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Abstract

When explicit time discretization schemes are applied to stiff reaction–diffusion equations, the stability constraint on the
time step depends on two terms: the diffusion and the reaction. The part of the stability constraint due to diffusion can be
totally removed if the linear diffusions are treated exactly using integration factor (IF) or exponential time differencing
(ETD) methods. For systems with severely stiff reactions, those methods are not efficient because the reaction terms in
IF or ETD are still approximated with explicit schemes. In this paper, we introduce a new class of semi-implicit schemes,
which treats the linear diffusions exactly and explicitly, and the nonlinear reactions implicitly. A distinctive feature of the
scheme is the decoupling between the exact evaluation of the diffusion terms and implicit treatment of the nonlinear reac-
tion terms. As a result, the size of the nonlinear system arising from the implicit treatment of the reactions is independent
of the number of spatial grid points; it only depends on the number of original equations, unlike the case in which standard
implicit temporal schemes are directly applied to the reaction–diffusion system. The stability region for this class of meth-
ods is much larger than existing methods using an explicit treatment of reaction terms. In particular, the one with second
order accuracy is unconditionally linearly stable with respect to both diffusion and reaction. Direct numerical simulations
on test equations, as well as morphogen systems from developmental biology, show the new semi-implicit schemes are
efficient, robust and accurate.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Mathematical equations for many physical and biological applications are of the form:
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where u 2 Rm represents a group of physical or biological species, D 2 Rm · m is the diffusion constant matrix,
Du is the Laplacian associated with the diffusion of the species u, and F(u) describes the chemical or biological
reactions.

If the method of lines is used to solve the equation numerically, the reaction–diffusion system (1) can be
reduced to a system of ODEs:
ut ¼ CuþFðuÞ; ð2Þ
where Cu is a finite difference approximation of DDu. Let N denote the number of spatial grid points (inde-
pendent of number of spatial dimensions) for the approximation of the Laplacian Du. Then u(t) 2 RN Æ m and C
is a (N Æ m) · (N Æ m) matrix representing a spatial discretization of the diffusion. For instance, in a one-dimen-
sional system with one diffusion term, C is a tri-diagonal matrix when a second order central difference is used.
The eigenvalues of C are proportional to DN2 in this case.

The size of time-step for a time integrator solving, Eq. (2), is constrained by the inverse of the eigenvalues of
the diffusion matrix C in addition to the stiffness of the nonlinear reaction term FðuÞ. When diffusion con-
stants in system (1) become large or the spatial resolution is very fine as N increases, the stability constraint
due to diffusion becomes very severe. However, this constraint due to diffusion can be totally removed by
treating the term Cu exactly [1–3]. In this approach, the contribution of the linear diffusion is reduced to eval-
uation of an exponential function of the matrix C, followed by an approximation of an integral involving the
nonlinear term FðuÞ. Different approximations of the integral involving nonlinear term FðuÞ result in either
the integration factor (IF) method or the exponential time differencing (ETD) method. For ETD methods,
special treatments for various operations on C (e.g., its inverse) are needed in order to maintain a consistent
order of accuracy [4–7]. For standard IF methods, the fixed points for the original systems are not exactly

conserved in the numerical scheme, and as a result, extra terms have to be incorporated in the standard IF
methods in order to preserve such conservation [8].

Although the stability constraint due to diffusion is totally removed for IF and ETD methods, the time step
is still constrained by the stiffness of the reaction term FðuÞ. This is because in classical IF and ETD methods,
the term FðuÞ is usually treated explicitly through linear multi-step methods, such as Adams–Bashforth meth-
ods [1,3]. One way of improving the stability region for a stiff reaction is to incorporate a Runge–Kutta type
approximation for the term involving FðuÞ in the ETD scheme [9]. Although the multi-stage nature of Runge–
Kutta methods requires more function evaluations, the ETD-Runge–Kutta method [9] in general has a larger
stability region than the standard ETD [3]. However, it is still not efficient enough for systems with highly stiff
reactions, as often is the case for many biological applications, such as the morphogen gradient system in
which the reaction rate constants in F(u) can differ by four to five order of magnitude [10–13].

On the other hand, direct application of classical implicit temporal schemes on (2) leads to a large system of
N Æ m equations and N Æ m unknowns. The size of the system depends on the spatial resolution N, which rep-
resents the total number of spatial grid points independent of the number of spatial dimensions. The compu-
tational cost for solving such system is of order of N2 Æ m2 if Newton�s methods is used. (Of course, fast
methods, such as the multigrid methods, can significantly speed up these calculations.) In this paper, we intro-
duce a new class of methods, which treats the diffusion term exactly and the nonlinear reaction term FðuÞ
implicitly, but with the two approximations decoupled. By doing so, we only need to solve a system of m equa-
tions and m unknowns at every spatial grid point. The computational cost for solving the system at one spatial
point is of order of m2 using iterative methods such as Newton�s methods. Summing up this computational
cost at all spatial points, the total cost for solving all N systems becomes order of N Æ m2. In addition, the small
system of m equations and m unknowns is convenient for the implementation of various nonlinear solvers, and
it is in a form particularly suitable for a simple fixed point iterative procedure.

With the implicit treatment of the nonlinear reactions, the new methods have a much larger stability region
than the ETD-Runge–Kutta method [9]; in particular, its second order version is unconditionally linearly sta-
ble with respect to both diffusion and reactions. In this paper, we present two types of methods: the basic type,
which can be regarded as an implicit integration factor (IIF) method, and an advanced type, which combines
the IIF method and standard explicit ETD methods through appropriate weights to ensure the conservation of
fixed points of the numerical schemes. It will be demonstrated that the IIF method is more efficient and robust
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than the weighted scheme, and IIF method performs well for a system of PDEs arising from a biological
application.

The rest of the paper is organized as following. In Section 2, we derive the IIF method. In Section 3, we
analyze the linear stability for IIF. In Section 4, we present the weighted IIF-ETD methods, and discuss their
stability properties. In Section 5, we test and compare the new methods with some existing methods for a
system of PDEs with an exact solution. In Section 6, we apply IIF to a morphogen system in developmental
biology. In Section 7, we conclude.
2. Implicit integrating factor methods

In this section, we illustrate the derivation of the new temporal schemes for the scalar case of the semi-
discrete system (2) of the form
ut ¼ cuþ f ðuÞ; t > 0; uð0Þ ¼ u0; ð3Þ
where c is a constant representing the diffusion, and f is a nonlinear function representing the reaction.
After multiplying (3) by the integrating factor e�ct, we integrate the equation over one time step from tn to

tn + 1 ” tn + Dt to obtain
uðtnþ1Þ ¼ uðtnÞecDt þ ecDt

Z Dt

0

e�csf ðuðtn þ sÞÞ ds. ð4Þ
One critical step in constructing ETD schemes [2,3,9] is the choice of approximation method for the integral in
(4). In the derivation of ETD schemes, the integrand is approximated first through interpolation polynomials
of the function f(u(tn + s)) with e�cs unchanged. Then a direct integration of the interpolation polynomial with
a coefficient e�cs yields the ETD method. If the interpolation points used for the integrand are at s 6 0, the
temporal scheme is explicit. Otherwise, the scheme becomes implicit when the interpolation points contain
tn + 1. The implicit treatment of the reaction term f gives a much larger stability region for stiff reactions com-
pared to the explicit ETD schemes.

However, the nonlinear equation arising from those implicit ETD methods [3] involves a term ecDtf(un + 1).
For example, the second order implicit ETD scheme is of the form:
unþ1 ¼ ecDtun þ
ecDt � 1

2c
ðf ðunþ1Þ þ f ðunÞÞ. ð5Þ
When the implicit ETD scheme (5) applied to an ODE system (2), it leads to a nonlinear system with N Æ m

equations and N Æ m unknowns, where N represents the number of spatial discretization points for diffusion,
and m represents the number of original differential equations. This system, which couples the linear diffusion
and the nonlinear reaction through exponentials of matrix C, is generally expensive to solve. The computa-
tional complexity for solving the system is of order at least O(N2 Æ m2) using a standard iterative method
(e.g., Newton�s method).

Our goal is to design a class of temporal schemes which treats the stiff reaction implicitly and integrates the
diffusion exactly, but with a much reduced computational cost. In particular, it would be desirable to decouple
the treatment of stiff reactions and the exact integration of diffusion so that a nonlinear system of only m equa-
tions with m unknowns needs to be solved at every spatial grid point, with the size of the nonlinear system
independent of the total number of the grid points N. It turns out we can construct such a scheme by simply
approximating e�csf(u(tn + s)) in (4) using an interpolation polynomial involving tn + 1. Here is a brief descrip-
tion of the derivation.

Define un as the numerical solution for u(tn) and
gðsÞ ¼ e�csf ðuðtn þ sÞÞ. ð6Þ

To construct a scheme of rth order truncation error, we approximate g(s) with an r � 1th order Lagrange
polynomial, p(s), with interpolation points at tn + 1, tn, . . . , tn + 2� r:
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pðsÞ ¼
Xr�2

i¼�1

eicDtf ðun�iÞ
Yr�2

j¼�1
j 6¼i

sþ jDt
ðj� iÞDt

; 0 6 s 6 Dt. ð7Þ
Then the second, third, and fourth order approximations to g(s) are of the following form:

1. Given g(0) = f(un), g(Dt) = e�cDtf(un + 1), the second order approximation to g(s) is
pðsÞ ¼ 1

Dt
½f ðunÞðDt � sÞ þ e�cDtf ðunþ1Þs�; 0 6 s 6 Dt. ð8Þ
2. Given g(�Dt) = ecDt f(un� 1), g(0) = f(un), g(Dt) = e�cDtf(un + 1), the third order approximation to g(s) is
pðsÞ ¼ 1

2Dt2
½ecDtf ðun�1Þsðs� DtÞ � 2f ðunÞðsþ DtÞðs� DtÞ þ e�cDtf ðunþ1Þsðsþ DtÞ�; 0 6 s 6 Dt. ð9Þ
3. Given g(�2Dt) = e2cDtf(un� 2), g(�Dt) = ecDtf(un� 1), g(0) = f(un), g(Dt) = e�cDtf(un + 1), the fourth order
approximation to g(s) is
pðsÞ ¼ 1

6Dt3
�e2cDtf ðun�2Þðs� DtÞsðsþ DtÞ þ 3ecDtf ðun�1Þðs� DtÞsðsþ 2DtÞ
�

�3f ðunÞðs� DtÞðsþ DtÞðsþ 2DtÞ þ e�cDtf ðunþ1Þsðsþ DtÞðsþ 2DtÞ
�
; 0 6 s 6 Dt. ð10Þ
With this approximation to g(s), (4) can be discretized as
unþ1 ¼ ecDtun þ ecDt

Z Dt

0

pðsÞ ds. ð11Þ
Hence, a direct evaluation of the integral in (11) leads to the new rth order implicit scheme
unþ1 ¼ ecDtun þ Dt anþ1f ðunþ1Þ þ
Xr�2

i¼0

an�if ðun�iÞ
 !

; ð12Þ
with an + 1,an,an� 1, . . . ,an� r + 2 defined as
an�i ¼
eðiþ1ÞcDt

Dt

Z Dt

0

Yr�2

j¼�1
j 6¼i

sþ jDt
ðj� iÞDt

ds; �1 6 i 6 r � 2. ð13Þ
In Table 1, we list the value of coefficients, aj, for the schemes with order up to four. For example, the second
order scheme is of the following form:
unþ1 ¼ ecDt un þ
Dt
2

f ðunÞ
� �

þ Dt
2

f ðunþ1Þ; ð14Þ
with a local truncation error
� 1

12
ðc2fn � 2c _f n þ €f nÞDt3. ð15Þ
1
ients for implicit IF schemes with localized nonlinear systems

an + 1 an an� 1 an� 2

1 0 0 0
1
2

1
2e

cDt 0 0
5
12

2
3e

cDt � 1
12e

2cDt 0
9
24

19
24e

cDt � 5
24e

2cDt 1
24e

3cDt
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The distinctive feature of the scheme (12) and (13) is that an + 1 is independent of ecDt unlike the implicit
ETD (5). As a result, when the scheme is applied to the ODE system of the form (2), the exponential matrix
eCDt is only multiplied by terms involving known quantities at the earlier time levels. The nonlinear system at
tn + 1 is decoupled from the diffusion with a simple form
unþ1 ¼ Dtanþ1Fðunþ1Þ þ known quantities ð16Þ

with un + 1 2 Rm. At each time step for the IIF (14), a system with m unknowns (16) needs to be solved at each
spatial grid point. The N m · m systems are independent of each other with every system of the same structure.
Because Dtan + 1� 1, Dtanþ1F in (16) is likely to be a contractive mapping [14], and an iterative method such
as the fixed point method is particularly suitable and convenient to implement for the corresponding nonlinear
system.

Unlike ETD schemes [2,3,9], the new schemes do not involve any calculation of C�1. Direct implementation
of ETD schemes [2,3,9] usually suffers from numerical instability due to large cancellation errors. Special care
must be taken for the calculation of C�1, especially when C has zero or close to zero eigenvalues [4]. The new
IIF scheme only involves calculation of eCDt, a term independent of u or F. This term can be pre-calculated for
a given numerical resolution (fixed N and Dt), and stored for later use at every time step. A comprehensive
discussion on evaluation of the exponential of a matrix can be found in [15]. In this paper, we use a scaling
and squaring algorithm with a Padé approximation [15] implemented in Matlab with the function name
‘‘expm’’.

Remark. The procedure of using (4) to obtain the IIF methods can also be applied for construction of explicit
integration factor (EIF) methods. With interpolation points involving points with s 6 0, we can obtain the rth
order EIF as the following:
unþ1 ¼ ecDtun þ Dt
Xr�1

i¼0

bn�if ðun�iÞ
 !

; ð17Þ
where
bn�i ¼
eðiþ1ÞcDt

Dt

Z Dt

0

Yr�1

j¼0
j 6¼i

sþ jDt
ðj� iÞDt

ds; 0 6 i 6 r � 1. ð18Þ
For the case r = 2, it is reduced to the standard second order integration factor Adams–Bashforth method
(IFAB2 [9]):
unþ1 ¼ ecDtun þ Dt
3

2
ecDtf ðunÞ �

1

2
e2cDtf ðun�1Þ

� �
. ð19Þ
So Eq. (4) is a general framework for both explicit and implicit ETD schemes and IF methods. The choice of
approximation procedure for the integrand in (4) dictates the type of temporal schemes derived. The ETD
schemes are obtained when f(u(tn + s)) is approximated through interpolation polynomials, whereas the IF
method is obtained when the whole integrand e�csf(u(tn + s)) is approximated.
3. Stability analysis of IIF

One of the drawbacks for standard integrating factor methods is that the fixed points of the numerical
schemes are not the same as the fixed points of the original ODEs; and they differ by a term of order (Dtp)
where p is the order of accuracy of the numerical scheme. In other words, the steady state obtained from a
dynamic evolution using standard integration factor methods has an error of order (Dtp) in addition to
discretization errors associated with space. This error is more pronounced for PDEs involving higher-order
spatial derivatives, such as applications in microstructure evolution [8,16].

Because the fixed points of the numerical scheme are not conserved, one cannot directly use the following
decoupled linear system:
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ut ¼ �quþ du with q > 0 ð20Þ

to examine the stability region with respect to the diffusion and the reaction for the implicit integration factor
method around the steady state of the ODE system (2) as shown in [3,17]. Instead, one may analyze the linear
stability of integration factor methods around the steady state of the numerical schemes. Interestingly this ap-
proach happens to be equivalent to testing the stability of the numerical methods using such a linear system as
(20). Similar to the stability analysis for ETD methods in [3,17], we will show boundaries of the stability re-
gion, a family of curves for different values of qDt, based on the test problem (20) for the second and third
order implicit integration factor methods. In the context of solving reaction–diffusion equation (1) using
a finite difference scheme for the spatial discretization, qDt actually represents the CFL number involving
the ratio of the temporal and spatial grid size.

Applying the second order IIF (14) to Eq. (20), then substituting un = einh into the resulting equation, we
obtain
eih ¼ e�qDt 1þ 1

2
k

� �
þ 1

2
keih; ð21Þ
where k = dDt has a real part kr and imaginary part ki. Therefore, the equations for kr and ki are
kr ¼
2ð1� e�2qDtÞ

ð1� e�qDtÞ2 þ 2ð1þ cos hÞe�qDt
;

ki ¼
4ðsin hÞe�qDt

ð1� e�qDtÞ2 þ 2ð1þ cos hÞe�qDt
.

ð22Þ
Because q > 0, we have kr > 0 for 0 6 h 6 2p. Then, the second order IIF is A-stable since the stability region
includes the complex plane for all k with kr < 0. In Fig. 1, we plot the stability regions: the exterior of the
closed curves located on the complex plane with kr > 0, for qDt = 0.5,1,2. In the limit q! 0, the stability re-
gion coincides with the domain kr < 0, whereas in the limit q!1, the stability region approaches the whole
complex plane excluding the point (2,0).

Next, we examine the third order IIF scheme:
unþ1 ¼ ecDtun þ Dt
5

12
f ðunþ1Þ þ

2

3
ecDtf ðunÞ �

1

12
e2cDtf ðun�1Þ

� �
. ð23Þ
Using the same approach, we obtain the equation for k
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Fig. 1. Stability regions (exterior of the closed curves) for the second order IIF with qDt = 0.5,1,2.
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k ¼ eih � e�qDt

5
12

eih þ 2
3
e�qDt � 1

12
e�2qDt�ih

. ð24Þ
The third order scheme is no longer A-stable, as shown in Fig. 2 for qDt = 0,0.45, 0.5,0.6, 1.0. The stability
region of IIF is larger than the corresponding implicit ETD scheme [3] for every fixed qDt. However, the size
of the stability region is very sensitive to the value of qDt, and it is an increasing function of qDt.

When qDt < 0.54, the stability region is within the left of the complex plane k bounded by a closed curve.
When qDt > 0.55, the stability region contains the whole left of the plane and most of the right part of the
plane. As q!1, the stability region approaches the whole complex plane excluding one point at the real axis.

4. Weighted implicit integration factor and exponential time differencing methods (wIIF-ETD)

As discussed in the previous section, one of the main drawbacks for the standard integration factor meth-
ods is that the fixed points of the discrete equations from the numerical methods has an error of O(Dtp) where
p is the order of accuracy of the numerical scheme. This problem can be eliminated through addition of appro-
priate terms in the original scheme for the second order explicit integration factor method when applied to a
boundary integral technique [16]. In this section, we will introduce a new class of schemes combining IIF and
ETD such that the fixed points of the new schemes are conserved with a stability region comparable to the new
IIF.

We illustrate the construction of the new scheme by deriving a weighted formula from the second order IIF
and the second order ETD. Define two weights w1 and w2 for IIF and ETD, respectively. Then, Eq. (4)
becomes
uðtnþ1Þ ¼ uðtnÞecDt þ w1 ecDt

Z Dt

0

e�csf ðuðtn þ sÞÞ ds

� �
þ w2 ecDt

Z Dt

0

e�csf ðuðtn þ sÞÞ ds

� �
. ð25Þ
Approximating the integral in the w1 term using the second order IIF approach and the integral in the w2 term
using the second order ETD approach, we obtain
unþ1 ¼ ecDtun þ w1

Dt
2

f ðunþ1Þ þ
DtecDt

2
f ðunÞ

� �

þ w2
ð1þ cDtÞecDt � 1� 2cDt

c2Dt
f ðunÞ þ

�ecDt þ 1þ cDt
c2Dt

f ðun�1Þ
� �

. ð26Þ
Denote u* as the fixed point of Eq. (26) (setting un + 1 = un = un� 1 = u*), and �u as the fixed point of the
original PDEs (3) (setting c�u ¼ �f ð�uÞ). Then u� ¼ �u yields
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w2 ¼ 1� cDt
2
� e

cDt þ 1

ecDt � 1
w1. ð27Þ
Because w1 + w2 = 1 + O(Dt2), the scheme (26) clearly has second order accuracy. If the weight w1 is chosen as
a free parameter, we have a class of new schemes based on the choice of w1. When w1 = 0, the scheme becomes
the ETD. No w1 can be chosen to reproduce IIF since the fixed points of IIF are not conserved, but the fixed
points of the new scheme (26) are. Most importantly, in the new scheme there are no terms involving c or
exponentials of c in front of f(un + 1) as is the case with the IIF scheme. To examine the stability of the scheme
(26), we now perform the standard approach using (20) [3,17] because the fixed points of the discrete equation
are the same as the original PDEs. In the stability analysis, c = �q and q > 0 in the definition of w2, and w1

must satisfy
0 6 w1 6
2ð1� e�qDtÞ

qDtð1þ e�qDtÞ � W ðqDtÞ ð28Þ
for any fixed qDt in order to make w1 and w2 both positive. Consequently, we also have 0 6 w2 6 1.
One of the important properties for the function W is that W(a) < 1 for a > 0. This can be proved by show-

ing f(a) ” 2(1 � e�a) � a(1 + e�a) is a decreasing function for a P 0. W(a) < 1 then follows from f(a) < f(0) = 0
for a > 0. In addition, we have W(a)! 1 as a! 0 and W(a)! 0 as a!1. Using those properties, we can
easily show
0 6 w1 þ w2 6 1 ð29Þ

for any qDt > 0 as long as 0 6 w1 6W(qDt).

Now using (20) with un = einh and k = dDt, we obtain
k ¼ eih � e�a

w1

2
½eih þ e�a� þ 1þ aðe�aþ1Þ

2ðe�a�1Þw1

� 	
ð1�aÞe�a�1þ2a

a2 þ 1�a�e�a

a2 e�ih
h i ; ð30Þ
where a = qDt.
In Fig. 3, we plot the stability region for various w1, the weight for the IIF scheme. When w1 = 0, the sta-

bility region is reduced to that of the ETD scheme. As w1 increases, corresponding to a larger weight on IIF,
the stability region becomes larger until it reaches the required upper limit W(qDt), at which the stability
region is the largest among all w1. In fact, it can be shown easily that the stability region for w1 = W(qDt)
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includes the whole left part of the k complex plane similar to the IIF. In Fig. 3, W(2) � 0.8 and W(20) � 0.1.
Similar to IIF and ETD, the size of the stability region is an increasing function of qDt.

Remark. One alternative to designing a numerical scheme with conserved fixed points is to combine the
implicit IF method with the explicit IF method, instead of explicit ETD method as discussed above. Although
the fixed points for either scheme are not conserved, their combination can be. We illustrate this idea by
analyzing a second order version of this weighted IIF and explicit IF scheme.

Introducing two weights, w1 for the IIF and w2 for the explicit IF, we obtain the weighted scheme of the
form:
unþ1 ¼ ecDtun þ w1

Dt
2

f ðunþ1Þ þ
DtecDt

2
f ðunÞ

� �
þ w2

3Dt
2

ecDtf ðunÞ �
Dt
2

e2cDtf ðun�1Þ
� �

. ð31Þ
In order for un + 1 = un = un� 1 = u* in (31) at its steady state equal to the steady state of the original ODEs (3),
one has to require
w2 ¼
1

3� ecDt

2ð1� e�cDtÞ
cDt

� ð1þ e�cDtÞw1

� �
. ð32Þ
The scheme (31) has second order accuracy and its weights satisfy the following relationship:
w1 þ w2 ¼ 1þ 5c2Dt2

12� 6cDt
� c2Dt2

2� cDt
w1 þOðDt3Þ. ð33Þ
Because the term e�cDt in w2 grows exponentially as a function of Dt for c < 0, which is the case for a reaction–
diffusion system, w2 will be extremely sensitive to the choice of Dt. In addition, w1 + w2 grows linearly as the
speed of diffusion, |c|, unlike the weighted IIF-ETD scheme, which has a uniform upper bound. These draw-
backs together make the weighted IIF-IF scheme numerically unstable and impractical to use.
5. Tests on a reaction–diffusion system

In this section, we test the new schemes derived in Sections 2 and 4, and compare them to existing schemes
for a reaction–diffusion system with an exact solution. The one-dimensional reaction–diffusion system of two
unknowns has absorbing boundary conditions at one end and no-flux boundary conditions at the other end:
ut ¼ duxx � auþ v; 0 < x <
p
2
;

vt ¼ dvxx � bv; 0 < x <
p
2
;

uxjx¼0 ¼ 0; vxjx¼0 ¼ 0;

ujx¼p
2
¼ 0; vjx¼p

2
¼ 0.

ð34Þ
The linearity of the reactions in (34) allows one to construct an exact solution:
uðx; tÞ ¼ e�ðaþdÞt þ e�ðbþdÞt
 �
cosðxÞ;

vðx; tÞ ¼ ða� bÞ e�ðbþdÞt cosðxÞ.
ð35Þ
A second order central difference is used for approximation of uxx with a consistent approximation on the no-
flux boundary condition. Let Dx = 0.5p/(N + 1) where N + 2 is the total number of mesh points in [0,p/2], so
the semi-discretization of (34) is in the form of (2) with m = 2. The matrix C is a diagonal matrix in a block
structure with the same diagonal element, ðd=Dx2ÞAN	N , where A is a tri-diagonal matrix with �2 at the diag-
onal entry and 1 at the off-diagonal entry, except for the two-non-zero entries in the first row due to the no-flux
boundary condition.

As a result, the exponential of C in (14) is reduced to the exponential of ðd=Dx2ÞA, which can be computed
using the scaling and squaring algorithm with a Padé approximation [15] as implemented in ‘‘expm’’ of
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Matlab. Since C only depends on Dx and d, this calculation needs to be done once initially at t = 0 for the
entire temporal updating.

First, we test the order of accuracy for the second order IIF (14) for two sets of reaction rates and diffusion
coefficients. For both cases, a = 100 is fixed so the smallest eigenvalue associated with the reaction is �100. In
Table 2, we list the maximum error between the numerical solution and the exact solution, and the order of
accuracy. The spatial resolution, N = 575, is chosen fine enough such that the error is dominated by the time
step. Clearly, the order of accuracy in time for the IIF is two as demonstrated in Table 2. Notice that the larg-
est eigenvalue for the reaction terms is �1 for the first case and �0.01 for the second case. The discretized
diffusion matrix C is the same for both cases with the largest eigenvalue �10�3 and the smallest eigenvalue
�538. Therefore, the semi-discretized system is stiff in both diffusion and reaction, with the stiffness in diffu-
sion slightly stronger than the reaction term.

For comparison, we next implement the second order Runge–Kutta, ETD [9], ETD-Runge–Kutta [9], the
second order additive implicit–explicit Runge–Kutta method (ASIRK-2A) [18,19], the new IIF, the new
weighted IIF-ETD for the system (34). For the ASIRK-2A method, we implement two versions: one with
an implicit treatment on the reaction and an explicit treatment on the diffusion (ASIRK-2A-R), and the other
with an implicit treatment on the diffusion and an explicit treatment on the reaction (ASIRK-2A-D). In Fig. 4,
the maximum error between the exact solution and the numerical solution is plotted as a function of time step
in a log–log scale for those schemes.

As expected, the standard Runge–Kutta method quickly blows up as Dt increases. The size of Dt for this
method is controlled by the stiffness of the diffusion since the diffusion matrix is slightly more stiff than the
reaction in the test problem. Similarly, the ASIRK-2A-R blows up around the same Dt as in this method
the diffusion is still treated using explicit Runge–Kutta although the reaction is treated implicitly.

On the other hand, the ETD scheme is unconditionally stable with respect to the diffusion, but it still blows
up at a slightly larger Dt due to the stiffness of the reaction since the scheme uses the explicit Adams–Bashforth
method for the reaction. Because the Runge–Kutta method has a larger stability region than the Adams–Bash-
Table 2
Errors and order of accuracy for the second order IIF

Dt b = 1, d = 10�3 b = 10�2, d = 1

L1 error Order L1 error Order

4.0 · 10�2 4.85 · 10�3 2.00 3.42 · 10�4 1.96
2.0 · 10�2 1.21 · 10�3 1.99 8.79 · 10�5 1.98
1.0 · 10�2 3.03 · 10�4 2.00 2.23 · 10�5 1.97
5.0 · 10�3 7.58 · 10�5 2.00 5.67 · 10�6 1.98
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Fig. 4. Error as a function of time step for various schemes with a second order of accuracy.
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forth method, the ETD-Runge–Kutta method [9], in which the reaction is treated using the explicit Runge–
Kutta, converges for an even larger range of Dt. Similar to the ETD-Runge–Kutta, the ASIRK-2A-D is
unconditionally stable with respect to the diffusion but the reaction is treated with the explicit Runge–Kutta.
Hence these two methods behave almost identically, as seen in Fig. 4 the markers for these two methods are
overlapping each other.

But for the new IIF method, the error remains second order accurate for Dt up to 0.5 since the method is
unconditionally linearly stable. There exists a large range of Dt at which IIF method converges with reason-
able errors, however the other four methods do not converge.

Finally, we test the weighted IIF-ETD method. In order for w2 to be positive in Eq. (26) and (27), the
weight w1 must be smaller than the bound W(qDt) in (28). For a system like (2), the bound then becomes a
function of the eigenvalue of C. In Table 3, we list the bounds associated with the largest and the smallest
eigenvalues at various Dt for a fixed C resulted from a spatial discretization of the system (34).

Since the bound ranges from 0.007 to 1, w1 needs to be very small to satisfy all bounds. On the other hand,
the stability region for wIIF-ETD becomes very small as w1 decreases (see Fig. 3). Therefore, it is impractical
to require both weights w1 and w2 to be positive. Instead, we use three relatively large w1 values – 0.6, 0.8, 0.95
– to ensure a larger stability region.

As seen in Fig. 4, the case w1 = 0.6 behaves better than the standard ETD, which is the case corresponding
to w1 = 0. Similarly, the case w1 = 0.8 blows up at a larger Dt than the case w1 = 0.6 due to a larger stability.
When w1 increases to 0.95, the weight for IIF is dominant and the wIIF-ETD becomes unconditionally stable.
The maximum error of the solution maintains second order accuracy for very large Dt similar to the IIF
scheme. Clearly, for a large w1, wIIF-ETD has good stability regions similar to IIF, but it requires evaluation
of an inverse of C similar to the ETD scheme. Without special treatment described in [4], this calculation leads
to loss in accuracy of the ETD scheme. As demonstrated in Fig. 4, when the time step is small enough, the
error loses second order accuracy for the schemes containing terms due to the ETD approximation (ETD2,
ETD-RK2, wIIF-ETD). It is not the case for the the methods without such terms (RK2, ASIRK-2A,
IIF2), and those methods remain second order accurate as long as the solution converges. This problem of
ETD can be fixed using contour integral techniques [4] and other methods [5,6], but it demands significant
extra calculations.

Among the five methods discussed above, only the IIF and ASIRK methods have implicit treatment on
parts of the equations, hence they both require solving linear or nonlinear systems. In the IIF, a nonlinear
system with m unknowns needs to be solved at N spatial points, whereas in the ASIRK-2A-R, a two stage
method, two nonlinear systems each with m unknowns need to be solved at N spatial points. In the
ASIRK-2A-D, two linear systems each with m Æ N unknowns, arising from the implicit treatment of the dif-
fusion, need to be solved. The computational cost per time step for the ASIRK-2A-R or the IIF method
depends on the choice of the nonlinear solver for the reaction whereas for the ASIRK-2A-D it depends on
the choice of spatial discretization on the diffusion in addition to the choice of the linear solver. For the
one-dimensional spatial problem in this paper, a second order central difference discretization on the diffusion
in the ASIRK-2A-D leads to a tri-diagonal linear system, and it needs only O(N) operations when Thomas
algorithm is used to solve this system.
Table 3
The bound in Eq. (28) for the smallest and largest eigenvalues associated with the diffusion matrix at various Dt

Dt W(qDt)

q = 538 q = 10�3

5.0 · 10�1 0.007 0.99
1.0 · 10�1 0.04 0.99
4.0 · 10�2 0.09 0.99
2.0 · 10�2 0.18 0.99
1.0 · 10�2 0.36 0.99
5.0 · 10�3 0.64 1.00
2.5 · 10�3 0.87 1.00
1.25 · 10�3 0.96 1.00



Table 4
CPU time (seconds) per time step for all the methods in Fig. 4 using different N

N = 577 N = 289 N = 145

IIF2 1.47 · 10�2 2.77 · 10�3 6.9 · 10�4

ETD-RK2 2.22 · 10�2 5.32 · 10�3 1.26 · 10�3

RK2 5.9 · 10�4 2.8 · 10�4 1.5 · 10�4

ASIRK-2A-R 6.7 · 10�4 3.2 · 10�4 1.6 · 10�4

ASIRK-2A-D 1.1 · 10�3 4.8 · 10�4 2.4 · 10�4

ETD2 3.81 · 10�2 9.92 · 10�3 2.25 · 10�3

w1 = 0.6 3.87 · 10�2 9.96 · 10�3 2.26 · 10�3

w1 = 0.8 3.81 · 10�2 9.94 · 10�3 2.27 · 10�3

w1 = 0.95 3.85 · 10�2 9.95 · 10�3 2.26 · 10�3
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Now we examine the CPU time per time step for all the five methods in Fig. 4 when they are applied to the
test problem (see Table 4). Since the reaction terms are linear in the test problem, the computational cost for
each method mainly comes from the treatment of the explicit terms and evaluations of the reaction terms. For
IF, IIF and ETD methods, the direct implementation of the explicit terms, independent of the choice of the
spatial discretization of the diffusion, involves matrix–vector multiplications of O(N2) operations. With this
calculation dominating the cost, all IF or ETD based methods at a fixed time step tends to be more expensive
at a large N than the Runge–Kutta method and both ASIRK methods. This is demonstrated in Table 4 as N is
halved. One interesting observation is that IIF method actually is about twice as fast as the two ETD methods,
and it is more than three times faster than the wIIF-ETD. This property is not due to the particular choice of
our test problem since IIF always requires fewer than half of the vector–matrix multiplications than the ETD
methods or the wIIF-ETD as we see in Eq. (26). A more detailed comparison for the computational cost
among ETD or IF based methods will be discussed in the next section for equations with nonlinear reaction
terms.

In comparison with wIIF-ETD, IIF is more efficient, and it shows better overall performance even though
wIIF-ETD may have slightly smaller error for large w1 (such as the case of w1 = 0.95). The simple structure of
the IIF and its property of unconditional stability with respect to the reactions make this method robust and
convenient for implementation.
6. Numerical simulations of a morphogen system

We now apply the second order implicit integration factor method (IIF2) to a system of reaction–diffusion
equations arising from a biological application. One of the central problems in developmental biology is how
uniform fields of cells are transformed into tissues with highly specialized cell types at distinct anatomical posi-
tions. In this process, diffusible morphogens produced by certain cells pattern the surrounding tissue through
interactions with receptor proteins on the cell membrane. Recently, mathematical modeling, analysis and com-
putations have facilitated the understanding and identification of the underlining biological mechanisms in
morphogen systems [10,11,20,13,12]. In this paper, we present a simple system of reaction–diffusion equations
to model spatial regulation of Wingless (Wg) morphogen distribution by Dally-like protein (Dlp) in an imag-
inal disc of Drosophila.

Motivated by a recent experimental study [21] in which Dlp was found to cooperate with Notum to limit Wg
formation, we include an enzymatic modification of Dlp due to Notum [22] into a ligand–receptor model [10]
similar to the system in [12]. To understand the role of the Dally-like protein Dlp on formation of the mor-
phogen gradient, we first examine a simple system to study how a diffusible non-signaling protein, such as
the enzymatically modified Dlp, affects the morphogen gradient.

Let [L], [LR], [N*] and [LN*] denote the concentration of Wg, Wg-Dfz2 (the ligand–receptor complex), the
enzymatic modification of Dlp, and the complex produced by the interaction of Wg and the enzymatic mod-
ification of Dlp, respectively. The reactions among the proteins are illustrated in Fig. 5. �V L and �V N represent
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Fig. 5. A reaction diagram for the Wg signal system.
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the production rate of L and N* respectively; {Kon,Jon}, {Koff,Joff}, {Kdeg,Jdeg} denote binding rates, off rates,
and degradation rates.

[L], [N*] and [LN*] are assumed to have the same diffusion coefficient: D; and the total amount receptor,
Dfz2, is assumed to be fixed (see [12]), with a concentration R0, such that the free receptor at any given time is
R0 � [LR]. The mid-point of the Wg production region, the dorsal–ventral boundary, is denoted as ��d [10,23]
while the edge of the imaginal wing disc in the dorsal–ventral direction is denoted as Xmax. The governing
equations for the four quantities in ð��d;X maxÞ then have the following form:
o½L�
oT
¼ D

o
2½L�
oX 2

� Kon½L� � ðR0 � ½LR�Þ þ Koff ½LR� � J on½L� � ½N �� þ J off ½LN �� þ �V LðX Þ; ð36Þ

o½LR�
oT
¼ Kon½L� � ðR0 � ½LR�Þ � ðKoff þ KdegÞ½LR�; ð37Þ

o½LN ��
oT

¼ D
o2½LN ��

oX 2
þ J on½L� � ½N �� � ðJ off þ J degÞ½LN ��; ð38Þ

o½N ��
oT
¼ D

o
2½N ��
oX 2

� J on½L� � ½N �� þ J off ½LN �� þ �V N ðX Þ. ð39Þ
By symmetry of the Wg production region, we have
o½L�
oX
ðT ;��dÞ ¼ 0;

o½LN ��
oX

ðT ;��dÞ ¼ 0;
o½N ��
oX
ðT ;��dÞ ¼ 0.
Far away from the production region, we assume all the diffusible proteins are absorbed:
LðT ;X maxÞ ¼ 0; ½LN ��ðT ;X maxÞ ¼ 0; ½N ��ðT ;X maxÞ ¼ 0.
In the Wg production region ½��d; 0�,

�V LðX Þ ¼ vL;
where vL is a constant, and �V LðX Þ ¼ 0 for X 2 (0,Xmax]. Because Dlp is produced everywhere, �V N ðX Þ ¼ vN for
X 2 ð��d;X maxÞ with vN as a constant.

The system (36)–(39) can be non-dimensionalized with a change of variables [11,12]:
x ¼ X
X max

; t ¼ D � T
X 2

max

;

fhL; hLNg ¼
X 2

maxR0

D
� fKon; J ong;

ffL; fLN ; gL; gLNg ¼
X 2

max

D
� fKoff ; J off ;Kdeg; J degg;

fV LðxÞ; V N ðxÞg ¼
X 2

max

R0D
� f�V LðX Þ; �V N ðX Þg;

fA;B;C;Dg ¼ 1

R0

� f½L�; ½LR�; ½LN ��; ½N ��g.
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In terms of the normalized quantities, Eqs. (36)–(39) become
Fig. 6.
Xmax =
Jon = 2
oA
ot
¼ o2A

ox2
� hLAð1� BÞ þ fLB� hLN ADþ fLN C þ V LðxÞ; ð40Þ

oB
ot
¼ hLAð1� BÞ � ðfL þ gLÞB; ð41Þ

oC
ot
¼ o2C

ox2
þ hLN AD� ðfLN þ gLN ÞC; ð42Þ

oD
ot
¼ o2D

ox2
� hLN ADþ fLN C þ V N ðxÞ; ð43Þ
with the corresponding non-dimensionalized boundary conditions.
We use the second order central difference to approximate the diffusion with evenly spaced N + 1 grid

points, then apply the IIF2 to (36)–(39) using the same implementation in Section 6. Fig. 6 depicts the solu-
tions of the morphogen system at every 20 min with an initial condition [L] = [LR] = [LN*] = [N*] = 0. The
system, as expected, reaches a steady state with a biologically observed gradient [LR] [21,22].

In Table 5, we show the accuracy of our implementation by estimating the order of the temporal discret-
ization with a fixed spatial resolution, N = 128. Since there are no analytical solutions for this system, the
order in column 3 of Table 5 is estimated through the maximal difference, defined as ‘‘error’’, between the solu-
tions at T = 30 min (see column 2 of Table 5) using two different Dt (see column 1 of Table 5). Clearly, the
implementation of the IIF2 is second order accurate as seen in column 3 of Table 5.

Next, we study the performance of our IIF implementation, and compare it with two existing second order
methods: the standard ETD method (ETD2) and the ETD-Runge–Kutta method (ETD-RK2). The perfor-
mance of each method is measured by the CPU time each method takes to run up to a stage such that the
relative difference between the solution and a pre-calculated steady state is within 10�3. In Table 6, we show
the performance of the cases in Fig. 6 for three methods using two different spatial resolutions and four
different temporal resolutions.

In this case, the largest and the smallest eigenvalues of the 4 · 4 Jacobian matrix corresponding to the reac-
tion in (40)–(43) at its steady state are �0.15 and �6500, respectively. The largest and the smallest eigenvalues
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Table 5
The error and order of accuracy for the second order IIF

Dt Error Order

1.0 · 10�2 4.86 · 10�6 1.78
5.0 · 10�3 1.41 · 10�6 1.97
1.0 · 10�3 5.96 · 10�8 1.99
5.0 · 10�4 1.49 · 10�8 –
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for the diffusion matrix C at the steady state are �2.2 and �1.4 · 104, respectively, for N = 64; and �880 and
�5.7 · 106, respectively, for N = 128. Because all three methods are unconditionally stable with respect to the
diffusion, the stability constraint on the time step comes solely from the stiff nonlinear reactions.

Since the ETD2 method has a small stability region, it blows up for the two large Dt values, similar to the
test problem in Section 5. ETD-RK2 has a better stability region but it still blows up for the largest Dt in Table
6. Only IIF2 converges for all Dt and N since it is unconditionally stable with respect to reaction. Among all
the cases for which all methods converge, IIF2 takes about one half of the CPU time of the other two methods.
This indicates that the computational time associated with solving the m · m nonlinear system in IIF is rela-
tively small compared to the other cost. Indeed, with a fixed point iterative procedure for solving this system,
only about five iterations are needed to find a solution within a 10�10 accuracy. Most importantly, the order of
calculations associated with such an iteration procedure is O(N), whereas the rest of the calculation is O(N2)
for all three methods. This is confirmed by the fact that the CPU time for all three methods increases by a
factor of four as N doubled. The order of N2 computational time comes from matrix–vector multiplications
with dimension m Æ N; In particular, both ETD2 and ETD-RK2 require more calculations of this kind than
IIF2.

Finally, we study how loss of Dlp locally affects the Wg signal. As shown in the experiment [22], mutation of
Dlp can modestly reduce the activation of Wg signaling where Wg levels are low. To mimic the genetic muta-
tion of Dlp in [22], we set vN(x) to zero in a part of the domain (75 lm, 125 lm), and use the case in Fig. 6 as
the wild type, that is, all other biological parameters are chosen to be the same as those in Fig. 6. Here, the Wg
signal is modeled as the product of the concentration of [LR] and a co-receptor term due to presence of Dlp

[24]:
Table
CPU t

Dt

5.0 · 1
2.0 · 1
1.0 · 1
5.0 · 1

‘‘NC’’
½Signal� ¼ ½LR� 1þ c1ð½N �� þ ½LN ��Þp

c2 þ ð½N �� þ ½LN ��Þp
� �

. ð44Þ
In Fig. 7(a), the Wg signal, modeled as described in (44), is plotted at 3.2 h. The solution at this time, cal-
culated using N = 128 and Dt = 10�2, with c1 = 1000, c2 = 0.00001, p = 4, is within the steady-state error of
10�3. The two peaks of the signal near the boundary of the clone region, (75 lm, 125 lm), have been observed
in the experiments (see Fig. 6 in [22]). In addition, as demonstrated in Fig. 7 (b), the two spatial signal peaks
increase quickly in time and become much stronger than their neighbors, while the signal at the middle of the
clone, which is weaker than the non-clone regions, grows very slowly. This suggests that enzymatic modifica-
tion of Dlp through Notum can affect the Wg signals and ultimately, patterning activity. In this paper, the
enzymatic modification is only modeled through a diffusible non-receptor protein, N*. A more comprehensive
model and a systematic study on the roles of Dlp and Notum are currently under study, and the results will be
presented in a separate paper.
6
ime (minutes) for three different methods

ETD2 ETD-RK2 IIF2

N = 64 N = 128 N = 64 N = 128 N = 64 N = 128

0�2 NC NC NC NC 1.1 4.3
0�2 NC NC 5.1 21.9 2.4 8.7
0�2 10 41 10.3 43.8 4.8 17.8
0�3 20 81.5 20.7 87.5 9.6 35.6

denotes that the method does not converge.
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7. Discussions and conclusions

When temporal schemes are applied to evolution equations of the form (2), the size of the time step is
restricted by (a) the linear part C, which usually arises from the approximation of diffusions or the term of
high-order derivatives, and (b) stiff nonlinear reactions in F. The restriction (a) can be removed if the linear
part is treated exactly using methods such as integration factor or exponential time differencing. Those meth-
ods are efficient for diffusion dominated problem since the treatment of the nonlinear reactions in those meth-
ods is still explicit. Although, there have been attempts to treat the nonlinear reactions implicitly using
implicit–explicit Runge–Kutta schemes [18,19,25], the diffusion term in those methods is still treated explicitly,
hence restriction (a) remains unchanged.

In this paper, we have presented a class of methods which removes both restrictions in the setting of linear
stability theory. Most importantly, in the new methods, the nonlinear system due to the implicit treatment of
the nonlinear reaction has the same size as the number of original differential equations. This feature together
with its stability property makes this type of methods particularly efficient. The new methods would be more
advantageous for systems in higher spatial dimensions or systems involving high order derivatives than the
studied one-dimensional system with diffusions in the paper. For those systems, a fully implicit method would
require solving very large nonlinear systems depending on two- or three-dimensional spatial discretizations.
On the other hand, severe time step constraints due to any stiff nonlinear reactions still limit the efficiency
of any explicit ETD (or IF) methods.
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