ages of the children in school.

Instrumental variables (IV) estimates of Eq. (1) can be obtained

in two steps. The initial step is to examine the first-stage relation-

ship between age relative to the state cutoff date and the relative

age in class. This model can be represented by the equation

Youngi = �0 + xi�1 + �2I(zi ≥ 0) + h(zi) + vi, (2)

where h(z) and x are defined as above, v is a random error and the

dummy variable I(zi ≥ 0) equal 1 if the student has a birth dates

after the age at school start. The impact of the age at start laws on

whether the child is young for the class is captured by the parame-

ter �2. The key assumption of the RDD model is that in the absence

of the treatment (in this case, the student’s birth date occurs after

the school start cutoff) the outcome of interest is “smoothly” chang-

ing in z (the child’s age) which is captured by the polynomial h(z).

Given h(z), we assume that people on either side of zi in the absence

of age of start laws are functionally identical, controlling for observ-

able characteristics x.

The second step in the process is to examine the reduced-form

relationship between a child’s age relative to the school start dates

and their diagnosis and/or treatment of ADHD. This relationship

can be captured by the following equation

Yi = ˛0 + xi˛1 + ˛2I(zi ≥ 0) + h(zi) + �i (3)

where �i is a random error and all remaining variables are defined

as above. Given the assumptions above, the coefficient ˛2 measures

the impact of being born just after the cutoff on the propensity of

students to experience the outcome Yi. Because this is an exactly

identified model with one endogenous variable, the IV estimate of

ˇ2 in Eq. (2) is obtained by simply dividing ˛2, the impact being

born after the age of start on ADHD diagnosis, by the fraction of

6 Despite these concerns, many such models have been estimated in the past

(Byrd et al., 1997; Stipek and Byler, 2001; Lincove and Painter, 2006).
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people impacted by the age of start (�2 from Eq. (2)), or

ˆ̌
2 = ˆ̨ 2/�̂2. (4)

Arithmetically, this is also equivalent to estimating Eq. (2) by

two-stage least-squares (2SLS) and using I(zi ≥ 0) as an instrument

for Youngi.

The difficulty with Eq. (4) is that our data are not well suited

for estimating the first-stage model outlined in (2). As we describe

below, our large sample of private claims data, which measures

drug use to treat ADHD, does not contain data on a child’s cur-

rent grade. The two nationally representative samples, the National

Health Interview Survey (NHIS) and the Medical Expenditure Panel

Survey (MEPS), ask respondents for the highest grade completed,

which requires that we impute current grade by adding one to the

recorded value for children currently enrolled in school. This is

problematic for two reasons. First, we will overstate current grade

for those who have completed but must repeat a grade. Second, it

appears that some parents are reporting the child’s current grade

rather than the highest grade completed, meaning that by imput-

ing the grade, we will have too many respondents that are young

for their class.

To verify this point, we extracted a sample of children aged

7–16 from the 2000 to 2002 October Current Population Survey

(CPS) data sets. These data contain a school enrollment supple-

ment that identifies the current grade enrolled for all respondents.

In Appendix Fig. 1, we report the distribution of grades relative to

age for this sample. Almost 70% of students are in a grade that is

5 years lower than their age (most 8 year olds enrolled in school

in October are in the third grade) with the next largest group

enrolled in a grade that equals age minus six, and a few students

are young for their grade, enrolled in a grade that is 4 years lower

than age.

We compared these numbers to those who responded to the

NHIS in the fourth quarter of the year. For this sample, we take

data from the 2000 to 2002 NHIS, and use reported month and

year of birth to impute the respondent’s age as of October 1st

to make this sample as comparable as possible to the October

CPS. We add 1 year to the highest grade completed in order to

estimate the current grade enrolled. Graphing the implied dis-

tribution of grades for age from this sample in Appendix Fig. 1,

we see that the NHIS overstates by a factor of three the num-

ber of students that are young for their class (in grade = age − 4)

and understates by 40% the fraction who are older for their class

(in grade = age − 6).

In practice, the systematic measurement error in the imputed

current grade from the NHIS will tend to understate the first-

stage coefficient �2, which will overstate the implied IV estimate

in Eq. (4). For this reason, we will rely more on the reduced-form

models in Eq. (3) to signal the causal relationship between being

young for class and ADHD diagnosis and treatment than on the IV

estimates.

There is both between-state variation in the age at school start

and within-state variation in these laws over time.7 A summary of

the cross-sectional and time series variation in these laws is shown

in Table 1. Seven states (CO, MA, NH, NJ, NY, PA, and VT) had no

statewide age at school entry law in 2005, but rather allowed local

education authorities (LEA) to determine age at school entry stan-

dards. Twenty-five states (including the District of Columbia) have

had the same age at school start date since 1984, while the rest have

had changes at some point in the period. In the 2005/2006 school

7 For a discussion of the individual state statutes and a detailed breakdown of the

age of school entry laws in the U.S. from the early 1980s through the present time,

see Morrill (2008).

year, the age at school start cutoff dates vary anywhere from July

1st in IN until January 1st in CT.

4. Data

The data requirements for the RDD model outlined above are

substantial. Naturally we need a data set that identifies whether

a child has been diagnosed with ADHD and/or whether that child

uses a prescription stimulant medication to treat ADHD. In addi-

tion, we must identify a child’s exact date of birth and state of

residence so that we can calculate his/her age relative to the

kindergarten eligibility cutoff date. These last set of descriptors

are identifying variables that are not typically available on public

use versions of data sets. Consequently, we estimate the empir-

ical models on three separate restricted-access data sources: the

National Health Interview Survey (NHIS), the Medical Expenditures

Panel Survey (MEPS), and a private insurance prescription drug

claims data set. Even though our data cover different time periods

and populations, we find similar results in each data set, confirming

the robustness of our findings.

The NHIS is an annual survey of roughly 60,000 households that

collects data on the extent of illness, disease, and disability in the

civilian, non-institutionalized population of the United States. The

NHIS includes detailed demographic and socioeconomic informa-

tion, as well as the self-reported medical conditions of respondents.

Information on ADHD diagnosis has been included in the Sample

Child Supplement within the NHIS since 1997. Our empirical strat-

egy relies on the ability to identify the exact cutoff date that each

child faced when they first entered kindergarten, plus their birth

date. We therefore use the more detailed geographic data and the

exact date of birth that is available only in the restricted-use ver-

sion of the NHIS.8 The dependent variable for the NHIS analysis

is the child’s parent’s report of whether the child has ever been

diagnosed with ADHD by a doctor or health professional. ADHD

incidence rates from the NHIS are comparable to results from other

national surveys from similar periods.

Our second data source, the Medical Expenditure Survey

(MEPS), is a series of surveys administered since 1996 by the

Agency for Healthcare Research and Quality and the National Cen-

ter for Health Statistics. The MEPS sample is drawn from the

NHIS sample, although there are restrictions on merging these two

datasets. There are three components of the survey completed by

households, medical providers, and insurance companies. Individ-

uals are asked questions over a series of five rounds detailing 2

years of medical expenditures and services utilization. Each year

of the MEPS contains respondents from two overlapping panels.

The MEPS full-year consolidated data file (CDF) contains socio-

demographic information for respondents including age, sex, race,

and basic economic characteristics, plus their date of birth. We

have access to the restricted version of the MEPS, which allows

us to identify the exact eligibility data as described above.9 While

the MEPS is a smaller sample than our private claims data, as

with the NHIS, it has the advantage that it contains children

with any health insurance type, including those that are unin-

sured. The dependent variable for this part of the analysis is

whether a child receives a prescription for a stimulant to treat

8 These data are available for use through the National Center for Health Statistics

Research Data Center: http://www.cdc.gov/nchs/r&d/rdc.htm. We access the data at

the Triangle Census Research Data Center through a data sharing agreement made

between the Census Bureau and the National Center for Health Statistics.
9 The restricted access MEPS is available at regional Research Data Centers

through a data sharing agreement made between the Census Bureau and the Agency

for Healthcare Research and Quality. We access the data at the Triangle Census

Research Data Center.
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Table 1
Kindergarten eligibility cutoff dates.

State Cutoff 2005 Law changes since 1984 State Cutoff 2005 Law changes since 1984

AL 1-Sep 1984–1989: 10/1 MD 30-Sep 1984–2002: 12/31

1990+: 9/1 2003: 11/30

AK 1-Sep 1984–1987: 11/2 2004: 10/31

1988–2003: 8/15 2005: 9/30

AZ 31-Aug* 2006+: 9/1

AR 15-Sep 1984–1997: 10/1 MA LEA

1998: 9/1 MI 1-Dec

1999+: 9/15 MN 1-Sep

CA 2-Dec 1984–1986: 12/1 MS 1-Sep

1987+: 12/2 MO 31-Jul* 1984–1986: 8/31*

CO LEA 1987: 7/31*

CT 1-Jan 1988–1996: 6/30*

DE 31-Aug 1984–1992: 12/31 1997+: 7/31*

1993: 11/30 MT 10-Sep

1994: 10/31 NE 15-Oct

1995: 9/30 NV 30-Sep

1996+: 8/31 NH LEA

DC 31-Dec NJ LEA

FL 1-Sep NM 31-Aug*

GA 1-Sep Established 1985 NY LEA

HI 31-Dec NC 16-Oct

ID 1-Sep 1984–1989: 10/16 ND 31-Aug*

1990: 9/16 OH 30-Sep

1991–1992: 8/16 OK 1-Sep

1993+: 9/1 OR 1-Sep 1984–1985: 11/15

IL 1-Sep 1984–1985: 12/1 PA LEA

1986: 11/1 RI 1-Sep 1984–2003: 12/31

1987: 10/1 SC 1-Sep 1984–1992: 11/1

1988+: 9/1 SD 1-Sep

IN 1-Jul 1984–1988: LEA TN 30-Sep 1984: 10/31

1989: 9/1 TX 1-Sep 1984–1994: ssy

1990: 8/1 1995+: 9/1

1991: 7/1 UT 1-Sep* 1984–1987: ssy

1992–2000: 6/1 1988+: 9/1*

2001–2005: 7/1 VT LEA 1984–1990: 1/1

IA 15-Sep 1991+: LEA

KS 31-Aug 1984–1994: 9/1 VA 30-Sep

1995+: 8/31 WA 31-Aug

KY 1-Oct WV 31-Aug*

LA 30-Sep 1984–1995: 12/31 WI 1-Sep

1996+: 9/30 WY 15-Sep

ME 15-Oct

Notes: Data acquired from individual state statutes. LEA denotes that the state allowed the local education authority to determine the applicable cutoff, therefore there is no

statewide date. Starred dates indicate that the statute specifies that the child must be born before a certain date, so we have adjusted the date in this table to reflect the date

that the child must be born on or before to be consistent across states. ssy: start of school year

ADHD in the survey year. We pool observations across survey

years, so a subset of children are represented in the dataset

twice. We rely on the ICD-9 codes that identify whether the

child received any medication for the treatment of ADHD (ICD-9

code 314).10

We have also obtained a proprietary claims data base constitut-

ing private insurance contracts for nearly 1 million covered lives

and representing at least 40 of the 50 U.S. states. The data set con-

tains claims and health insurance enrollment data for the 2003

through 2006 years of service. The data provide specific informa-

tion on an insured’s date of birth, age, gender, zip code of residence,

insurance contract type (e.g., single, two person, family) and pre-

10 Note that we only include medication that was not imputed and that was

recorded as being for the primary diagnosis of ADHD. Relaxing these two restrictions

increases the mean rate of treatment but does not affect the qualitative conclusions

from the regression results.

mium paid by the insured. Claims data elements of interest include

date of service, ICD9 diagnosis and CPT4 procedure code (if medical

care) and NDC drug code (if pharmacy). In addition, the phar-

macy data provides information on days of supply and refill rates.

Both medical and pharmacy data describe the amount paid by the

insurer as well as the insured. All of the insured ID information has

been encrypted and stripped of any identifying information.11

When using the private claims data, the dependent variable is

whether in a given year the child had a claim for a prescription drug

that is typically used to treat ADHD. Although Ritalin is the most

common drug prescribed to treat ADHD, there are many drugs on

the market and in recent years, several new drugs have been devel-

11 Because the encrypted Social Security number was missing for a number of

dependent children, we could not use that variable to uniquely identify respondents

in this sample. Instead, we used the employee’s encrypted Social Security number

and the dependent’s date of birth, which necessitated that we delete twins and

higher parity births from the sample. Our results are not sensitive to this restriction.
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Table 2
Sample characteristics.

Variable Full sample Eligible states Regression sample

±120 Days Born before [−120, −1] Born after [0, 120]

National Health Interview Survey (NHIS) [1997–2006]

Observations (person/year) 69,350 53,212 35,343 17,728 17,615

% Male 51.0% 50.8% 50.7% 50.3% 51.0%

Average age as of June 1 11.9 11.8 11.8 11.7 11.8

% White (Non-Hispanic) 64.6% 64.5% 64.2% 64.1% 64.4%

% Black (Non-Hispanic) 15.4% 16.0% 15.9% 16.0% 15.9%

% Hispanic 15.7% 15.0% 15.2% 15.1% 15.2%

% Other race/ethnicity 4.4% 4.5% 4.7% 4.8% 4.5%

% ADD/ADHD diagnosis 8.4% 8.7% 8.6% 9.7% 7.6%

Medical Expenditure Panel Survey (MEPS) [1996–2006]

Observations (person/year) 59,814 47,423 31,641 15,952 15,689

% Male 51.1% 51.1% 51.2% 50.9% 51.5%

Average age as of June 1 12.0 11.9 11.9 11.9 11.9

% White (Non-Hispanic) 62.5% 62.6% 62.4% 62.0% 62.7%

% Black (Non-Hispanic) 15.7% 15.9% 16.0% 15.9% 16.1%

% Hispanic 16.3% 15.7% 15.5% 15.8% 15.3%

% Other race/ethnicity 5.5% 5.9% 6.1% 6.2% 6.0%

% Any stimulant use 4.2% 4.3% 4.3% 4.5% 4.0%

Private claims data [2003–2006]

Observations (person/year) 121,352 72,885 48,206 24,380 23,826

% Male 50.3% 50.2% 50.2% 50.3% 50.1%

Average age as of June 1 12.3 12.4 12.4 12.4 12.4

% any stimulant use 5.2% 5.6% 5.8% 6.5% 5.2%

Notes: Data are from the restricted-access versions of the 1997–2006 National Health Interview Survey (NHIS), the 1996–2006 Medical Expenditure Panel Survey (MEPS),

and a private insurance claims dataset. The NHIS and MEPS statistics utilize the survey sample weights. The full sample includes children ages 7–17 on June 1st of the survey

year. The eligible sample includes children who live in states with clearly defined kindergarten eligibility cutoff dates in the state they reside in the year they turned 5 years

old. The regression sample restricts this group to children whose birthdays are within 120 days of school start.

oped to treat this condition. We identify stimulants through the

National Drug Codes (NDC) which are 10-digit, 3-segment numbers

that identify the manufacturer, item and size/type, respectively.

The list of stimulants includes popular drugs such as Ritalin,

Metadate, Methylin, Daytrana, and Concerta (methylphenidate),

Adderall (amphetamine and dextroamphetamine), and Dexedrine

(dextroamphetamine).

We do not pool these three datasets together, but rather present

estimates from each separately. The NHIS includes a measure of

diagnosis only. The private claims data only measure prescriptions,

not diagnosis. The MEPS data also measure prescriptions, but for

a nationally representative sample that is not directly compara-

ble to the private claims sample. Because all three of our data

sources have significant restrictions on accessing the data and

reporting statistics, it is not possible to combine them. In order

to ensure that the children in our samples are currently enrolled

in school, in all three samples we restrict our attention to chil-

dren ages 7–17. Most states require that children ages 7–17 be

enrolled in school full-time. We also limit the sample to those

observations where there was a state-wide age at school start law

in force when the child was 5 years of age. We include in the sam-

ple only children born within 120 days of the school eligibility

cutoff date in their state and year. The final estimation sample

used from the NHIS includes 35,343 children. The final sample

size from the MEPS is 31,641 observations representing 18,559

children.

Given the geographic distribution of the insurance company and

eliminating states with no age at school start law and states with

less than 200 person/year observations, in the private claims data

we are left with 48,206 observations from 32 states representing

data for 22,371 children aged 7–17. Although these data are for

individuals with private health insurance and therefore are not

nationally representative, having a sample this large enables us to

obtain precise estimates and to explore potential heterogeneity in

the effects across gender and age. One limitation of the claims data

relative to our other two datasets is the lack of demographic infor-

mation outside of gender and age. However, as we indicate below

where we test the sensitivity of our results to the inclusion of a

richer set of covariates in the MEPS and NHIS samples, because peo-

ple born just before and after the age of school start dates are similar

on observed dimensions, the addition of demographic controls does

not materially alter the statistical results.

Note that ideally we would like to have information on what

state the child was residing in during the fall of the year they

turned five. We do not have this information in any of the three data

sources. In all three we do observe the current state of residence.

The NHIS also includes the child’s state of birth.12 In the empirical

section we present results that confirm estimates are not sensitive

to using state of birth rather than state of residence or restricting to

children who reside in the same state in which they were born. Not

having state of residence at age five is not a significant limitation

for two reasons. First, there is little cross-state movement among

school-aged children. In a sample of children age 6–18 from the

2000 Census One-Percent Public Use Micro Samples (PUMS), only

7.7% moved across state lines in the past 5 years.13 Interstate moves

will only contaminate the analysis if they occur differentially for

children born just before or after the age of start cutoff or if they

occur differentially for children with ADHD. We have some infor-

mation on the former concern in that data from the 1980 Census

One-Percent PUMS indicates that there is little variation in within

state moves based on a child’s quarter of birth. In that sample, we

estimate that among children 6–18 years of age, the fraction that

moved in the past 5 years for those born in quarters 1 through 4 are

4.5, 4.7, 4.7 and 4.5%, respectively.14 The small fraction of children

that move after they start school and the lack of large variation

12 In the NHIS, approximately 10 percent of the sample is missing state of birth. Of

those that have both state of residence and state of birth, approximately 10 percent

report being born in a different state than they currently reside.
13 Author’s calculations from the Census PUMS files, see Ruggles et al. (2010).
14 Author’s calculations from the Census PUMS files, see Ruggles et al. (2010).
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Fig. 1. Means and 95% confidence intervals for children born before and after cutoff

dates.

Notes: The means for children born before (dark color) versus after (light color) the

kindergarten eligibility cutoff date in their state of residence is shown for children

born within 120 days of the cutoff date. Data are from the restricted-access versions

of the 1997–2006 National Health Interview Survey (NHIS), the 1996–2006 Medi-

cal Expenditure Panel Survey (MEPS), and a private insurance claims dataset. The

sample includes children ages 7–17 on June 1st of the survey year born within 120

days of the kindergarten eligibility cutoff. The NHIS and MEPS results are weighted

means.

across birth quarters suggest that using state of residence should

not contaminate our results.

5. Results

Table 2 reports sample means and descriptive statistics for each

of the three different data sets. In each case, we begin with a sample

of children aged 7–17 on June 1st of the survey year. We call this our

full sample. Although incidence rates vary by gender, we begin by

initially pooling results for males and females. Next, to create the

regression sample, we first restrict each sample to children who

live in states with a clearly defined kindergarten eligibility cutoff

date.15 Table 2 demonstrates the effect of restricting the sample

in this way. While the percent male and average ages are identi-

cal in the full and eligible state sample, there is a slightly higher

incidence of ADHD diagnosis and treatment in the states used for

analysis. As was discussed in Section II, this is consistent with the

geographic variation in ADHD treatment and diagnosis rates widely

documented in the literature. Next we further restrict the sample

to children whose birth date is within 120 days of the cutoff date.

While this effectively removes one-third of the sample, we find that

the regression sample is very similar to the eligible states sample

in each data set. Note that because the private claims data are from

a later time period and are, by definition, for a sample of children

with private health insurance, we find higher rates of stimulant use

than in the MEPS.

The last two columns of Table 2 demonstrate the basic relation-

ship hypothesized above when comparing the fraction of children

with an ADHD diagnosis for those born before the cutoff date

(students are on average young-for-grade) and children born just

after the cutoff date. Notice that in all three data sets the samples

of children born just before the cutoff date have nearly identical

demographic characteristics when compared with children born

just after the cutoff date. However, we find large differences in

ADHD diagnosis and treatment rates. In the NHIS, children born

before the cutoff experience a 9.7% diagnosis rate compared with

only 7.6% for those born after. Stimulant usage in the MEPS indi-

cates a 0.5 percentage point difference between children born

15 Data confidentiality restrictions prohibit the delineation of which states are

included in these tables. We have a large enough sample from many states and

years to assure a reasonably representative population.

Fig. 2. Means and 95% confidence intervals for children born before and after cutoff

dates.

Notes: The means for children born before (dark color) versus after (light color) the

kindergarten eligibility cutoff date in their state of residence is shown for children

born within 120 (solid), 60 (vertical stripes), and 30 (horizontal stripes) days of the

cutoff date. Data are from the restricted-access versions of the 1997–2006 National

Health Interview Survey (NHIS), the 1996–2006 Medical Expenditure Panel Sur-

vey (MEPS), and a private insurance claims dataset. The sample includes children

ages 7–17 on June 1st of the survey year born within 120 days of the kindergarten

eligibility cutoff. The NHIS and MEPS results are weighted means.

before and children born after the cutoff date. Similarly, in the pri-

vate claims data the percentage of children with any stimulant use

drops from 6.5 to 5.2% across the kindergarten eligibility cutoff date.

Fig. 1 presents the graphical equivalent to the means presented

in Table 2 and described above. The error bars in the graph repre-

Fig. 3. Falsification tests, means and 95% confidence intervals for children born

before and after cutoff dates.

Notes: Childhood disease data are from the restricted-access National Health Inter-

view Survey (NHIS) 1997–2006. Childhood medication use data are from a private

claims data set. The sample includes children ages 7–17 on June 1st of the survey

year born within 120 days of the kindergarten eligibility cutoff. For the NHIS data,

all means are weighted.
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Table 3
First-stage estimates of the effect of being born after the cutoff date on being younger-than-median age in grade × state × year.

Covariates Models

(1) (2) (3) (4)

All Children, 1997–2006, N = 34,173

Born after cutoff −0.3840 (.0224) −0.3733 (.0221) −0.3744 (.0220) −0.3544 (.0186)

Age fixed effects, gender, race/ethnicity × × ×
State and birth cohort fixed effects × ×
1st order polynomial ×

Privately insured children, 2003–2006, N = 7987

Born after cutoff −0.3710 (.0275) −0.3604 (.0264) −0.3615 (.0262) −0.3565 (.0355)

Age fixed effects, gender, race/ethnicity × × ×
State and birth cohort fixed effects × ×
1st order polynomial ×

Notes: Data are from the 1997 to 2006 National Health Interview Survey, and the sample is restricted to children born ages 7–17 on June 1st of the survey year who were

born within 120 days of the kindergarten eligibility cutoff. Coefficients are from linear probability regressions with standard errors in parentheses. Population weights are

used and the standard errors are clustered by state.

sent 95% confidence intervals around the sample means. We see

that the difference in ADHD diagnosis and treatment rates is large

for all samples in all three data sets.16 In Fig. 2 we present means for

progressively smaller samples of children, those born within 120,

60, and 30 days of the kindergarten eligibility cutoff date, respec-

tively. Note that the NHIS is measuring diagnosis, while the MEPS

and private claims data include only children receiving prescription

stimulants to treat ADHD.

Fig. 3 presents a similar design using six different common child-

hood ailments found in the NHIS and two other classifications of

drugs in the private claims data. The pattern shown in Fig. 1 is

unique to ADHD; there is no statistically significant difference in

means across kindergarten eligibility cutoff dates for any of these

other childhood diseases and other common children’s prescrip-

tion medications.

As discussed in Section III, we caution that IV estimates out-

lined in Eqs. (1)–(4) may be systematically biased up because of

the persistent measurement error in the NHIS education variable.

However, in Table 3 we provide an indication of the basic first-

stage relationship in the NHIS data. In the top half of the table, we

report results for all children aged 7–17. We first define the child’s

grade as of January 1st of the interview year. To do this, we add

one to the last grade completed for those interviewed in the first

or second quarter.17 We then drop observations where the grade

level is greater than 12 or where the grade is more than 3 years

from the age-appropriate grade level.18,19 Given these restrictions,

the sample size for Fig. 4 is 34,173 children. As in Eqs. (1) and

(2) in Section III, we define Young as an indicator for whether the

child is below the median age in her grade by state by year cell.

In Table 3, we report the coefficient on the indicator I(zi ≥ 0) for

various specifications. Moving from column 1 to 4, we add progres-

sively more covariates. In column 1, we only include the dummy

variable I(zi ≥ 0). Next, in column 2, we add age fixed effects, a

16 The differences are statistically significant, results available upon request.
17 In quarter 2 we only add 1 year if the interview month is May or earlier (when

available) or assignment week 9 or earlier (when available). The results are not sensi-

tive to these adjustments. The difficultly in determining when the school year would

have ended, and thus when the “last grade completed” is equal to the “grade level

on January 1st,” illustrates the larger problem that grade level is not well measured

in the NHIS.
18 Recall the sample consists of children ages 7–17, where age is defined as the

child’s age on June 1st of the survey year. The age range allowed in each grade is:

Grade 1 (Age 7–9), Grade 2 (Age 7–10), Grade 3 (Age 7–11), Grade 4 (Age 7–12),

Grade 5 (Age 7-13), Grade 6 (Age 8-14), Grade 7 (Age 9-15), Grade 8 (Age 10–16),

Grade 9 (Age 11–17), Grade 10 (Age 12–17), Grade 11 (Age 13–17), and Grade 12

(Age 14–17).
19 Note that the measure of age relative to median uses age measured in days.

Fig. 4. Fraction of children younger than median for state × grade × year cell by

days from kindergarten eligibility cutoff date.

Notes: Data are from the restricted-access versions of the 1997–2006 National

Health Interview Survey (NHIS). The horizontal axis indicates bins for children born

each number of days from the kindergarten eligibility cutoff date. The dots are the

fraction of children in that bin that are younger than the median age for their grade

× state × year cell. The lines are from locally weighted regression interpolation. The

sample includes children ages 7–17 on June 1st of the survey year born within 120

days of the kindergarten eligibility cutoff.

dummy indicator for male, and controls for race and ethnicity.20

Column 3 includes a complete set of state and birth cohort effects.

Finally, in our preferred specification reported in column 4, we add

a first-order polynomial in z with separate trends included for days

before (I(zi < 0)) and for days after (I(zi ≥ 0)). In all models, we allow

for arbitrary correlation in the errors within a state.

Moving from column 1 to 4 in the top half of Table 3, the coeffi-

cient on I(zi ≥ 0) falls in absolute value from −0.38 to −0.35. These

results suggest that being born just after the cutoff decreases the

probability a student is below median in age by 35 percentage

points. In all cases, the standard errors are very small and we can

easily reject the null that the coefficients are zero at conventional

levels. As we report in Table 2, the mean demographic characteris-

tics do not differ across the cutoff date, so it not surprising that

adding covariates to the model does not significantly affect the

coefficient of interest.

20 We define four categories for race/ethnicity: non-Hispanic white, non-Hispanic

black, Hispanic, and other. Both the NHIS and MEPS include variables with recoded

race and Hispanic origin.
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In Fig. 4, we provide a graphical treatment of the results in

Table 3. In this graph, the horizontal axis reports days in relation

to the cutoff and the vertical axis is the fraction of students who

are young for their class. Each dot is a cell mean and the solid

line is from a locally weighted regression smoother. The graph

clearly shows that children born after the kindergarten eligibility

cutoff date in their state by year are considerably less likely to be

young for their grade with the difference being approximately 35

percentage points.

If compliance with the kindergarten eligibility cutoff dates were

perfect and if grade level was perfectly measured, the coefficient

on born after should be −1. The coefficient will fall below 1 in

absolute value if parents choose not to enroll an eligible child

or apply for a waiver to allow an ineligible child to enter early.

Likewise, compliance is reduced if children are either held back

or advanced a grade. This pattern is found in other work. These

choices would result in the instrument, born after, having less

predictive power for relative age, Young. Using data from the Early

Childhood Longitudinal Study (ECLS) and the National Education

Longitudinal Study (NELS), Bedard and Dhuey (2006) found that in

the United States relative age (birth month relative to the school

cutoff date) predicts the observed age. For the sample of 4th

graders from the ECLS, they found a coefficient of 0.774, while the

8th grade sample from the NELS had a coefficient of only 0.438.

These results suggest that compliance with the cutoff date declines

as children age, potentially due to grade retention or promotion

policies.

Imperfect compliance or strategic behavior on the part of par-

ents should not, however, bias our results. As the compliance

weakens the first-stage, the impact of being born after the cutoff on

ADHD diagnosis and treatment should also fall, reducing the size

of the reduced-form coefficients as well. Because we are only esti-

mating the effects for children whose school entry age is affected by

the cutoff date, the smaller first-stage simply means we are defining

the treatment effect over a subset of the total population.

In the lower half of Table 3, we report estimates for the first-

stage relationship for a sample of children in the 2003–2006 period

that had private health insurance.21 This is a sample that roughly

corresponds to the group associated with our private claims sam-

ple. The samples do not overlap completely since the private claims

data do not include all states in the NHIS. Nonetheless, in the col-

umn 4 model that includes a detailed set of covariates, the estimates

for the full NHIS sample and the restricted private insurance sam-

ple have the same coefficient on I(zi ≥ 0) out to two decimal places.

Again, in this more restrictive sample, the standard error on the

first-stage estimate is very small.

Next, in Fig. 5 we present a graphical display of the reduced-

form model in the NHIS, namely, the impact of being born after the

cutoff on being diagnosed with ADHD. In this figure, we see around

a 2 percentage point difference in incidence rates between those

children that were born just before the cutoff date when compared

to those born just after, which is about 25% of the sample mean.

21 Most federal surveys of insurance status tend to under count Med-

icaid enrollment (Davern et al., 2009). The undercount is large for the

NHIS as well with Census Bureau estimates putting the size of the under-

count at roughly 25 percent in 2001 and 2002 (http://www.census.gov/

did/www/snacc/docs/SNACC Phase IV Full Report.pdf). Research has suggested

that the undercount is primarily due to miscoding the source of the insurance

(Call et al., 2008) rather than respondents confusing Medicaid with uninsurance.

Lo Sasso and Buchmueller (2004) present evidence that the problem is particularly

pronounced for children, suggesting that because of the rise of Medicaid managed

care, many with Medicaid report private insurance instead. As a result, we believe

a sizeable fraction of people in the NHIS private insurance sample may actually be

Medicaid recipients.

Fig. 5. ADHD diagnosis by days from kindergarten eligibility cutoff date.

Notes: Data are from the restricted-access versions of the 1997–2006 National

Health Interview Survey (NHIS). The horizontal axis indicates bins for children born

each number of days from the kindergarten eligibility cutoff date. The dots are mean

diagnosis rates. The lines are from locally weighted regression interpolation. The

sample includes children ages 7–17 on June 1st of the survey year born within 120

days of the kindergarten eligibility cutoff.

In Table 4 we present the regression equivalent to this figure for

each data set. The main reduced-form estimates for the NHIS are

presented in the top panel of Table 4. The structure of the table

mimics that in Table 3 where we start out with a model in column

1 that includes only the coefficient on I(zi ≥ 0), and each successive

column adds additional covariates. The estimate reported in col-

umn 4 indicates that children born in the 120 days after the cutoff

have a 2.1 percentage point lower probability of being diagnosed

with ADHD. This corresponds to approximately 24% of the average

diagnosis rate across the sample.

Next, results using data from the MEPS are presented in the mid-

dle panel of Table 4. We find that being born after the cutoff leads to

between a 0.6 and 0.8 percentage point reduction in the probabil-

ity of being treated for ADHD. This is approximately 13–19% of the

mean treatment rate of 4.3% in the sample. Note that in column 4

the results become imprecise and not statistically significantly dif-

ferent from zero once the linear polynomials are included, although

the magnitude of the coefficient does not change appreciably.

The bottom panel of Table 4 presents the equivalent set of results

using the private claims data base. As in our other data sets, we find

that the estimates are not sensitive to the inclusion of demographic

characteristics, state and birth cohort fixed effects, or a linear poly-

nomial in days from cutoff. The baseline result in column 4 indicates

that children born just after the cutoff experience a 1.6 percentage

point lower risk of receiving stimulants to treat ADHD, approxi-

mately 27% of the average rate of stimulant usage. The main results

reported in Table 4 indicate a large and robust relationship between

being born after the kindergarten eligibility cutoff date and being

diagnosed with or receiving prescription treatment for ADHD. We

find that being born after the cutoff, and therefore being relatively

old for grade, is associated with an 13–27% lower risk of ADHD

treatment and a 24% lower risk of ADHD diagnosis.

With the caveats about the potential bias in the 2SLS estimates

noted above, we can exploit the fact that the model has only one

endogenous covariate and the model is exactly identified and com-

bine the estimates from Tables 3 and 4 using Eq. (4) to construct

an estimate of the impact of being young for one’s grade on ADHD

diagnosis and treatment. The 2SLS estimate in the just-identified

model can be replicated by dividing the reduced-form estimates in

Table 4 by the first-stage estimate, −0.35 (in other words, multi-
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Table 4
Regression discontinuity estimates of the effect of being born after the cutoff date.

Covariates Models

(1) (2) (3) (4)

National Health Interview Survey

(NHIS)

Outcome: ADD/ADHD diagnosis

N = 35,343 children

Mean of dependent variable = 0. 0864

Born after cutoff −0.0204 (.0050) −0.0209 (.0050) −0.0206 (.0050) −0.0208 (.0079)

Age fixed effects, gender, race/ethnicity × × ×
State and birth cohort fixed effects × ×
1st order polynomial ×

Medical Expenditure Panel Survey

(MEPS)

Outcome: receiving medication to

treat ADD/ADHD

N = 31,641 for 18,559 children

Mean of dependent variable = 0.0427

Born after cutoff −0.0055 (.0037) −0.0059 (.0034) −0.0063 (.0034) −0.0079 (.0058)

Age fixed effects, gender, race/ethnicity × × ×
State and birth cohort fixed effects × ×
1st order polynomial ×

Private claims data

Outcome: prescription claim for Ritalin

or other drug for treating ADD/ADHD

N = 48,206 observations for 22,371

children

Mean of dependent variable = 0.0584

Born after cutoff −0.0124 (.0021) −0.0123 (.0021) −0.0122 (.0030) −0.0156 (0.0057)

Age fixed effects, gender × × ×
State and birth cohort fixed effects × ×
1st order polynomial ×

Notes: Coefficients are from linear probability model regressions with standard errors in parentheses. All specifications include a constant term. All standard errors are

clustered by current state of residence. Sample weights are used for the NHIS and MEPS data. The polynomial is defined as days from the cutoff and is modeled separately

for days before and days after. The cutoffs are the kindergarten eligibility cutoff date in the child’s current state of residence in the year the child turned 5 years old. The

variable “Born After Cutoff” is T(i ≥ 0). The sample includes children ages 7–17 on June 1st of the survey year born within 120 days of the kindergarten eligibility cutoff date.

plying by 2.85). Therefore our estimates from the NHIS suggest that

being young for one’s grade increases the chance of being diagnosed

with ADHD by 5.9 percentage points (standard error of 2.3 percent-

age points), or about 70% of the sample mean. From the MEPS, we

find that being young for one’s class increases the chance of tak-

ing stimulants by 2.25 percentage points (standard error of 1.64

percentage points) and the corresponding number for the private

insurance sample is 4.45 percentage points (1.62).22

The results from Table 4 and the IV estimates in the previous

paragraph indicate that relative age is a more important deter-

minant of ADHD diagnosis in comparison to treatment. Given the

concerns about stimulant use outlined above, we potentially care

more about inappropriate stimulant use than inappropriate diag-

nosis of ADHD which may go untreated. However, the impact of

relative age on stimulant use is a large impact, both in the reduced-

form and the IV models.

These results are very similar to the estimates in Elder (this

issue). Using data from the ECLS-K survey, Elder demonstrates that

22 Treating estimates from all samples as two-sample instrumental variables esti-

mates, one can show that the t-statistic on the reduced form is roughly the t-statistic

on the two-sample instrumental variables estimate. Let t( ˆ̨ 2) be the t-statistic on

the reduced-form (Table 4) and t(�̂2) be the t-statistic on the first-stage (Table 3).

Assuming zero covariance between these two equations, one can show that the

squared t-statistic on the 2SLS estimate from Eq. (4) is approximately equal to

t( ˆ̌
2)

2 = {[1/t(�̂2)]
2 + [1/t( ˆ̨ 2)]

2}−1
. In this case, t(�̂2) is large in absolute value so

[1/t(�̂2)]
2

is very small and close to zero and therefore |t( ˆ̌
2)| ≈ |t( ˆ̨ 2)|.

a delay in school starting age by 1 year (which by construction

would make a student older relative to the median student in

a state-year cell) would reduce ADHD diagnosis by 5.4 percent-

age points and reduce ADHD medication use by 4.4 percentage

points. The results are produced by a similar methodology (regres-

sion discontinuity design) and model specifications, but with very

different samples and over different time periods. Despite these

differences the results are remarkably similar across the two

studies.

To explore the robustness of the findings reported in Table 4,

we perform a variety of specifications checks. It should be noted

that for there to be an effect of age relative to the cutoff date on

treatment or diagnosis two relationships must be present. First,

it must be the case that the kindergarten eligibility laws influ-

ence enrollment behavior and therefore age for grade, which is

demonstrated in the first-stage regression discussed above. Sec-

ond, relative age must determine diagnosis and/or treatment for

some portion of the population. Given the statistical significance

found in Tables 3 and 4, we can infer that both effects are occurring

and that there is medically inappropriate diagnosis. It is important

to consider heterogeneity in the results to determine whether this

average effect is concentrated among a selected or unusual portion

of the population. Often in the context of instrumental variable esti-

mation this issue is referred to as determining the Local Average

Treatment Effect (LATE), implying that the effect is only measured

for individuals that are responsive to the instrument (Angrist et al.,

1996).
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Table 5
Heterogeneity in regression discontinuity estimates of ADHD diagnosis, National Health Interview Survey.

Specification Sample Num. of Obs. Mean of Dep. Var. Coef. on born after, T(i ≥ 0)

Baseline results ±120 days 35,343 0.0864 −0.0208 (0.0079)

Days in sample ±90 days 26,659 0.0861 −0.0178 (0.0101)

±60 days 17,826 0.0849 −0.0203 (0.0136)

±30 days 9145 0.0826 −0.0316 (0.0155)

Order of polynomial 2nd order 35,343 0.0864 −0.0168 (0.0142)

3rd order 35,343 0.0864 −0.0381 (0.0181)

4th order 35,343 0.0864 −0.0364 (0.0205)

5th order 35,343 0.0864 −0.0523 (0.0255)

State of birth State of birth 30,476 0.0893 −0.0156 (0.0076)

State of birth = state of residence 26,607 0.0875 −0.0205 (0.0098)

Gender Male 18,014 0.1248 −0.0197 (0.0116)

Female 17,329 0.0471 −0.0209 (0.0088)

Race/Ethnicity White 19,538 0.1012 −0.0210 (0.0091)

Black 6000 0.0803 −0.0356 (0.0152)

Hispanic 8360 0.0462 −0.0220 (0.0134)

Age group 7–12 19,345 0.0818 −0.0237 (0.0107)

13–17 15,998 0.0926 −0.0158 (0.0114)

Survey years 1997–2001 18,274 0.0798 −0.0180 (0.0096)

2002–2006 17,069 0.0928 −0.0232 (0.0114)

Privately insured Private insurance 1997–2006 22,904 0.0807 −0.0259 (0.0102)

Private insurance, 2003–2006 8240 0.0871 −0.0263 (0.0149)

Additional family-level controls 35,343 0.0864 −0.0209 (0.0076)

Probit model (marginal effects) 35,343 0.0864 −0.0197 (0.0068)

Notes: Data is from the 1997–2006 National Health Interview Survey, and the sample is restricted to children born ages 7–17 on June 1st of the survey year who were born

within 120 days of the kindergarten eligibility cutoff. Unless otherwise specified, coefficients are from linear probability regressions with standard errors in parentheses,

and all specifications include a constant, a linear polynomial in days from cutoff separately for days before and days after, child’s age, state of residence and birth cohort

fixed effects, and controls for gender and race/ethnicity. Population weights are used and the standard errors are clustered by state.

In our analysis, we would like to confirm whether the inappro-

priate diagnosis and treatment we detect is seen across subsets

of the population, as well as to confirm whether the empirical

results hold with alternative specifications. However, caution must

be used in interpreting the relative size of coefficients. It may be

the case that some populations are more compliant with the instru-

ment. For example, we know that girls are much less likely to be

held back in kindergarten than boys, so are more compliant with

the instrument. In that case we might expect to find larger dif-

ferences across the eligibility cutoff dates, since those dates were

more binding for girls than boys.23 However, it might also be the

case that relative age is less important for girls than for boys, due to

faster maturation of young girls. In that case, we would expect to

see a smaller effect of relative age for girls than for boys. Theoreti-

cally, then, it is not obvious whether the coefficient for girls should

be smaller or larger than that for boys, or how to interpret any

differences between the two. We therefore present these results

merely to explore whether the effect holds in subpopulations, but

strongly caution against interpreting differences in the coefficients

as indicating a stronger or weaker relative age effect. It may simply

be that our instrument is more effective at predicting relative age

for some populations than others.

Table 5 presents the specification checks for ADHD diagnosis

using the NHIS data. Since the coefficient of interest did not change

across the columns of Table 4, it is not surprising that in Table 5 we

find the estimate is robust to a host of specification checks. These

results use the same specification as Table 4, column 4, repeated in

the top row of Table 5 for comparison. First, we restrict the win-

dow of the sample to children born within 90, 60, and 30 days of the

23 Indeed, in results not shown, using the full NHIS sample the “first-stage” esti-

mates of the effect of being born after on being Young are 0.4 for girls compared with

0.3 for boys.

cutoff date. While the estimates become less precise as the sam-

ple size decreases, we find that the effect of being born just after

the cutoff is an approximately 1.8–3.2 percentage point decrease

in the probability of being diagnosed with ADHD. This effect is

21–37% of the total ADHD diagnosis rate. The confidence inter-

vals for each of these estimates overlap meaning that any pair-wise

comparison of estimates will not be able to reject the null that the

differences across parameters is zero. The results are also insensi-

tive to including higher-order polynomials. These results confirm

that the findings cannot be due to season of birth effects.24

The third set of sensitivity tests demonstrates that approxi-

mating state of residence at age five with state of birth rather

than current state of residence produces nearly identical estimates.

When we restrict the sample to children that report being born in

the same state where they currently reside, a sample much more

likely to have been living in that same state at age five, we again

find that the results are nearly identical.

Next, we explore the heterogeneity of the estimates across

subsets of the population. Note that we include the mean of the

dependent variable in the table, which highlights the large differ-

ences in diagnosis rates across different groups. We find that nearly

13% of boys have ever been diagnosed with ADHD, compared with

5% of girls. However, we see a similar effect of being born after

the cutoff for both boys and girls. This result is not found in our

other data sets, where the girls sample does not produce statisti-

cally significant effects. In all three datasets we are unable to reject

the null hypothesis that the estimates for boys and girls are the

same. Although the estimated effect for girls using the NHIS is only

slightly larger in magnitude, it is considerably larger in percentage

24 Note that in results not shown but available upon request, estimates are similar

when birth month fixed effects are included.
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Table 6
Heterogeneity in regression discontinuity estimates of stimulant treatment, Medical Expenditure Panel Survey (MEPS) and private claims samples.

Specification Sample MEPS Private claims

Obs. [ȳ] Coef. on T(i ≥ 0) (Std error) Obs [ȳ] Coef. on T(i ≥ 0) (Std error)

Baseline results ±120 days 31,641 [0.0427] −0.0079 (0.0058) 48,206 [0.0584] −0.0156 (0.0057)

Days in sample ±90 days 23,744 [0.0410] −0.0129 (0.0065) 36,582 [0.0572] −0.0129 (0.0059)

±60 days 16,034 [0.0391] −0.0083 (0.0068) 24,809 [0.0563] −0.0136 (0.0067)

±30 days 8136 [0.0368] −0.0104 (0.0125) 12,504 [0.0548] 0.0026 (0.0123)

Order of polynomial 2nd order 31,641 [0.0427] −0.0143 (0.0070) 48,206 [0.0584] −0.0064 (0.0059)

3rd order 31,641 [0.0427] −0.0033 (0.0111) 48,206 [0.0584] −0.0103 (0.0132)

Gender Male 16,109 [0.0610] −0.0131 (0.0101) 24,216 [0.0803] −0.0218 (0.0102)

Female 15,523 [0.0235] 0.0003 (0.0081) 23,990 [0.0363] −0.0092 (0.0072)

Age group 7–12 18,424 [0.0523] −0.0039 (0.0086) 23,703 [0.0584] −0.0150 (0.0080)

13–17 13,217 [0.0306] −0.0110 (0.0077) 24,503 [0.0583] −0.0154 (0.0062)

One observation per claimant First year in data 16,986 [0.0420] −0.0064 [0.0064] 19,857 [0.056] −0.0108 (0.0059)

Last year in data 14,655 [0.0435] −0.0102 [0.0068] 19,696 [0.057] −0.0196 (0.0065)

Probit model (marginal effect) 31,641 [0.0427] −0.0055 (0.0047) 48,206 [0.0584] −0.0149 (0.0055)

Private insurance 2003–2006 6570 [0.0481] −0.0271 [0.0147]

Notes: Unless otherwise specified, coefficients are from linear probability regressions with standard errors in parentheses. All specifications include a constant, a linear

polynomial in days from cutoff separately for days before and days after, child’s age fixed effects, and controls for gender, state, year of birth, and, when available, race/ethnicity.

In the MEPS population weights are used. In all samples the standard errors are clustered by state. The samples include children ages 7–17 on June 1st of the survey year

born within 120 days of the kindergarten eligibility cutoff date.

terms. Note that there may be a power loss when attempting to

detect smaller effects on treatment rates, as described below in the

discussion of Table 6.

When comparing between different racial/ethnic groups, we

find the highest rates of ADHD diagnosis among white non-

Hispanic children. While the mean diagnosis rates differ by race,

we again find similar coefficients on being born after the cutoff in

all samples, with the largest effects for children with Hispanic eth-

nicity. But again, large standard errors on the lower sized-minority

samples mean that any pair-wise comparison is unable to reject

the null the coefficients are the same.

So far our estimates have pooled together children ages 7–17.

Because a 1 year difference in age represents a larger fraction of a

child’s life at younger ages, we might expect that the relative age

differences cause larger effects for children ages 7–12 compared to

teenage children. Note that although all specifications do include

child’s age and birth cohort fixed effects, we may still find that

the rising rates of ADHD diagnosis lead to a larger estimate for

the younger age group due to year effects as well.25 In Table 5,

comparing across age groups we find that the largest effect is seen

for the youngest age group in the sample.

We then divide the sample into survey years 1997–2001 ver-

sus 2002–2006. Consistent with other studies we see that ADHD

diagnosis rates rose between these two time periods from 8.0 to

9.3%, or about a 16% rise. The effect of being born after the cutoff is

larger in the later time period, 2.3 percentage points (25%) versus

1.8 percentage points (23%) in the earlier time period. This result

suggests that the effects of relative age on inappropriate diagno-

sis may be increasing over time as ADHD diagnosis and treatment

become more prevalent.

Next we consider the subset of the population that reports

having private health insurance, to approximate a sample that is

25 Note that in results not shown, similar to the findings of Bedard and Dhuey

(2006) discussed above, we find that for children age 13–17 the first stage coefficient

is only −0.28 compared with a coefficient of −0.41 for the children age 7–12. This

is consistent with eligibility being less binding as children age due to differential

promotion and retention. It may also be due to using current state of a residence as

a proxy for the state where the child lived at age five. As children age it will be more

likely that they have moved since age five, so an additional form of measurement

error is introduced that may cause attenuation bias.

similar to those in our private claims dataset. These results are

reported near the bottom of Table 5. First, note that consistent

with previous studies, we find that the diagnosis rates of pri-

vately insured children are slightly lower than the national average

over this time period due to the higher rates for those on public

insurance.26 Also consistent with previous studies documenting

a rise in ADHD diagnosis over time, and with the heterogeneity

by survey years described above, we find that when we further

restrict the sample to those with private insurance in survey years

2003–2006 we observe higher diagnosis rate. In Table 4, we find

a larger impact of being born after the cutoff on ADHD medica-

tion use in the private claims sample than in the MEPS sample,

which includes those with private and public insurance plus those

uninsured. This suggests that children with private health insur-

ance might experience larger effects of being born after the cutoff

date on stimulant treatment rates. Similarly, looking at the subset

of the population that reports having private health insurance in

the NHIS we find that being born after the cutoff reduces the prob-

ability of ADHD diagnosis a statistically significant 2.6 percentage

points. Although this coefficient is roughly 30% larger than the full

sample, the difference in coefficients is not statistically significant.

When we reduce the sample to match the survey years of the pri-

vate claims data there is little change in the estimated coefficient.

Therefore, using the NHIS dataset we find an effect for the subset

of the population that has private insurance which is slightly larger

than that from the population at large, consistent with the disparity

found between the MEPS and private claims samples in Table 4.

So far all models used only a limited set of family-level covari-

ates. We have a sparse set of controls available in the private

claims sample, and we wanted the models to be as similar as pos-

sible. Because covariates do not vary appreciably for those born

before and after the cutoff, we do not anticipate that including

more detailed family controls will affect the results. To confirm

this, we exploit the detailed data in the NHIS. In the next row of

Table 5, we add 16 dummy variables for different income values

including income not reported, dummy variables for all potential

family sizes, dummies for all potential numbers of siblings in the

26 For a discussion of ADHD diagnosis and treatment rates by health insurance

status see, for example, Visser et al. (2007) and references therein.
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Table 7
Falsification tests, National Health Interview Survey and private claims data.

Sample Outcome Num. of Obs. Mean of Dep. Var. Coef. on born after, T(i ≥ 0)

NHIS Had chicken pox? 34,727 0.725 −0.0057 (0.0121)

Have respiratory allergies? 35,233 0.139 0.0059 (0.0086)

Suffers from hay fever? 35,247 0.127 −0.0046 (0.0089)

Have frequent headaches? 35,321 0.082 0.0014 (0.0054)

Private claims Any asthma drug use? 48,026 0.093 0.0117 (0.0075)

Any antibiotic drug use? 48,026 0.345 0.0080 (0.0091)

Notes: In the top panel data are from the 1997–2006 National Health Interview Surveys and population weights are used. The bottom panel uses the private claims sample.

The samples include children ages 7–17 on June 1st of the survey year born within 120 days of the kindergarten eligibility cutoff date. The coefficients are from linear

probability regressions with standard errors in parentheses, and the standard errors are clustered by state. All specifications include a constant, a linear polynomial in days

from cutoff separately for days before and days after, child’s age fixed effects, and controls for gender, state, year of birth, and, in the NHIS only, race/ethnicity.

household and a complete set of dummies for the highest edu-

cation level in the family. The coefficient on the reduced-form

from this model is virtually identical to that in the basic model

at the top of the table. Finally, because our dependent variable

is dichotomous, we confirm that using a limited dependent vari-

able model produces nearly identical results. The last panel in

Table 5 provides the marginal effects from a Probit model; there

little impact of changing the estimation method on parameter esti-

mates.

Table 6 reports a similar set of specification and heterogene-

ity checks considering stimulant prescription as the outcome of

interest. In Table 4 we found that the estimated effect of being

born after the cutoff was strikingly similar across the specifica-

tions as additional covariates were added for all three datasets.

The private claims data source has a large enough sample size

to explore alternative specifications and heterogeneity within the

sample. However in the MEPS data, the main result, presented in

column 4 of Table 4, is not statistically significant. Still, we explore

whether the qualitative results in the MEPS hold across specifica-

tions and within subsamples as further evidence supporting the

findings in the larger private claims data. Although it is a smaller

data set, the MEPS sample is nationally representative and allows

for controls for race and ethnicity.

The top row of Table 6 repeats the main specification, Table 4

column 4, for the MEPS and private claims data sets. In the first set

of specification tests, we find that the coefficient is insensitive to

narrowing the window of birthdays included in the sample. How-

ever in the private claims data, reducing the sample to a 30 day

window generates a qualitatively small and statistically insignifi-

cant positive coefficient. In the next panel of results in Table 6 we

include higher order terms of the polynomials h(z). The specifica-

tion with the quadratic yields a puzzling result. Using the MEPS

data we find the coefficient on born after more than doubles, while

in the private claims data the coefficient goes to zero. Once higher

order terms are added the coefficients are again similar to the base-

line result. Recall also that this anomalous result is not found in the

NHIS results reported in Table 5. Note that Porter (2003) argues that

odd-numbered polynomials have better econometric properties in

regression discontinuity design models.

The sensitivity of the results in the private claims data to the

window over which we examine the model and the order of the

polynomial are in stark contrast to the results from the NHIS which

are not sensitive to these model alterations. Upon further inspec-

tion, the result can be explained by an anomalously high stimulant

use rate on day z = 6 (children born 6 days after their state and

year-specific cutoff).

There are roughly 200 observations for each day z = −120 to 120.

On day z = 6, the mean stimulant use rate is about 14% which is

approximately 2 percentage points higher than any other day and

nearly twice the sample average. Looking at the −30 to 30 day mod-

els, if we estimate specifications (1) through (3) from Table 4 for

this sample, in all cases, the coefficient (standard error) on the treat-

ment effect dummy variable is −0.014 (0.005). However, when we

add in the linear terms, the coefficient then drops to the number

in Table 6. Estimating the linear time trend on only 30 days when

there is an extreme outlier on day z = 6 increases the slope on h(z)

and eliminates any coefficient on the treatment variable, I(z ≥ 0).

The distortion due to a large spike in stimulant use on day z = 6 is

lessened as we increase the window around day z = 0.

The outlier on day z = 6 also generates havoc with the higher

order polynomials since the model is trying to fit the underly-

ing response surface through this one high value for the outcome.

If we re-estimate the (−30, 30) day model with linear, quadratic

and cubic polynomials in h(z) including a dummy variable for day

z = 6, then the coefficient on the treatment effect dummy variable

in these three models equal −0.0186 (0.0042), −0.0130 (0.0060)

and −0.0190 (0.0086), respectively. So although the estimates are

sensitive to this one extreme outlier, once the additional dummy

variable for day z = 6 is included the results are strikingly robust to

restricting the sample to smaller windows around the discontinuity

and to in the inclusion of higher order polynomials.

We next consider heterogeneity within the samples. As was

found with diagnosis rates, treatment rates for boys are much

higher than for girls in both samples. The effect of being born after

the cutoff is only statistically significant for boys in the private

claims data and reflects an over 2 percentage point decreased risk of

ADHD treatment for boys born just after the eligibility cutoff. Note

that the estimate for girls is not statistically significant, but this

may simply be due to insufficient power. Again similar to the esti-

mates in Table 5, we find that the effect is largest for children ages

7–12. Near the bottom of Table 6 we estimate a model in the MEPS

data for a subset of the population that is most similar to that from

the private claims data base. We find that among children with

private health insurance in survey years 2003–2006, 4.8% have a

prescription medication to treat ADHD. We find that children born

just after the cutoff date have a 2.7 percentage point lower risk of

being treated for ADHD in this group.

Table 7 provides our final robustness check. Here we estimate

a similar model using other childhood diseases as outcomes, as

in Fig. 2. Because children born before the cutoff will have expe-

rienced more years of school on average, one might worry that

it is exposure to years of school, rather than relative age, that is

causing the difference in diagnosis rates. The first two childhood

ailments we consider as falsification tests, chicken pox and res-

piratory allergies, may also be a function of years of exposure to

school. Another concern might be that the stress of being younger

than one’s classroom peers actually causes ADHD. Although we are

not aware of any evidence that ADHD is stress-induced, we explore

the possibility that children who are relatively young may suffer

from stress-induced ailments. To test if a stress-induced mecha-

nism is at work, we consider other childhood ailments that may

be exacerbated by stress. For all four childhood ailments we con-
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sider, chicken pox, respiratory allergies, hay fever, and frequent

headaches, we find no statistically significant effects of relative age.

This also further confirms that differences in susceptibility to dis-

eases by children born at different times of year cannot explain the

effects.

Similarly, at the bottom of Table 7, if the stress-induced illness

or exposure to school mechanism were influencing ADHD treat-

ment, we would expect to see a negative and significant effect of

being born after the cutoff on asthma medication use or antibiotic

use as well. The estimates at the bottom of Table 7 show a posi-

tive and statistically insignificant effect of relative age on asthma

medication and antibiotic use.

In summary, the estimates of the effect of being born after the

age of school start date are large and statistically significant across

a host of specifications and in almost all subsamples. We find no

similar effect for several other childhood diseases and conditions.

This suggests that the nature of the diagnostic guidelines, which

recommend a comparison with classroom peers, leads to medically

inappropriate ADHD diagnosis.

As discussed above, one concern is that our results are poten-

tially driven by the fact that children that are young for their grade

will have also been in school 1 year longer. We are worried that

“exposure” to diagnosis in schools could lead to higher diagnosis

rates, even controlling for age and birth cohort. This does not appear

to explain our results. First, note that in Table 6 when we restrict

the sample to include only children 13–17 years we still produce

a statistically significant reduction in ADHD treatment rates of 1.5

percentage points for those born just after the cutoff. As children

age, the relative difference in exposure declines considerably and

hence, if exposure were driving the differences in outcomes across

groups, we should find little impact in this older group. Second,

recall that the sensitivity tests presented in Fig. 2 and in Table 7

indicated that other childhood diseases and conditions that might

be influenced by differential exposure do not show a similar pat-

tern. Third, we next consider the sensitivity of our estimates to

including grade fixed effects to the model to explicitly control for

years of exposure. However, we do not present these results in

Table 5 because this model is problematic for two reasons. As dis-

cussed in detail above, we note that the grade in school variable

is measured with considerable error. But more importantly, it is

also the case that years of schooling is an outcome, so is endoge-

nous. Therefore we view these results solely as a sensitivity test

to compare children in the same grade, which confirms the coeffi-

cient is not being driven by exposure. Since years of schooling and

I(zi ≥ 0) are negatively related, it is not surprising that adding grade

fixed effects decreases the coefficient on I(zi ≥ 0) to −3.8 percent-

age points (standard error of 0.9 percentage points). Hence we can

be reassured that even when comparing within grade by including

grade fixed effects we find a large and statistically significant effect

of being born after the cutoff. These three sets of results indicate

that exposure to years of schooling cannot explain the findings.

In summary, if one assumes that the true incidence rate of ADHD

is uniform over a small window around the age at school start cut-

off, the estimates provide compelling evidence that a large fraction

of ADHD diagnoses are not the result of an underlying medical con-

dition. Rather, children that were born just after the kindergarten

eligibility cutoff date in their state in the year they turned 5 years

old, who therefore were more likely to wait an additional year to

enter school, are at a much lower risk being diagnosed with ADHD

and being prescribed stimulants. This provides strong evidence that

medically inappropriate diagnosis and treatment is occurring.

The diagnosis rates for children born on either side of the kinder-

garten eligibility cutoff date should only be different if that cutoff

date actually corresponds to initial school enrollment behavior.

Not only do many states allow exemptions for early entry, in gen-

eral states do not require children attend school until they are 7

years old. In addition, more advanced children may skip grades,

while children who are struggling may repeat grades. This non-

compliance with the age at school start laws should only serve to

dampen the difference between children born before and after the

cutoff date. As described above, we cannot estimate the effect of

being relatively young directly due to data limitations. Still, the

reduced-form analysis presented here indicates that, as long as the

underlying medical risk of having ADHD does not differ across the

eligibility cutoff date, there is a significant amount of medically

inappropriate diagnosis and treatment of ADHD.

6. Conclusions

The evidence presented above indicates that for some children,

a diagnosis of ADHD is not solely based upon underlying biologi-

cal conditions. Rather, being born just before versus just after the

kindergarten eligibility cutoff date in one’s state is a significant fac-

tor in the probability of receiving an ADHD diagnosis. This is likely

a result of relative maturity and is therefore not a surprise given the

difficulty of diagnosing ADHD and the explicit consideration that

health care providers are advised to give to whether the behav-

iors in question “happen more often in this child compared with

the child’s peers?”27 As Elder and Lubotsky (2009) demonstrate,

younger children in classes are more likely to have educational and

behavioral problems compared to their peers, and therefore, some

children who are relatively young compared to their classroom

peers are more likely to be diagnosed with ADHD. These results

suggest that the comparison sample for diagnosis should not be

other children in class but rather, other children of a similar age

within a class.

Note that even if it is the case that children entering school

at younger ages triggers ADHD, this would suggest an impor-

tant causal mechanism that the medical research should further

explore. ADHD is now thought to stem from both neurological

and environmental factors. If being exposed to formal schooling

at younger ages is actually causing a rise in ADHD, we must then

revisit educational policy and consider how children are segmented

into classrooms and how age-appropriate educational activities are

chosen.

Our econometric model does not, however, allow us to identify

whether particular children who are young for their grade are over-

diagnosed or whether some older children are under-diagnosed. It

could be the case that younger children are over-diagnosed because

they are acting immaturely relative to classroom peers (but not rel-

ative to children the same age), and this behavior is misinterpreted

as indicating the child has ADHD. Alternatively, it could also be that

because of the stark age difference between children born before

and after the cutoff in early grades, it is easier to diagnose younger

children with ADHD and older children are left under-diagnosed.

Indeed, as described in the beginning of Section II, under-diagnosis

of ADHD and other mental health disorders is a significant and

important public health concern as children with ADHD are at

an increased risk of academic difficulties and are more likely to

engage in risky behaviors. Children with ADHD often have diffi-

culties in school and untreated ADHD may lead to lower human

capital accumulation, although research suggests that many chil-

dren taking stimulant medication may suffer from toxicity that will

hamper rather than improve their cognitive function (Swanson et

al., 1991). In addition, recent research has highlighted the exter-

nalities associated with having a child with extreme emotional or

27 NIMH, ADHD Booklet, Page 6.
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behavioral problems in the classroom, such as the lower human

capital accumulation of classmates (Aizer, 2009; Fletcher, 2010).

What our results do indicate is that observationally similar stu-

dents have very different diagnosis rates depending on when their

birthday falls in relation to the start of the school year. As such,

the results suggest that for a large fraction of children their current

medical diagnosis with regard to ADHD is not based on underlying

biological factors.

That said, we do feel that evidence from outside our econo-

metric model is suggestive that the more likely scenario is that

younger children are inappropriately diagnosed as having ADHD

when they are in fact simply less mature than their peers. Evidence

from brain imaging technology suggests that ADHD is associated

with a 3 year developmental delay in a child’s brain (see, e.g.,

Shaw et al., 2010). The NIMH ADHD Booklet describes children

with ADHD as being hyperactive, inattentive, and/or impulsive.

Inattentiveness could be missed in older children, but extreme

hyperactivity and impulsivity are unlikely to go unnoticed. And

while it is theoretically possible that older children would have

symptoms that would not be detected by teachers, that notion is not

consistent with the idea that children with ADHD have severe and

uncontrollable behavioral problems. Along similar lines, children’s

whose ADHD symptoms are not severe enough to be detected may

not require medical intervention and treatment. Thus, even if our

results suggest that over- and under-diagnosis are both occurring,

the possibility of over-diagnosis due to relative immaturity may be

of more significant public health concern than under-diagnosis in

this scenario.

Potential over-diagnosis of stimulant medication is particularly

troubling given the possible side effects of these drugs. Accord-

ing to a 2007 FDA review, the stimulant medications used to treat

ADHD have rare but serious and significant potential side effects

including cardiovascular problems and psychiatric problems.28

Others studies have suggested potential long-term consequences

on young children’s brain development. According to our estimates,

approximately 9% of all children are diagnosed with ADHD and

approximately 4–6% of children current take a prescription stimu-

lant to treat ADHD. According the population estimates provided by

the U.S. Census Bureau,29 on July 1, 2006 there were approximately

53 million children ages 5–17 in the United States. To put our esti-

mates into perspective, an excess of 2 percentage points implies

that approximately 1.1 million children received an inappropriate

diagnosis and over 800,000 received stimulant medication due only

to relative maturity. Recognizing the pattern of inappropriate diag-

nosis should help to better target treatments. In addition, this may

help to avoid treatments with potentially serious short-term and

long-term consequences.

International comparisons that indicate the United States

spends more yet achieve lower health outcomes when compared

to other OECD countries. This and other evidence has prompted

criticism of wasteful spending and over-treatment in the U.S.

healthcare system. However, identifying inappropriate diagnosis

and treatment can be difficult and generally involves costly chart

reviews or extensive case studies. In this paper we document inap-

propriate medical diagnosis and treatment using survey data. Using

variation in relative age induced by age of school start laws, we are

able to clearly identify a source of differential diagnosis that cannot

be due to true underlying differences in disease incidence.

28 Findings from the FDA review are described in the NIMH ADHD Booklet, Page 9.
29 Source: Population Division, U.S. Census Bureau, Table 2: Annual estimates of

the resident population by sex and selected age groups for the United States: April

1, 2000 to July 1, 2008 (NC-EST2008-02), Release Date: May 14, 2009, accessed

November 16, 2009.

Fig. A1. Current grade for children 7–16, 2000–2002 October CPS and 4th quarter

responses to 2000–2002 NHIS.

Notes: The NHIS fourth quarter responses are from the public use data. We impute

the respondents’ ages as of October 1st using information on month and year of

birth. Both samples are from years 2000 to 2002 for children age 7–16.

Appendix A.

Fig. A1.
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