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abstract

This paper directly links the risk premium on an asset to two characteristics of its underlying cash

flow: cash flow covariance with aggregate consumption; and cash flow duration, which measures

the temporal pattern of the cash flow. Their impact on the cross-sectional variation of risk premia

can be largely captured by a two-factor cash flow model. While cash flow covariance is of first-

order importance in explaining the cross-sectional variation of risk premia, cash flow duration

still provides additional explanatory power through a second-order interaction term. Cash flow

duration is particularly important in explaining the value premium given as value and growth

stocks have significantly different durations. Empirically, I measure both cash flow characteristics

using only consumption and accounting data. I show that the two-factor cash flow model is able

to explain 82% of the cross-sectional variation in returns on size or book-to-market sorted stock

portfolios.
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I. Introduction

A key insight in financial economics is that differences in the expected return across assets are

determined by the differences in asset’s exposure to systematic risk. For example, in the standard

consumption-based asset pricing model (CCAPM, c.f. Rubinstein 1976, Lucas 1978 and Breeden

1979), the expected return on an asset is determined by its consumption beta which measures the

comovement between asset return and aggregate consumption. If the asset return comoves very

little with the aggregate consumption, thus providing insurance to the investor against consumption

fluctuation, then investor is willing to accept a lower expected return to hold the asset. In typical

rational expectation asset pricing models, prices (and returns) are set by expectations about future

cash flows. It is therefore worthwhile to look at asset pricing model representations that relate cash

flow characteristics to risk premium since they seem integral to the efficacy of rational expectation

asset pricing models .

An asset’s cash flow has at least two important characteristics. The first characteristic is

the degree of its comovement with consumption, which I label as cash flow covariance. In the

consumption-based models of Abel (1999) and Bansal and Yaron (2004), degrees of such comove-

ment ultimately determine the expected return on the stock. The empirical success of such cash

flow comovement measure in explaining the cross-sectional variation in expected return has been

demonstrated by Bansal, Dittmar and Lundblad (2005), who show that a cash flow beta, which

measures such comovement, explains 62% of the cross-sectional variation in risk premia across var-

ious assets. Another important cash flow characteristic is the temporal pattern of cash flow. I label

this characteristic as cash flow duration.1 Lettau and Wachter (2005) analyze an economy where

different assets have the same cash flow covariance and only differ in their cash flow durations.

In this economy, high cash flow duration leads to lower expected return.2 I show theoretically

and empirically that both characteristics are needed to explain the cross-sectional variation in risk

premia. Although cash flow covariance has a first-order impact on the cross-sectional variation

of risk premia,3 the cash flow duration provides additional explanatory power through a second-

order interaction term. Its impact on the risk premium depends on the sign and magnitude of

1The definition of cash flow duration in this paper is different from the definition of duration in the fixed-income
literature. However, the two definitions are likely to be monotonically related to each other as discussed in Appendix
A3.3.

2The role of cash flow duration has been highlighted in the literature. Early literature such as Jagannathan and
Viswanathan (1988) and Connor and Korajczyk (1989) demonstrate that the replication of a stock’s cash flows in a
dynamic world requires bonds; therefore, bond factors contribute to the correct pricing of equities. Cornell, using a
case study (1999) and regression analysis (2000), reemphasizes the importance of equity duration risk in determining
firm’s cost of capital. More recently, Dechow, Sloan and Soliman (2004) analyze the equity duration risk empirically
in a cross-section and show that stocks with higher equity duration risk earn lower returns.

3The recent paper of Santos ad Veronesi (2005) also shows that the cross-sectional differences in fundamental
cash flow risk (covariance of individual asset’s cash flow with the aggregate economy) generate the value premium
(stocks with high book-to-market ratios earn higher average returns).
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the cash flow covariance. In explaining the return difference of two assets with very different cash

flow durations (such as value and growth stock portfolios), it is therefore important to account for

cash flow duration. Empirically, I show that a two-factor cash flow model incorporating both cash

flow characteristics is able to explain 82% of the cross-sectional variation in risk premia in 20 size

or book-to-market sorted stock portfolios. In addition, the two-factor cash flow model compares

favorably against common benchmark models.

I capture both cash flow characteristics, by assuming that an asset’s cash flow as a share of

aggregate consumption is mean-reverting, and can thus be modeled as an AR(1) process. Once

modeled as such, I can then define the cash flow covariance as the contemporaneous covariance

between (1) innovations in cash flow share and (2) innovations in aggregate consumption growth,

a covariance assumed constant through time. I define the cash flow duration as the discrepancy

between the current cash flow share and its steady state value. These two characteristics are

denoted as Cov and Dur, respectively. Arguably, the AR(1) assumption about cash flow share

may not extend to individual stock and certain sector portfolios. However, I show that it is a

reasonable assumption for the cash flows in buy-and-hold stock portfolios constructed based on

size or book-to-market ratio.4 I then focus on deriving and testing the implication of such cash

flow process on the cross-sectional variation in expected returns. Under reasonable assumptions

about investors’ preferences and the stochastic process of aggregate consumption growth, I show

that the price and expected (excess) return of the cash flow stream can be expressed using Cov

and Dur. A large portion of the cross-sectional variation in average excess return can then be

explained by the following two-factor cash flow model:

E
£
Ri
t+1 −Rft

¤
= γ0 + γ1Cov

i + γ2Cov
i ×Durit, (1)

γ0, γ1 > 0 and γ2 < 0.

The above cash flow model works fairly intuitively. In a multi-period world, an asset is a

portfolio of cash flow claims with different maturities.5 Its expected excess return is therefore the

value-weighted average of the expected excess returns of all cash flow claims. Consider two cash

flow claims with the same maturity: the one with higher Cov should earn higher return, much

like the way a high beta stock should earn higher return. Hence, the positive γ1. The impact

of duration, on the other hand, is subtler. Recall that the cash flow share is mean-reverting by

assumption, and so the impact of a high Cov diminishes with maturity. As maturity approaches

infinity, the expected return of any cash flow claim converges to the expected return of a zero-Cov

4Similar AR(1) assumption about cash flow share has been used for industry portfolios as in Menzly, Santos and
Veronesi (2004) and Santos and Veronesi (2004).

5 In the case of a stock, these cash flow claims are also denoted as “equity strips”.
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cash flow claim. As a result, if Cov is positive, then the expected excess return on the cash flow

claim decreases with maturity. When this happens, high Dur assets will have lower returns since a

long-maturity cash flow claim with lower return receives higher weight. The reverse logic holds for

negative Cov. This explains the negative γ2 and the fact that the second factor is an interaction

term between Cov and Dur.

I estimate both Cov and Dur using only consumption data and accounting data on cash flows.

This estimation method differs from those of previous studies in two important ways.6 First, in

order to examine the cash flow duration of a portfolio, I need to keep track of its cash flow over

time without changing its composition. This consideration introduces an extra dimension to my

cash flow data: whenever I form a portfolio, I “buy and hold” it for 12 years. Second, cash flows are

not measured using dividend data; rather, following Vuolteenaho (2002a and 2002b), I make use of

the clean-surplus accounting identity to work with earnings data. The use of earning to measure

cash flow is better for firms who do not pay dividends or maintain a stable dividend payout ratio

in the near future.7

I find that, empirically, cash flow covariance and duration are likely to be inversely related at

least for size or book-to-market sorted portfolios. The inverse relation between cash flow covariance

and duration explains why high-duration stock may earn significant lower expected return than

low-duration stock as documented in Dechow, Sloan and Soliman (2004). Stocks with high cash

flow duration may earn lower expected return simply because they happen to have, at the same

time, low cash flow covariance. To better understand the relative importance of the two cash flow

characteristics in determining the expected return of an asset, I need to construct portfolios where

the two characteristics are “orthogonalized.” I find that stock portfolios with similar cash flow

durations but different book-to-market ratios still earn different returns and the return difference

can be explained by the difference in their cash flow covariances. This is consistent the two-factor

cash flow model (1) where cash flow covariance has a first-order impact on the cross-sectional

variation of risk premia and shows that cash flow duration alone does not explain value premium.

Other related literature

The examination of the “cash flow risk” of an asset has been an active research area recently.

The related papers fall into two groups, depending on their focus. Papers in the first group focus on

the time series implications of the “cash flow risk.” For example, Bansal and Yaron (2004) consider

a model in which: (1) investors care about long-run risk, (2) there is a persistent and predictable

component in consumption growth, and (3) the economy-wide volatility is time-varying. They

6Examples of those studies are: Bansal, Dittmar and Lundblad (2002), Hansen, Heaton and Li (2005), Menzly,
Santos and Veronesi (2004) and Santos and Veronesi (2004).

7The empirical difficulty of working with dividend data is also highlighted in a review article by Campbell (2000).
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show that such a model can explain many time-series properties of the financial markets. Menzly,

Santos and Veronesi (2004) analyze the predictability of dividend growth and asset return in an

economy, in which assets have mean-reverting cash flows and agents have log utility with external

habit.

Papers in the second group focus on the cross-sectional implications of the “cash flow risk.” For

example, Brennan and Xia (2003) analyze in a theoretical framework an ICAPM where the two

state variables are real interest rate and Sharpe ratio, and study the impact of different sources of

risk on the pricing of an equity strip as its maturity varies. Santos and Veronesi (2004) decompose

the CAPM beta into two parts: a discount beta and a cash-flow beta and examine which one

dominates using cross-section return data. Santos and Veronesi (2005) extends Menzly, Santos

and Veronesi (2004) to explain simultaneously the time series properties of the market portfolio

and the value premium in the cross-section. Hansen, Heaton and Li (2005) analyze theoretically

the risk-return trade-off between cash flow risk and long run return of a security. Cohen, Polk and

Vuolteenaho (2005) empirically analyze a cash-flow-based CAPM beta computed as the covariance

between portfolio and market cash flow and show it explains the difference in price levels. Finally,

Bansal, Dittmar and Lundblad (2005) show that a cash flow beta measure alone explains 62% of

the cross-sectional variation in risk premia across various assets. With the exception of Bansal,

Dittmar and Lundblad (2005), few papers have empirically tested the cross-sectional implications

of the “cash flow risk” in relation to aggregate consumption. This paper makes a contribution

to this line of research by showing, both theoretically and empirically, that the temporal pattern

of cash flow as measured by Dur has additional explanatory power for the cross-section of stock

returns.

Most empirical studies of consumption risk analyze the consumption beta of an asset, which

measures the covariance between the asset’s return and consumption growth (see early work by

Breeden, Gibbons and Litzenberger, 1989 and Hansen and Singleton, 1983 and more recent ad-

vancements by Daniel and Marshall, 2004, Parker and Julliard, 2005 and Jagannathan and Wang,

2005, among others). In this paper, I also draw the connection between the cash flow characteristics

and the usual consumption beta (see Appendix 2).

The remainder of the paper will be organized as follows: Section II describes a consumption-

based asset pricing framework and a mean-reverting cash flow share structure; Section III discusses

in detail the cross-sectional implication and the two-factor cash flow model; Section IV contains the

results of empirical analysis; Section V briefly concludes the findings; Appendix 1 contains detailed

proofs; Appendix 2 relates cash flow characteristics to return-based consumption risk measures;

Appendix 3 works out the cross-sectional implication of the mean-reverting cash flow share in a

specific economy and shows the two-factor cash flow model to still perform well even with the
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presence of time-varying volatility; Appendix 4 discusses various econometric issues encountered

in the empirical analysis.

II. Model Setup

In this section, I discuss the assumptions on the aggregate consumption dynamics, the stochastic

discount factor in the economy and the asset’s cash flow structure. These assumptions will also

determine the time-series proprieties the financial market and the term structure of interest rate in

this economy. However, these are not the focuses of this paper. Instead, I will focus on their impli-

cations the cross-sectional dispersion of stock (excess) returns. In addition, I assume conditional

homoscedasticity and joint lognormality.8 I do not model time-varying volatility, even though that

has been helpful in justifying many time-series properties of asset market (for instance in Bansal

and Yaron, 2004), and could be straightforwardly incorporated into this setup (demonstrated in

Appendix 3.) For our purposes of explaining cross-sectional variation in average expected (ex-

cess) return, the impact of time-varying volatility is relatively small, as shown by calibration and

simulation results in Appendix 3.

A. Aggregate consumption

Assumption 1: Following Hansen, Heaton and Li (2005): log consumption growth is a second-
order stationary process, and therefore under the Wold Theorem, it has an infinite MA represen-

tation:

∆ct+1 = µc + φc(L)wt+1,

where wt is iid standard normal random vector and φc(L) is the usual lag operator:

φc(z) =
∞X
j=0

φcjz
j ,

where φcj is a row vector and

∞X
j=0

¯̄
φcj
¯̄2
<∞.

Here, I bypass the underlying economic model, focusing only on the resulting statistical prop-

erties of equilibrium aggregate consumption process. The process nests many familiar structures

8 I use notations consistent with previous research papers. Lower case is used to denote the log of the original
variables.
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that have been imposed on the aggregate consumption growth. For instance:

• AR(1) in Mehra and Prescott (1985)

∆ct+1 = µc + ρ(∆ct − µc) + wt+1

⇔ φc(L) = (1− ρL)−1.

• ARMA(1,1) in Bansal and Yaron (2002)

∆ct+1 = µc + ρ1(∆ct − µc) + wt+1 − ρ2wt

⇔ φc(L) = (1− ρ1L)
−1(1− ρ2L).

• VAR in Bansal and Yaron (2004)

∆ct+1 = µc + xt + σηt+1,

xt+1 = ρxt + ϕeσet+1,

et+1,ηt+1 ∼ N.i.i.d.(0, 1)

⇔
φc(L) = e10(I −AL)−1B and wt+1 = [ηt+1 et+1]

0,

where e1 = [1 0]0, A =

"
0 1

0 ρ

#
, B =

"
σ 0

0 ϕeσ

#
.

B. Stochastic discount factor

Assumption 2: Log stochastic discount factor (SDF) can be written (or approximated) as:

mt+1 = µm + φm(L)wt+1.

Many preference specifications satisfy this assumption. For instance:9

9γ and ψ denote coefficient of risk aversion and elasticity of intertemporal substitution respectively; δ is the time
discount factor.
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• Power Utility :
µm = log δ − γµc and φm(L) = −γφc(L).

• Abel’s Habit Formation Utility (1990 and 1999):

µm = log δ + [κ(γ − 1)− γ]µc and φm(L) = −γφc(L) + κ(γ − 1)φc(L)L.

• Epstein and Zin Recursive Utility (1989 and 1991):

Lemma 1: Using log-linear approximation on the budget equation, the log stochastic discount
factor under the Epstein and Zin (1989, 1991) recursive utility can be approximated as:

mt+1 = µm + φm(L)wt+1.

If the elasticity of intertemporal substitution ψ = 1, the approximation is exact as shown in

Hansen, Heaton and Li (2005) and

mt+1,t = log δ − φc(L)wt+1 − µc + (1− γ)φc(δ)wt+1 −
(1− γ)2φc(δ) · φc(δ)

2
,

where (·) represents inner product. This means:

µm = log δ − µc −
(1− γ)2φc(δ) · φc(δ)

2
and φm(L) = −φc(L) + (1− γ)φc(δ).

Proof: See Appendix 1.

Elements in wt+1 are variables that determine the contemporaneous innovation in consumption

growth since ∆ct+1 − Et[∆ct+1] = φc(0)wt+1. In a consumption-based asset pricing framework,

they are likely to be priced. This is reflected in the fact that the SDF is driven by the same

variables as in wt+1. Therefore, these variables can also be considered as the factors in a factor

pricing framework and the factor prices are φm(0).10 Appendix 2 provides a detailed discussion.

C. Cash flow structure of an asset

Let Si
t denote the share of asset i’s cash flow relative to aggregate consumption at time t, or:

Si
t =

Di
t

Ct
.

10See Campbell (1993) for a similar discussion.

7



Take the log to get:

dit = sit + ct.

Assumption 3: Log cash flow share follows an AR(1) process:

sit+1 = (1− φ)si + φsit + λi {∆ct+1 −Et [∆ct+1]}+ εit+1

= (1− φ)si + φsit + λiφc(0)wt+1 + εit+1, (2)

where ε is independent of w and t.

Cash flow and consumption are cointegrated with the cointegration vector [1,−1]. In addition,
the cash flow share is stationary and mean-reverting as captured by an AR(1) process. Such

specification ensures a stationary steady state where no single asset dominates.11 λi is clearly a

measure of cash flow covariance. For an asset with larger λ, its cash flow varies more with the

aggregate consumption innovation, resulting in more cash flow covariance. Defining zit = si − sit

similar to Santos and Veronesi (2004), zit is a cash flow “duration” measure. An asset with a

positive zit reaches its long-run cash flow share from below. In other words, it pays out more (as

a share of aggregate consumption) in the future. zit is purely cash-flow based, which is different

from the usual fix-income definition of duration risk. The latter is price-based, meaning that it

measures the change in price as a result of change in discount rate. However, the two duration

measures are related as they both capture the temporal pattern of cash flows. In fact, Appendix

3 and Figure 1 show numerically that zit is monotonically related to the Macaulay duration in

the fixed-income literature in an economy similar to that in Bansal and Yaron (2004). The mean

reverting speed φ is also indirectly related to cash flow duration. Menzly, Santos and Veronesi

(2004) allows φ to be asset specific in a similar set-up. Theoretically, my model can incorporate

this feature by simply attaching an i superscript to φ without affecting later results. However, I

assume φ constant across firms for three reasons. First, the empirical estimates of φ do not vary

significantly for most of the 20 industrial portfolios in Menzly, Santos and Veronesi (2004). Second,

cross-sectional variation in φ, as opposed to λ and z, contribute less to cross-sectional variation in

expected excess returns, as shown by the calibration and simulation result in Appendix 3. Finally,

the assumption of a constant φ makes the model parsimonious and easily identifiable empirically.

φ will not be accurately estimated empirically given the short sampling period and the need to

re-form portfolios every year. Similar assumptions are also made in Dechow, Sloan and Soliman

11 I do not assume that Sit sum up to one across all stocks. In a similar manner to Menzly, Santos and Veronesi
(2004), I assume instead that the sum of Sit is strictly smaller than 1. The difference from 1 accounts for incomes
from other sources, for example, labor income.
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(2004) and Vuolteenaho (2002b), among others.

Using zit, I can rewrite change in cash flow share in (2) as:

∆sit+1 = (1− φ)zit + λiφc(0)wt+1 + εit+1,

zit+1 = φzit − λiφc(0)wt+1 − εit+1.

The cash flow specification is parsimonious in the sense that the two cash flow risks of interest

are each captured by one parameter of the model. The specification can be generalized, for

instance, to incorporate the cointegration model of Bansal, Dittmar and Lundblad (2002) and

Hansen, Heaton and Li (2004). Appendix 2 discusses a very general cash flow structure and

derives an approximate analytical expression of risk premium by loglinearizing the stock return.

This approach is problematic, nevertheless, because it cannot isolate the impact of cash flow

duration. For these reasons, I focus on the simple specification for both analytical tractability

and easy economic interpretation. This also serves as a starting point for future extensions that

incorporate more realistic cash flow dynamics.

III. Two-factor Cash Flow Model

In this section, I derive the exact expression for expected excess stock return under assumption 1

to 3 and use it to motivate the two-factor cash-flow model.

Similar to the continuous-time solution in Brennan, Wang and Xia (2004) and Brennan and

Xia (2003) and the discrete-time solution in Lettau and Wachter (2004), I examine the individual

cash flow of a stock. Just like a bond, a stock can be considered as a portfolio of claims to future

cash flow payments. As mentioned earlier, these cash flow claims are also known as equity strips.

Denote P i
n,t as the time t price of an equity strip that pays a cash flow Di

t+n at time t+ n. I first

compute the price and one-period expected (excess) return for each equity strip. The expected

(excess) return of the stock, then, is just the value-weighted average of expected (excess) returns

of all equity strips. The results are summarized in the following proposition:

Proposition 1: Under Assumption 1-3, the price-to-cash-flow ratio of equity strip is:

P i
n,t

Di
t

= exp
£
Ai(n) +B(n)zit + Cn(L)wt

¤
,

where

9



B(n) = 1− φn,

and Ai(n) and Cn(L) are defined in the Appendix 1. The log expected excess return for each

equity strip is:

logEt

£
Ri
n,t+1/Rft

¤
= RP i

1(n) +RP2(n),

RP i
1(n) = −(1 + φn−1λi)φc(0) · φm(0),

RP2(n) = −Cn−1(0) · φm(0).

Proof: See Appendix 1.

The risk premium of each equity strip consists of two components. The first component RP i
1(n)

comes from the contemporaneous covariance between cash flow growth and the SDF. It depends

on λi and varies across stocks. Intuitively, the equity strip with higher cash flow covariance,

as measured by λi, has higher RP i
1(n). In addition, RP

i
1(n) decreases with n. For an equity

strip with infinite maturity (n = ∞), RP i
1 = φc(0) · φm(0) as though the cash flow share has no

contemporaneous covariance with consumption growth. This is due to the mean-reversion in cash

flow share, so the impact of cash flow covariance diminishes with maturity. As a result, for λi > 0,

RP i
1(n) decreases in n; for λi < 0, RP i

1(n) increases in n. Therefore the relationship between

RP i
1(n) and n depends on the cash flow covariance λi, consistent with the model in Brennan and

Xia (2003). In contrast, the risk premium of the equity strip is always decreases in its maturity

in the model of Lettau and Wachter (2004) as they do not allow the cash flow covariance to vary

across stocks.

The second component RP2(n) comes from the predictability of consumption growth. If a

variable is capable of forecasting aggregate consumption and investors care about long run risk

(ex. if they have Epstein and Zin type of preference with elasticity of intertemporal substitution

ψ > 1), then that variable’s innovation will be correlated with the SDF and therefore priced. It is

also important to note that RP2(n) is constant across stocks, partly accounting for the reduced role

of expected consumption growth in explaining cross-sectional variation in expected stock returns.

A. Cash flow to price ratio

Stocks with higher fundamental value (measured by earnings, dividends or book value) to price

ratios have higher expected returns than those with lower fundamental value to price ratios.12 The
12See Lakonishok, Shleifer and Vishny (1994) and Lettau and Wachter (2004) for example.
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difference is usually called the value spread.

Historically, cash flow to price ratio is considered related to cash flow duration. This reasoning

can be easily illustrated in the context of Gordon Growth Model:

P i
t =

Di
t+1

r − git
,

where git is the expected dividend growth rate at time t and r is a constant discount rate.

Compute the fix-income definition of modified duration (MDi
t):

MDi
t = −

∂P i
t /P

i
t

∂r
=

1

Di
t+1/P

i
t

.

Therefore, the cash flow to price ratio is inversely related to modified duration in this simple

constant discount rate model.13 Since the concept of modified duration is price-based, it reflects

all dimensions of cash flow risks, including both cash flow covariance and duration.

Consider the cash flow to price ratio in my simple cash flow model:

Di
t

P i
t

=
1

∞P
n=1

exp
©
Ai(n) +B(n)zit + Cn(L)wt

ª .
Since B(n) > 0, the cash flow to price ratio is also decreasing with the cash flow duration

measure z. Therefore, value stocks are associated with lower duration. The impact of cash flow

covariance λ is less clear. Nevertheless, for not too large a λ, the cash flow to price ratio is

increasing in λ. This relationship is confirmed by numerical calibrations in Appendix 3 and Figure

2. To summarize, a stock with high cash flow covariance and low cash flow duration will have a

high cash flow to price ratio, and is likely to be classified as a value stock. On the other hand,

a stock with low cash flow covariance and high cash flow duration will have a low cash flow to

price ratio, and is likely to be classified as a growth stock. The fact that cash flow to price ratio is

related to a similar cash flow duration measure is also highlighted in Menzly, Santos and Veronesi

(2004).

B. Expected return

The expected (excess) return of a stock is just the value-weighted average of expected (excess)

returns of all equity strips:

13This relationship has been discussed earlier in Lintner (1975) and Santa-Clara (2004).
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Et

£
Ri
t+1/Rft

¤
=

∞P
n=1

P i
n,tEt

£
Ri
n,t+1/Rft

¤
P i
t

(3)

=

∞P
n=1

P i
n,t exp

£
RP i

1(n) +RP2(n)
¤

P i
t

The expected excess return can also be decomposed into two parts approximately:

Et

£
Ri
t+1 −Rft

¤
≈ RP i

1,t +RP i
2,t,

RP i
1,t =

∞P
n=1

P i
n,tRP

i
1(n)

P i
t

RP i
2,t =

∞P
n=1

P i
n,tRP2(n)

P i
t

.

C. An approximation

The two-factor cash flow model can be motivated from a quadratic approximation of the true asset

pricing model (3):

Et

£
Ri
t+1 −Rft

¤
≈ γ0 + γ1λ

i + γ2(z
i
tλ

i) + γ3z
i
t + γ4

¡
λi
¢2
+ γ5

¡
zit
¢2
. (4)

(4) can be seen as a Taylor approximation of (3). For not too big λi and zit, and small last

terms, we have:

Et

£
Ri
t+1 −Rft

¤
≈ γ0 + γ1λ

i + γ2(z
i
tλ

i) + γ3z
i
t. (5)

The second term γ1λ
i and the third term γ2(z

i
tλ

i) come mainly from RP i
1,t. We would expect

γ1 to be positive since, intuitively, more cash flow covariance should lead to higher expected risk.

We also expect γ2 to be negative, reasoning as follows: when λ
i > 0, RP i

1(n) decreases in n; a stock

with higher duration zit puts more weights on equity strips with longer maturities. As a result, the

weighted-average RP i
1,t is lower since longer maturities equity strips have lower expected returns.

The reverse logic holds for λi < 0. Finally, the third term γ3z
i
t comes mainly from RP i

2,t. For

the same reason as above, if RP2(n) increases (decreases) with n, then higher zit leads to higher
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(lower) RP i
2,t, resulting in a positive (negative) γ3. However, if RP2(n) does not vary significantly

with n, then RP i
2,t will not change with zit , γ3 will be close to zero, and the two-factor cash flow

model of (1) will be a good approximation. This last assumption depends on, among other things,

preference parameters, aggregate consumption dynamics and cross-sectional variation in cash flow

covariance and duration. The approximation of the true asset pricing model (3) using a two factor

cash flow model (1) is illustrated graphically in Figure 3.

Appendix 3 works out the cross-sectional implication of the mean-reverting cash flow share in

Bansal and Yaron’s (2004, BY thereafter) economy, in which: (1) consumption growth contains a

small long-run predictable component; (2) there is time-varying economic uncertainty; (3) investors

have Epstein and Zin’s utility and care about long run risks. A numerical calibration exercise

is conducted. It shows that (a) time-varying expected consumption growth and (b) time-varying

volatility make relatively small contributions to cross-sectional variation in expected returns. Thus,

the two-factor cash flow model still does a good job in the cross-section. This Appendix also serves

as a self-contained worked out example of the model intuition. More interestingly, I want to

know whether the two-factor cash flow model is a reasonable description of the cross-sectional

relationship between cash flow characteristics and the expected risk premium in the data. This

will be the targeted focus of the next section.

IV. Empirical Analysis

This section tests empirically the relationship between cash flow risk and expected (excess) return.

I focus on the linear approximation of the true model (3):

Et

£
Ri
t+1 −Rft

¤
= γ0 + γ1λ

i + γ2(z
i
tλ

i).

Taking the unconditional expectation, we have:

E
£
Ri
t+1 −Rft

¤
= γ0 + γ1λ

i + γ2E
£
zit
¤
λi. (6)

The cash flow duration E
£
zit
¤
and cash flow covariance λi are estimated at the portfolio level.14

The empirical procedure in this paper is similar to that used in Cohen, Polk and Vuolteenaho

(2003b). It differs from previous studies of cash flow consumption risk in two important ways.15

First, those studies estimate cash flow of a portfolio while rebalancing the portfolio over time,
14E

£
zit
¤
in this section denotes expected portfolio cash flow duration at formation (the composition of the portfolio

i changes across t). It does NOT denote the unconditioanl expectation of cash flow duration for a fixed portfolio,
which is always zero given the AR(1) assumption on the cash flow share.
15See Bansal, Dittmar and Lundblad (2002), Hansen, Heaton and Li (2004), Menzly, Santos and Veronesi (2004)

and Santos and Veronesi (2004)
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introducing two problems: (1) portfolio cash flow will depend on the stock prices at the time of

rebalancing, which are subject to mispricing risk, and (2) if the composition of a portfolio continues

changing, it becomes impossible to estimate its cash flow duration from the resulting cash flow.16

To avoid these two problems, whenever a portfolio is formed, I will hold its composition constant

and trace out its cash flow over time. Second, those studies measure cash flow using dividend

(including share repurchase) data. At a short horizon, dividend is particularly problematic. There

are firms expected to pay no dividend for a long time into the future and most firms tend to keep

a stable dividend payout policy in the near future.17 Taking these into consideration, I use instead

the theoretically equivalent, but empirically better behaved, earnings data to estimate cash flow

characteristics.

A. Identification of cash flow duration and covariance

Since I form and hold portfolios on a yearly basis, the cash flow data has three dimensions: the

number of portfolios in a cross-section times the number of years I follow the portfolios times the

number of years in the sampling period. Let si(t, n) denote the cash flow share at nth year after

portfolio formation for portfolio i formed in year t. Then according to the cash flow specification

of (2),

∆si(t, n+ 1) = (1− φ)zi(t, n) + λiφc(0)wt+n+1 + εit+n+1,

zi(t, n+ 1) = φzi(t, n)− λiφc(0)wt+n+1 − εit+n+1,

E
£
zit
¤
= E

£
zi(t, 0)

¤
.

A.1. Moving from cash flow to earning

Clean-surplus identity implies:

Bt+1 ≡ Bt +Xt+1 −Dt+1,

16To see this, consider an extreme case: if, every year, a portfolio is rebalanced to include firms expected to pay
out nothing in the coming year (for example, current growth firms), then the resulting cash flow from this portfolio
will be uniformly zero throughout. There will be no way to estimate the duration risk of the portfolio at formation
(although we expect growth firms have high cash flow durations).
17There are several reasons why dividend may be “sticky,” explained in Chapter 14 of Damodaran’s (2003) “In-

vestment Valuation”.
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where B,X andD denote book value of equity, earning and cash flow, respectively.18 Therefore,

log accounting return can be written as:

et+1 = log

µ
Bt+1 +Dt+1

Bt

¶
= log

µ
1 +

Xt+1

Bt

¶
= log(1 +ROEt+1).

Denoting the log cash-flow-to-book-equity ratio, γt = dt − bt, we have:

et+1 = log
¡
exp(−γt+1) + 1

¢
+∆dt+1 + γt. (7)

Consider a log-linear approximation first proposed by Vuolteenaho (1999):

et+1 ≈ κ− ργt+1 +∆dt+1 + γt.

ρ typically takes a value around 0.95 and the constant κ is related to ρ by:19

κ = −(1− ρ) log(1− ρ)− ρ log(ρ).

Empirically, I choose ρ = 0.95. As a result, κ = 0.1985.

Rearrange (7) to get:

∆dt+1 = et+1 − κ+ ργt+1 − γt.

Compute the following expression:

∞X
n=0

ρn∆d(t, n+ 1) (8)

=
∞X
n=0

ρne(t, n+ 1)− κ

1− ρ
− γt,

where I assume:

lim
n−→∞

ρnγt+n = 0.

(8) essentially states that if we look ahead for an infinite horizon, cash flow and earnings data

contain the same information. The limitation in historical data confines us to looking ahead at

a finite horizon; therefore, using earnings data may be better for at least two reasons. First, for

18 I drop the subscript i hereafter for simplicity.
19 In fact, ρ = 1

1+D/B
where D/B denotes the average book dividend yield. Therefore, the choice of ρ = 0.95

corresponds to an average book dividend yield of 5.26%, close to its historical value.
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firms that are not expected to pay dividend in the foreseeable future, looking at earnings data

is our only feasible choice. Second, return on book equity (e) is empirically more stationary,

which gives statistically better-behaved estimates. At annual horizon, earnings data may suffer

from management’s discretionary choices on the timing of accruals and other types of accounting

manipulations as documented in Jones(1991), Teoh, Welch and Wong (1998a and 1998b) and

Chan, Chan, Jegadeesh and Lakonishok (2001) among others. However, the impact of such earning

management will be significantly reduced if earning is “smoothed” over much longer horizon as

implicitly incorporated in (8).

A.2. Cash flow duration

The LHS of (8) is:

∞X
n=0

ρn∆d(t, n+ 1) =
∞X
n=0

ρn∆s(t, n+ 1) +
∞X
n=0

ρn∆ct+n+1.

Take unconditional expectation at both sides, since:

E

( ∞X
n=0

ρn∆s(t, n+ 1)

)
= E

(
Et

" ∞X
n=0

ρn∆s(t, n+ 1)

#)

= E

(
Et

" ∞X
n=0

ρn(1− φ)z(t, n)

#)

=
1− φ

1− ρφ
E [zt] ,

and

E

( ∞X
n=0

ρn∆ct+n+1

)
=

µc
1− ρ

,

then cash flow duration can be identified up to a scaling factor:

Dur = E

∙
Σet −

κ+ µc
1− ρ

− γt

¸
∝ E [zt] , (9)

where

Σet =
∞X
n=0

ρne(t, n+ 1).
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The term E [Σet ] measures the discounted sum of all future accounting returns. The relation

in (9) is very intuitive: higher duration means higher cash flow growth in the near future. This is

either because future earnings (as measured by E [Σet ]) are high which finances higher future cash

flow payout, or because the current cash flow (as measured by E [γt]) is low, providing a low base

for higher future growth.

Empirically, I estimate the µc and E [γt] by time-series averages of log consumption growth

and log portfolio cash-flow-to-book-equity ratio at portfolio formation, respectively. To estimate

the term E [Σet ], I first break it into two parts: a finite summation term and the terminal value

term:

E [Σet ] = E

(
N−1X
n=0

ρne(t, n+ 1) +
∞X

n=N

ρnEt [e(t, n+ 1)]

)
.

If for each fixed t, {e(t, n), n = 1, ...,∞} is a stationary mean reverting process with mean et,

then for large value of N ,

Et [e(t,N + 1)] ≈ et,

and

∞X
n=N

ρnEt [e(t, n+ 1)] ≈
ρN

1− ρ
et.

et in turn can be estimated by time-series average of {e(t, n), n = 1, ..., N}. The procedure is
conservative: for a portfolio whose cash flow share takes longer time to reach its steady state, this

procedure will bias the duration estimate towards zero. .

A.3. Cash flow covariance

To estimate the cash flow covariance λi, consider:

cov

Ã ∞X
n=0

ρn∆s(t, n+ 1),
∞X
n=0

ρnφc(0)wt+n+1

!
= cov

Ã ∞X
n=0

ρn [e(t, n+ 1)−∆ct+n+1] ,
∞X
n=0

ρnφc(0)wt+n+1

!
.

(10)

In my model specification, the LHS is:

1

(1− φρ) (1 + ρ)
λiφc(0) · φc(0).
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Therefore, λi can be identified by regressing
∞P
n=0

ρn [e(t, n+ 1)−∆ct+n+1] on
∞P
n=0

ρnφc(0)wt+n+1.

I denote the regression coefficient Cov, which measures λi up to a scaling factor. Empirically, I

replace the infinite summation by a finite summation. This summation also acts as a “smoothing”

mechanism, which alleviates possible measurement errors due to earning management and seasonal

adjustment in consumption data. Following Bansal and Yaron (2002), I assume ∆ct+1 follows an

ARMA(1,1) process and the residual terms will be the estimates of {φc(0)wt}.20

B. Data construction

Quarterly log aggregate consumption (c) data are used.21 I measure ∆ct annually (fourth quarter

to fourth quarter) to match the cash flow data series. In addition, since investors are more likely

to make consumption and investment decisions together during the fourth quarter, fourth quarter

to fourth quarter consumption growth better explains cross-sectional stock returns, as shown in

Jagannathan and Wang (2005).

Data used for cash flow estimation comes from the intersection of CRSP and COMPUSTAT.

Every June starting from 1964, I group all stocks issued by industrial firms 22 in NYSE, AMEX and

NASDAQ into 10 size-sorted portfolios and 10 book-to-market-sorted portfolios. I follow Fama-

French’s procedure wherever possible. Book equity is defined as stockholders’s equity plus deferred

tax and investment tax credit (COMPUSTAT data item 35) minus the book value of preferred

stocks. Depending on availability, I use data item 216, book value of common equity (data item 60)

plus book value of preferred stock, or book value of assets (data item 6) minus total liabilities (data

item 181), in that order, for stockholders’s equity. I use redemption (data item 56), liquidation

(data item 10), or par value (data item 130) (in that order) for book value of preferred stock. The

book-to-market ratio in June of year t is book equity for the fiscal year ending in calendar year

t − 1, divided by market equity at the end of Dec of year t − 1. Size is defined as market equity
at the end of June of year t. To avoid potential data error and extreme outliers, I exclude stocks

whose book-to-market ratios exceed the 99 percentile or fall below the 1 percentile. In addition,

I exclude stocks whose book-to-market ratios are negative. I record the first year annual returns

of the portfolios after their formations. Following Shumway (1997), I assign a return of -0.3 to

firm delisted for performance related reasons.23 Details on these computations and the merger of
20 I have considered other parameteric specifications of ∆ct+1, including the AR(1), as in Prescott and Mehra

(1985) and the VAR specification, as in Lettau and Ludvigson (2001). These estimates of covariance risk are very
similar.
21 I thank Sydney Ludvigson for making this data available at http://www.econ.nyu.edu/user/ludvigsons/. The

data are available from 1951Q2 to 2005Q1. Detailed information on the data construction can be found in the
Appendix of Lettau and Ludvigson (2001).
22 I exclude financial firms (SICCD in [6000, 6999]) and utilities companies (SICCD in [4900, 4999]).
23Delisting code is 500 or in [520, 584].
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CRSP and COMPUSTAT data can be found in Da, Gao and Wang (2004). Description of the

data are contained in Table 2. The sampling period is from 1964 to 2002.

Each year t, after I form the 20 portfolios, I hold them for 12 years as illustrated in Figure

4. All accounting cash flow data are converted to real term using the PCE deflator. I record the

return on equity (ROE) of each portfolio from year t + 1 to year t + 12. Following Vuolteenaho

(2002), I define ROEt as aggregate portfolio earnings measured according to the U.S. Generally

Accepted Accounting Principles (GAAP) (COMPUSTAT data item 172) at year t divided by

aggregate portfolio book equity at year t− 1. For firms that disappear due to delisting, merger or
acquisition, I assume we invest the proceeds from such activities in the original portfolios where

the disappeared firms belong. In this way, the portfolio ROE number will not be altered.24 At

the portfolio level, the ROE number is well above −1, so I can safely compute e = log(1 +ROE)

without risking the number in the bracket to be negative or too close to 0. Finally, I also compute

the portfolio cash-flow-to-book-equity ratio at portfolio formation, which will be used later in

computing cash flow duration. This ratio is defined as aggregate portfolio common dividend plus

common share repurchase at the portfolio formation year divided by aggregate portfolio book

equity also at the portfolio formation year. Common dividend is measured using COMPUSTAT

data item 21. Following Grullon and Michaely (2002), common share repurchase is defined as

expenditure on the purchase of common and preferred stocks (data item 115) minus any reduction

in the book value of preferred stock.

I directly test the stationarity of the log cash flow share using the Augmented Dickey — Fuller

test with a constant and a lag of one. The log cash flow share in year t is computed as the log of

the ratio between the portfolio cash flow (sum of common dividend and common share repurchase)

and aggregate consumption during year t. The sampling period is again from 1964 to 2002, so I

have a time series of 38 cash flow shares for each of the 20 portfolios. The alternative hypothesis

on the existence of a unit root is rejected for most of the 20 portfolios (17 out of 20) as in Table

2. In addition, I also test the AR(1) assumption on the log cash flow share by examining whether

the AR(1) residuals are white noises. This is in turn done using the Ljung-Box Q test. The

p-values associated with the tests are higher than 0.1 for almost all the portfolios (19 out of 20),

which means the AR(1) assumption cannot not be rejected. In conclusion, the AR(1) assumption

imposed on the log cash flow share seems to be reasonable at least at the portfolio level.

24The disappearing firms account for a relatively small portion of these portfolios. I define an exit ratio for each
portfolio and each year as the total market value (at begining of the year) of firms that exit the portfolio during the
year divided by the total portfolio market value (at begining of the year). The average exit ratio is only 2.2% across
the 20 portfolios for the first 10 years after portfolio formation. The exit ratio is the largest for the smallest size
portfolio, which is 4.4%.
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C. Cash flow characteristics and the cross-sectional regression results

Table 3 breaks down the cash flow duration as measured by (9) for the 20 portfolios. I choose

N = 5 when estimating the term E [Σet ]. Due to 5 year holding period of a portfolio, the sampling

period is reduced from 1964-2002 to 1964-1997.25 The average consumption growth in this period

is about 2%, so the term (κ+ µc) /(1−ρ) is equal to 4.43. The t-values are computed using GMM
standard errors which account for both cross-sectional and time-series error correlations using the

Newey-West formula of 5 leads and lags. I report the differences in the cash flow duration estimates

between extreme portfolios in the last two columns.

Panel A contains duration estimates for 10 book-to-market-sorted portfolios. The cash flow

duration measure Dur decreases monotonically in book-to-market ratio. As expected, growth

stocks have higher cash flow durations than value stocks. The difference in Dur between two

extreme portfolios is 1.36 and highly significant. The high duration of growth stock is largely

driven by higher earnings in the future. Both E [Σet ] and E [γt] decrease in book-to-market ratio,

which means growth stocks have, on average, both higher future earnings and higher current

accounting payout ratios.26 Since E [Σet ] decreases faster than E [γt] as we move from growth

stock to value stock, the impact of higher future earnings dominates, resulting in higher cash flow

durations for growth stocks.

Panel B contains duration estimates for 10 size-sorted portfolios. In general, small stocks have

lower cash flow durations than big stocks. This is because most of the traded small stocks are

“distressed” stocks and their cash flows, if any, are expected to decrease in the future. Both E [Σet ]

and E [γt] increase in size, but E [Σ
e
t ] increases more. Evidently, the impact of future earnings again

dominates. Lastly, the difference in Dur between two extreme size-sorted portfolios is calculated

to be 0.87 (in absolute term). Sorting on size, then, induces a smaller spread in cash flow durations

than sorting on book-to-market-ratio. A bias may partly contribute to this pattern, as I sort stocks

according to book-to-market ratios.27 If we underestimate the book equity value for a stock, we

tend to sort that stock to growth portfolios as a result. This error in measurement will also

increase E [Σet ], resulting in an increase in the duration measure. Even if this bias is accounted

for the pattern will not likely change because the difference in duration measures between extreme

growth and value stocks is so significant (with a robust t-value above 6).

Table 4 contains the cash flow covariance as measured by (10) for the 20 portfolios. I replace

the infinite sum in (10) by a finite sum up to N , presenting estimates for N = 5, 7, 10 and 12. Due
25For this reason, I do not choose a very large N .
26One would expect growth stocks to pay out less to finance future growth. This is indeed true as in Panel A of

Table 2 when the payout is measured by cash-flow-to-price ratio. However, growth stocks have much smaller book
values (the average book-to-market ratio for growth stocks is only 0.155), resulting in large accounting payout ratios.
27This is also pointed out in Cohen, Polk and Vuolteenaho (2003b).
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to the need to hold portfolios N years ahead, the sampling period associated with each N spans

from 1964 to 2002 - N . The estimates of Cov are obtained using overlapping OLS regressions. As

with Dur, I compute robust t-values for Cov using GMM standard errors which account for both

cross-sectional and time-series error correlations with Newey-West formula of N leads and lags.

As predicted, value (small) stocks have higher cash flow covariance measures than growth (large)

stocks in general for all N . A large N makes the estimate closer to its theoretical counterpart. On

the other hand, a large N accumulates measurement errors in cash flow data and also reduces the

sample size, both of which makes the estimates empirically less accurate. If we look at the t-values

associated with the spread in covariance risks between two extreme portfolios across N , they first

increase and then drop. Since this spread is most significant at a horizon of N = 7, I choose the

cash flow covariance estimates associated with N = 7 for the cross-sectional analysis.

I test the expected excess return relationship (6) in a cross-section. Empirically, I estimate:

E
£
Ri
t+1 −Rft

¤
= γ0 + γ1Cov + γ2Cov ×Dur.

The next period earning surprise is empirically correlated with the next period return innova-

tion, and since I estimated Dur using forward-looking earning data, such correlation may bias a

time-series predictive regression such as:

Ri
t+1 −Rft = γ0 + γ1λ

i + γ2(z
i
tλ

i) + εit+1. (11)

Nevertheless, the correlation should not affect an unconditional cross-sectional regression such

as (1), since both Dur and E
£
Ri
t+1 −Rft

¤
are unconditional expectation and estimated using

time-series average. Earning surprise will be averaged out across time and will not introduce any

bias as the number of years approaches infinity. Empirically, the unconditional expectation is

computed by averaging about 35 observations, therefore some bias may still remain. If so, one

would expect expected excess return to be positively correlated with duration. But this is not

the case in the data: high book-to-market and small stocks with low Dur measures have higher

excess returns. Therefore, forward looking bias, if it exists, should work against the two-factor

cash flow model. To further demonstrate that forward-looking bias does not significantly impact

the estimates, I break the sampling period into two halves and use the first half to estimate Dur

and Cov. The two estimates are used, in turn, to explain the cross-sectional variations in expected

excess returns in the second half. The results hardly differ from the full sample results, but the

statistical power of the test is much lower. For this reason, I will only report the results estimated

using the full sample. Finally, in the next subsection, I also estimate an “ex-ante” measure of cash

flow duration - dDur using only currently observable instrument variables. When I replace Dur

with dDur in the cross-sectional regression, the results again hardly change.
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The estimates of γ0, γ1 and γ3 are obtained using OLS regressions, whereas the associated

robust t-values are computed using GMM standard errors. I stack moment conditions in both the

time-series and cross-sectional regressions in a one-stage GMM system, similar to those discussed

in Cochrane (2001)and Bansal, Dittmar and Lundblad (2002). The moment conditions are chosen

such that the resulting GMM system produces point estimates identical to those in an OLS regres-

sion. The covariance matrix of the moment conditions are computed using Newey-West formula

of 7 leads and lags. The resulting robust t-values account for errors both cross-sectionally and in

time-series. In particular, they adjust for estimation errors in both Cov and Dur in the time-series

regression. The details of this procedure for the two-factor cash flow model are worked out in

Appendix A4.1. For comparative purposes, I also run the more commonly used Fama-MacBeth

regressions and report the associated t-values.28

I estimate three alternative return-based models as benchmarks. They are: (1) the standard

CAPM:

E
£
Ri
t+1 −Rft

¤
= γ0 + γ1βMKT ;

(2) the standard Consumption-based CAPM estimated using returns:

E
£
Ri
t+1 −Rft

¤
= γ0 + γ1β∆c;

and (3) the Fama-French three factor model:29

E
£
Ri
t+1 −Rft

¤
= γ0 + γ1βMKT + γ2βSMB + γ3βHML.

The cross-sectional regression results are presented in Table 5. The cash flow covariance mea-

sure alone explains 64% of the cross-sectional variations in expected excess returns. After adding

in a second factor, Cov ×Dur, which contains cash flow duration, Cov remains significant. How-

ever, the second factor is also significant which means that cash flow duration still has additional

explanatory power. The R-square from the addition of this factor increases to 82%. The incre-

mental R-square of adding the second factor is 18%, close to the level predicted by the numerical

simulation in Appendix A3.3. Finally, the coefficient on the second factor Cov × Dur is nega-

tive, consistent with the theoretical prediction and simulation result— that is, cash flow duration

increases expected return when cash flow covariance is negative; reduces expected return when

cash flow covariance is positive, as demonstrated in Figure 2. The cash flow model also compares

favorably against alternative models estimated using return data. The one-factor cash flow model

with only cash flow covariance performs slightly better than the standard CCAPM in which con-

28Fama-MacBeth regression produces point estimates identical to an OLS regression using the mean values.
29 I thank Ken French for providing data on the three factors.

22



sumption beta is estimated using returns. The one factor model yields a higher R-square and more

significant consumption risk premium. The two-factor cash flow model performs better than the

three factor model in terms of a higher R-square and more significant risk premium.

Figure 5 contains a graphic representation of the these results. The cash flow model with

only cash flow covariance, which can stand in as a first-order approximation of the true model,

does explain a reasonable large portion of the cross-sectional variation in expected excess returns.

However, the relationship between realized and fitted expected excess return is still somewhat

nonlinear, largely due to the omission of the second order effect. The second order effect is well

captured by the second factor Cov ×Dur, an interaction term between cash flow covariance and

duration. If we account for this second order term explicitly in a two-factor cash flow model, the

relationship between realized and fitted expected excess return becomes linear. The two-factor

cash flow model accounting for cash flow duration well explains the expected excess returns of all

20 portfolios including the smallest size portfolio and lowest book-to-market portfolio where all

other models slightly falter.

D. An ex-ante cash flow duration measure

To further alleviate concerns about the “forward-looking bias” in estimating cash flow duration,

I estimate an “ex-ante” measure of cash flow duration - dDur in this subsection. Recall my cash

flow duration measure at time t:

Durt = Σ
e
t −

κ+ µc
1− ρ

− γt. (12)

Only the term Σet involves forward-looking earnings data and is therefore not measurable at t;

however, we can apply a predictive regression to obtain an “ex-ante” prediction of Σet . Specifically,

each year from 1965 to 1999, I compute Σet for each of my 20 portfolios and regress Σ
e
t on a set of

instruments X in a balanced panel setting:

Σet = βX + u. (13)

Variables with upper bars are cross-sectionally demeaned so there is no constant term in (13).

In choosing the variables, I try to avoid variables containing price information since one of the

main objective of this paper is to measure risk using only accounting cash flow information. The

variables I decide to include in the vector X are: log current ROE (et = log(1 + ROEt)), log

current book dividend yield (DIVt = log(1 +Dt/Bt)) and the percentage sales growth from year

t− 1 to year t (SGt = Salest/Salest−1 − 1). Details on the robust standard error calculation can
be found in Appendix A4.2.
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Results of the regression are provided in Panel A of Table 6. The three variables are able to

explain a large portion of the cross-sectional variation in Σet with R-square of above 0.8 over the full

sample. I also repeat the same panel regression in two subsamples and obtain qualitatively similar

results.30 The regression coefficients - β on all three variables are positive as we would expect.

Since ROE is persistent, high current earning is likely to be associated with high earnings in the

near future, resulting in a positive coefficient on et. The positive coefficient on DIVt is consistent

with the empirical relation in Table 3 and 4: Σet is positively correlated with book dividend yield

γt, since firms facing more growth opportunities tend to pay less dividends. Finally, the coefficient

on SGt is also positive since higher sales growth indicates greater growth potential in the future.

The coefficients on et and DIVt are highly significant while the coefficient on SGt are significant

in the later subsample but not in the early subsample.

Once I estimate the regression (13), I can compute the “ex-ante” cash flow duration measure

(up to a constant) for each of the 20 portfolios as:

dDurt = bβXt −
κ+ µc
1− ρ

− γt.

Panel B of Table 6 reports average sample values of e, DIV , SG and the average sample

estimates of dDur for each of the 20 portfolios. The growth stock portfolio, with higher e, DIV

and SG, has higher cash flow duration than the value stock portfolio. The small stock portfolio,

with lower e, DIV and SG, has lower cash flow duration than the big stock portfolio. If we replace

the previous cash flow duration measure Dur with the ex-ante cash flow duration measure dDur

in the cross-sectional regression, the results hardly change as in Panel C of Table 6. This is not

surprisingly given the large predictive power of our instrument variables.

E. Additional diagnostic regressions

The success of the two-factor cash flow model implies that it is the interaction term Cov ×Dur

which provides additional explanatory power. In fact, if I include Dur alone as the second factor

in the cross-sectional regression, it does not help as seen from Panel A of Table 7. The R-square

hardly improves and cash flow duration has an insignificant risk premium.

Intuitively, dividend yield is inversely related to cash flow duration. However, since dividend

yield is computed using price, which reflects all type of risks, it may not be a “clean” measure of
30Finanlly, I also examine the rolling-window estimates of cash flow duration measure. At each year, I re-estimate

(13) using data from 1965 through the current year, so the duration measure dDurt is only computed using information
available at year t. For this calculation, I start my portfolio construction at year 1975 so I have enough data to
compute reasonably reliable estimates of dDurt even during early years. Such rolling-window estimation provides
similar cash flow duration measures for the 20 portfolios.
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cash flow duration. In order to see this, if I were to replace Dur with D/P — the dividend yield

where D includes both common dividend payout and common share repurchase — the dividend

yield does not provide additional explanatory power as shown in Panel B of Table 7. The second

factor Cov × D/P is insignificant and the adjusted R-square of the two-factor model is almost

identical to that of the one factor model.

As a model misspecification check, I include portfolio characteristics as additional variables in

the cross sectional regression of the two-factor cash flow model.31 The characteristics chosen are

size and book-to-market ratio after log transformation. The regression coefficients and t-values

are computed using Fama-MacBeth regressions. I find that the portfolio characteristics are not

significant in the cross sectional regressions of the two-factor cash flow model (Panel C), so model

misspecification is unlikely. In contrast, both size and book-to-market ratio are significant in

the cross-sectional regressions for the commonly used Fama-French three-factor model, indicating

possible model misspecification (Panel D), consistent with previous research.32 Finally, I put the

Fama-French three factors and the two cash flow factors in one cross-sectional regression as a

“horse race,” the two cash flow factors seem to drive out the Fama-French factors.

Finally, I also test the two-factor cash flow model on book-to-market and size double-sorted

portfolios, a method that provides more statistical power. From 1964 to 1995, the portfolios are

formed in June and held for 12 years. I conduct a smaller 3× 3 sort since both Cov and Dur are

better estimated on larger portfolios. The descriptive statistics including the point estimates of

cash flow covariance and duration risks are provided in Panel A of Table 8. As before, value (small)

stocks have higher cash flow covariance measures than growth (large) stocks in general except small

growth portfolio. Also as before, with the exception of a small growth portfolio, growth stocks have

higher cash flow duration measures than value stocks. Small stocks again have lower durations

than large stocks except in value group. If I estimate the regression (1) on all nine portfolios, the

results do not turn out as favorably: the adjusted R-square is only 0.254 and the coefficient on

Cov × Dur has the wrong sign, which seems to indicates the failure of the two-factor cash flow

model on the double-sorted portfolios. A closer look shows that this unfavorable performance is

primarily driven by the small growth portfolio. If I exclude that portfolio and run the regression on

the remaining eight portfolios, the results improve significantly: R-square increases to 0.817 and

both factors are significant with the right sign on the coefficient Cov ×Dur. Figure 6 contains a

graphic representation of the these results. The two-factor cash flow model fits the excess returns

on double-sorted portfolios reasonably well if the small growth portfolio is excluded. The small

growth portfolio, troublesome to most asset pricing models, is ever more so for the two-factor cash

31See Berk (1995), Daniel and Titman (1997), Jagannathan and Wang (1998) and Lettau and Ludvigson (2001)
for discussions of using portfolio characteristics to detect model misspecification.
32See Daniel and Titman (1997) and Lettau and Ludvigson (2001) for an example.
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flow model. This may be due to two reasons. First, the mean-reverting cash flow share assumption

may be violated for the small growth stocks. Second, the approximation error in the two-factor

cash flow model may be particularly large for small growth stocks.

To summarize the results thus far, the cash flow models, estimated using pure cash flow data,

are able to sufficiently explain the cross-sectional variation of expected excess returns of BM sorted

and size sorted portfolios. An interaction term involving cash flow duration captured using the

variable Dur (not dividend yield — D/P ) has additional explanatory power on top of the commonly

studied covariance risk. A two-factor cash flow model accounting for the cash flow duration perform

better than most of the commonly used models estimated using returns; furthermore, it is not likely

to suffer from model misspecification. The two-factor cash flow model also explains the expected

excess returns of BM and size double sorted portfolios if the small growth portfolio is excluded. I

also verify that these results remain the same if I replace Dur by its ex-ante measure dDur.

F. Does cash flow duration alone explain value premium?

Two interesting empirical patterns occur in Table 3 and 4. First, cash flow duration seems inversely

related to cash flow covariance for the BM-sorted and size-sorted portfolios. This pattern offers a

simple solution to the duration risk puzzle. Dechow, Sloan and Soliman (2004) find stocks with

high duration risk to earn lower expected returns. This finding is somewhat counter-intuitive since

one would expect higher risk to be compensated by higher returns. Their finding may be explained

by the empirical inverse relationship between cash flow duration and covariance : high-cash-flow-

duration stocks earn lower returns since they happen to have low cash flow covariances at the same

time.

Second, book-to-market ratio seems inversely related to cash flow duration. This pattern should

not at all surprise us. As pointed out by Lintner (1975) and Santa-Clara (2004), any measure

of cash flow duration will be related to book-to-market ratio simply as a result of accounting

identities. Making use of the accounting clean surplus identity and return-dividend-price relation,

Vuolteenaho (2002a) show that the log book-to-market ratio (θt) can be approximated as:

θt =
∞X
j=0

ρjrt+j+1 −
∞X
j=0

ρjet+j+1, (14)

where r denotes log returns. Substituting the early definition of Σet , (14) becomes:

θt =
∞X
j=0

ρjrt+j+1 − Σet . (15)
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Compare (15) against the cash flow duration measure (9), we can immediately see that an in-

crease in Σet will increase cash flow duration measure but decrease book-to-market ratio. Therefore,

cash flow duration is negatively correlated with book-to-market ratio. Lettau and Wachter (2004)

study an economy in which stocks are only distinguished by the timing of their cash flows. In such

an economy, they show that stocks with cash flows weighted more to the future (high duration)

have low price ratios (book-to-market ratio for example) and earn low return. Therefore, cash

flow duration can potentially explain value premium. My results, on the topical level, seem to

support their hypothesis since value stock indeed has lower duration than growth stock. An unre-

ported regression shows that a cash flow model with cash flow duration explains the cross-sectional

variation in expected excess returns of BM sorted portfolios almost as well as a cash flow model

with cash flow covariance. However, we will require further analysis to answer a more interesting

question: can the cash flow duration alone can explain value premium? If the cash flow duration

alone perfectly explains value premium, we would expect further sorting on book-to-market ratio

to generate no spread in returns once we control for cash flow duration.

To control for cash flow duration, I first sort all stocks according to the “ex-ante” cash flow

duration measure- dDurt into three groups: Low Duration, Medium Duration and High Duration.

Within each group, I further sort stocks according to BM into three subgroups. To make sure

that such portfolio construction is implementable, at each year, I re-estimate (13) using data from

1965 through the current year, so the duration measure dDurt is only computed using information

available at year t. For this reason, I start my portfolio construction at year 1975 so I have at least

5 year data33 to estimate the duration measure for year 1975. Table 9 contains the results of the

double sort. Since BM and duration are negatively correlated, sorting on BM within each duration

group will likely induce a spread in cash flow durations. This is particularly true for stocks in Low

Duration groups in which low BM stocks have a cash flow duration measure of 1.28 but high BM

stocks have a cash flow duration measure of only -0.05. In contrast, the spread is much smaller

for stocks in Medium and High Duration groups. Therefore, if cash flow duration alone explains

the value premium, I should expect that further sorting on BM generates no significant spread

on returns for these stocks with similar cash flow duration. However, this is not the case. Value

stocks still earn much higher returns than growth stocks in the same cash flow duration group.

The difference can be explained by the cash flow covariance risk — value stocks have indeed higher

cash flow covariance risk than growth stocks. This last finding is consistent with the two-factor

cash flow model, but not with the hypothesis that duration risk alone explains value premium.

33The 5 year is from 1965-1969, as I need additional five year to compute Σe
t on the left hand side of equation

(13).
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V. Conclusion

This paper links the cross-sectional variation in assets’ returns directly to the cross-sectional vari-

ation in their fundamental cash flow characteristics. The dynamics of the cash flow stream of

an asset are summarized using two characteristics: Cov (covariance — how cash flow varies with

aggregate consumption) and Dur (duration — whether cash flow occurs further in the future). In

a general consumption-based asset pricing framework, I denote the price and expected (excess)

return of the cash flow stream as functions of Cov and Dur. I then show that a large portion

of cross-sectional variation in expected excess return can be explained by a two-factor cash flow

model with the two factors being Cov and Cov ×Dur, respectively.

Empirically, the cash flow covariance and duration are estimated using only consumption and

accounting data for 10 book-to-market sorted and 10 size-sorted portfolios. I show that both

characteristics are important in explaining the cross-sectional variation in risk premia. While the

cash flow covariance has a first-order impact on the cross-sectional variation of risk premia, the cash

flow duration also provides additional explanatory power through a second-order interaction term

and its impact on the risk premium depends on the sign and magnitude of the cash flow covariance.

Given two assets with very different cash flow durations (such as value and growth stock portfolios),

it is therefore important to account for cash flow duration in explaining their return difference.

I show that a two-factor cash flow model incorporating both cash flow characteristics is able to

explain 82% of the cross-sectional variation in risk premia in 20 size or book-to-market sorted

stock portfolios. In addition, the two-factor cash flow model compares favorably against common

benchmark models.

Cash flow duration and covariance are inversely related for the 20 portfolios, which suggests a

simple solution to the duration risk puzzle: stocks with high cash flow duration may earn lower

expected return simply because they happen to have low cash flow covariance at the same time.

Nevertheless, I find cash flow duration alone cannot explain the value premium. Value stocks still

earn much higher returns than growth stock in the same duration group. The difference can be

explained by the cash flow covariance risk — value stocks have indeed higher cash flow covariances

than growth stock. All of this is consistent with the two-factor cash flow model where cash flow

covariance has a first-order impact on the cross-sectional variation of risk premia.

The recent paper by Santos and Veronesi (2005) simultaneously matches both the time-series

properties of the market portfolio and the value premium in a habit persistence, general equilibrium

model. This paper, however, focuses on the cross-section implications of an asset’s cash flow

characteristics rather than their time-series implications. It does not explicitly incorporate the

model-implied time-series restrictions in the cross-sectional regression, because that requires taking
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positions on the specific forms of investor’s preference and the stochastic process of the aggregate

consumption, narrowing the scope of the model. The economic specification in Bansal and Yaron

(2004) is a good place to start as it has been proven to justify many time-series properties of the

financial market. It will be interesting to examine whether parameters of such economy, calibrated

to the time-series properties of the financial market, can simultaneously explain the size of the risk

premium found in the cross-sectional analysis.
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Appendix 1: Proofs

A1.1: Proof of Lemma 1

For ψ 6= 1, log stochastic discount factor for Epstein and Zin utility can be expressed as:

mt+1 = θ

∙
log δ − 1

ψ
∆ct+1

¸
+ (θ − 1)ra,t+1,

where θ = (1 − γ)/(1 − 1/ψ); γ and ψ denote coefficient of risk aversion and elasticity of

intertemporal substitution respectively; δ is the time discount factor and ra,t+1 denotes return on

the aggregate wealth portfolio.

Use log-linear approximation to write:

ra,t+1 = κ0 + κ1xt+1 − xt + ct+1 − ct,

κ1 =
exp(x)

1 + exp(x)
,

κ0 = log [1 + exp(x)]− κ1x.

where xt is the log wealth to consumption ratio
³
log Wt−Ct

Ct

´
at time t and x is its time-series

average.

The definition of stochastic discount factor implies:

Et [exp(mt+1 + ra,t+1)] = 1, (16)

I conjecture that xt+1 can also be expressed as:

xt+1 = µx + φx(L)wt+1.

Then (16) implies:⎧⎪⎪⎨⎪⎪⎩
log δ − 1

ψ [µc + φc(L)wt+1 − φc(0)wt+1] + κ0 + κ1µx − µx

+κ1 [φ
x(L)− φx(0)]wt+1 − φx(L)wt + µc + [φ

c(L)− φc(0)]wt+1+

+1
2θ
h³
1− 1

ψ

´
φc(0) + κ1φ

x(0)
i
·
h³
1− 1

ψ

´
φc(0) + κ1φ

x(0)
i

⎫⎪⎪⎬⎪⎪⎭ = 0. (17)

Then, µ
1− 1

ψ

¶
[φc(L)− φc(0)] + κ1 [φ

x(L)− φx(0)] = φx(L)L,

which should still hold when we replace L by κ1; therefore:
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µ
1− 1

ψ

¶
[φc(κ1)− φc(0)] = κ1φ

x(0). (18)

(17) also implies:⎧⎨⎩ log δ +
³
1− 1

ψ

´
µc + κ0 + κ1µx − µx

+1
2θ
h³
1− 1

ψ

´
φc(0) + κ1φ

x(0)
i
·
h³
1− 1

ψ

´
φc(0) + κ1φ

x(0)
i ⎫⎬⎭ = 0. (19)

(18) and (19) together provide a solution for µx:

µx =
log δ +

³
1− 1

ψ

´
µc + κ0 +

1
2θ
³
1− 1

ψ

´2
φc(κ1) · φc(κ1)

1− κ1
.

Some algebra then shows:

mt+1 = µm + φm(L)wt+1,

µm = log δ − 1

ψ
µc −

1

2

µ
1

ψ
− γ

¶
(1− γ)φc(κ1) · φc(κ1),

φm(L) =

∙
− 1
ψ
φc(L) +

µ
1

ψ
− γ

¶
φc(κ1)

¸
.

In particular, if ψ = 1, then xt = x = log( δ
1−δ ), and,

κ1 = δ.

We have the same expression as in Hansen, Heaton and Li (2004). The approximation holds

exactly.

Q.E.D.

A1.2: Proof of Proposition 1

To compute the price of equity strip P i
n,t, I make use of the fact:

Et

£
Mt+1P

i
n−1,t+1

¤
= P i

n,t,

which implies:

Et

"
Mt+1

Di
t+1

Di
t

P i
n−1,t+1
Di
t+1

#
=

P i
n,t

Di
t

.
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Conjecture that:

P i
n,t

Di
t

= exp
£
Ai(n) +B(n)zit + Cn(L)wt

¤
,

where Cn−1(L) is also a lag operator. Since P i
0,t = Di

t, we have A
i(0) = B(0) = 0 and C0(L)

contains zero everywhere.

We have:

Et

£
exp

©
mt+1 +∆s

i
t+1 +∆ct+1 +Ai(n− 1) +B(n− 1)zit+1 + Cn−1(L)wt+1

ª¤
= exp

©
Ai(n) +B(n)zit +Cn(L)wt

ª
.

Under Assumption 1 to 3, evaluate the expectation and match terms involving zit, we have:

(1− φ) +B(n− 1)φ = B(n).

Solving the difference equation with initial condition B(0) = 0, we have:

B(n) = 1− φn.

Matching constants, we have:

Ai(n) = Ai(n− 1) + µm + µc +
1

2

°°(1 + φn−1λi)φc(0) + φm(0)
°°2 + 1

2

¡
φn−1σε

¢2
,

where kak =
√
a · a and σε is the standard deviation of ε.

Matching w, we have:

φm(L)− φm(0) + φc(L)− φc(0) + Cn−1(L)− Cn−1(0) = Cn(L)L.

Therefore, Ai(n) and Cn(L) can also be solved iteratively given the initial condition.

Define the return on individual cash flow claim as:

Ri
n,t+1 =

P i
n−1,t+1
P i
n,t

=
P i
n−1,t+1/D

i
t+1

P i
n,t/D

i
t

Di
t+1

Di
t

.

Take the log,
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rin,t+1 = Ai(n− 1)−Ai(n) +B(n− 1)zit+1 −B(n)zit

+Cn−1(L)wt+1 − Cn(L)wt +∆s
i
t+1 +∆ct+1.

The one period innovation is:

rin,t+1 −Et

£
rin,t+1

¤
= (1 + φn−1λi)φc(0)wt+1 + Cn−1(0)wt+1 + φn−1εit+1.

Therefore,

logEt

£
Ri
n,t+1/Rft

¤
= −(1 + φn−1λi)φc(0) · φm(0)− Cn−1(0) · φm(0).

Q.E.D.

Appendix 2: From fundamental cash flow characteristics to return betas

Assumption 4: Log cash flow growth for an individual asset can be written as:

∆dit+1 = µid + φd,i(L)wt+1 + πi(L)εt+1,

where φd,i(L) and πi(L) are lag operators similar to φc(L) and ε is independent of w. φd,i(L)

can be thought of as cash flow loadings on consumption growth innovations. πi(L)εt+1 are the

innovations in cash flow orthogonal to consumption growth innovations.

The cash flow structure assumed in Assumption 4 is very general. It includes the mean-reverting

cash flow share structure, since under Assumption 3:

sit+1 = si + (1− φL)−1λiφc(0)wt+1 + (1− φL)−1εit+1.

Therefore:

sit+1 − sit = (1− φL)−1(1− L)λiφc(0)wt+1 + (1− φL)−1(1− L)εit+1,

and,

dit+1 − dit = sit+1 − sit + ct+1 − ct.

This implies:
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φd,i(L) = (1− φL)−1(1− L)λiφc(0) + φc(L),

πi(L) = (1− φL)−1(1− L).

Given the general cash flow structure, we can write out the stock return using log-linear ap-

proximation.

Proposition 2: Assumption 1, 2 and 4 imply log return can be approximated as:

rit+1 = Et

£
rit+1

¤
+ βiwt+1 + κiεt+1,

where

βi = φm(κi1)− φm(0) + φd,i(κi1),

and κi1 is a constant defined below.

Proof: The proof is similar to that of Lemma 1. Again, use log-linear approximation to write:

rit+1 = κi0 + κi1x
i
t+1 − xit + dit+1 − dit,

κi1 =
exp(xi)

1 + exp(xi)
,

κi0 = log
£
1 + exp(xi)

¤
− κi1x

i.

where xit is the log price to cash flow ratio
³
log Pt

Dt

´
at time t and xi is its time-series average.

Conjecture xit+1 = µix + φi,x(L)wt+1 + φi,ε(L)εt+1and use the relation:

Et

£
exp(mt+1 + rit+1)

¤
= 1,

we have,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µm + [φ

m(L)− φm(0)]wt+1 + κi0 + κi1µ
i
x − µix + κi1

£
φi,x(L)− φi,x(0)

¤
wt+1 − φi,x(L)wt+

κi1
£
φi,ε(L)− φi,ε(L)

¤
εt+1 − φi,ε(L)εt + µid +

£
φd,i(L)− φd,i(L)

¤
wt+1 +

£
πi(L)− πi(0)

¤
εt+1+

1
2

£
φm(0) + κi1φ

i,x(0) + φd,i(0)
¤
·
£
φm(0) + κi1φ

i,x(0) + φd,i(0)
¤
+

1
2

¡
σiε
¢2 £

κi1φ
i,ε(0) + πi(0)

¤
·
£
κi1φ

i,ε(0) + πi(0)
¤

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0.

(20)

Solve for µix, φ
i,x(L) and φi,ε(L) by matching terms with w and terms with ε.

Then,
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rit+1 = Et

£
rit+1

¤
+ βiwt+1 + κiεt+1, where

βi = κi1φ
i,x(0) + φd,i(0)

= φm(κi1)− φm(0) + φd,i(κi1),

κi = κi1φ
i,ε(0) + πi(0) = πi(κi1).

Under the Epstein and Zin utility, results in Appendix 1 imply:

βi = − 1
ψ

£
φc(κi1)− φc(0)

¤
+ φd,i(κi1).

Q.E.D.

It is relatively easy to show the cash flow specification of Bansal, Dittmar and Lundblad

(2002) as a special case of Proposition 2. Elements in βi can be regarded as factor loadings or

betas. Proposition 2 therefore directly relates betas to the preference parameters, as reflected in

φm(κi1)−φm(0), and fundamental asset cash flow characteristics, as reflected in φd,i(κi1). The cross-
section of risk premia is then determined by the inner product of beta and factor risk premium

(ignoring the convexity adjustment term):

Et

£
rit+1 − rft

¤
+

σ2t
£
rit+1

¤
2

= −βi · φm(0).

The standard consumption beta is a scalar, defined as proportional to the covariance between

return and contemporaneous innovation in consumption growth:

βic ∝ cov(rit+1,∆ct+1 −Et[∆ct+1])

= βi · φc(0).

βic can be identified (up to a scaling factor) by regressing return on consumption growth. Esti-

mating βic in this way using short-term consumption growth, Breeden, Gibbons and Litzenberger

(1989) shows that βic does poorly in explaining cross-sectional variation in expected excess returns.

There are several possible reasons behind this poor performance. First, short-term consumption

growth is problematic due to measurement error, consumption commitment or delayed response.

Recent studies show cross-sectional variation in expected excess returns can be explained if con-

sumption growth over longer horizon is used (c.f. Daniel and Marshall (2004), Parker and Juliard

(2004) and Jagannathan and Wang (2005)). Second, βic can be viewed as a linear combination
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of true factor betas contained in βi. In a multi-factor pricing framework, although βi is able to

explain the cross-section of risk premia, βic may not be. This point has been made in Bansal,

Dittmar and Lundblad (2005).

To link βi to asset’s cash flow risk (covariance and duration in particular) more explicitly, I

consider a return decomposition similar to Campbell and Mei (1993) and Campbell, Polk and

Vuolteenaho (2003). I decompose return on individual stock into a component (NCFi,t+1) , related

to cash flow news, and a component (NDRi,t+1) , related to discount rate news, as:

rit+1 −Et

£
rit+1

¤
= NCFi,t+1 −NDRi,t+1, where

NCFi,t+1 = (Et+1 −Et)
∞X
j=0

¡
κi1
¢j
∆dit+1+j ,

NDRi,t+1 = (Et+1 −Et)
∞X
j=1

¡
κi1
¢j
rit+1+j .

We may have the impression that NCFi,t+1 is related to cash flow covariance risk and that

NDRi,t+1 is related to cash flow duration. Using notations in the general framework, we can easily

show:

βi = βiCF + βiDR,

βiCF = φd,i(κi1),

βiDR = φm(κi1)− φm(0).

βiCF and βiDR come from the cash flow news and discount rate news, respectively. φd,i(L)

contains firms’ cash flow loadings on consumption growth innovations. βiCF measures the sum of

those discounted loadings with the discount factor as κi1, therefore, β
i
CF in fact measures covariance

risk to a large extent. Moreover, κi1, being a function of average dividend yield, is related to

both cash flow covariance and duration, so βiCF also captures cash flow duration as well. βiDR

varies across stocks because of the κi1 term and thus captures both risks, just as βiCF . This beta

decomposition using return, although economically intuitive, does not achieve a clear separation

of cash flow covariance and duration.

To see this point even more clearly, I work out the decomposition given the mean-reverting

cash flow share specification and the Epstein and Zin utility:
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βi = βiCF + βiDR,

βiCF = φd,i(κi1) =

¡
1− κi1

¢
λiφc(0)

1− φκi1
+ φc(κi1),

βiDR = φm(κi1)− φm(0) =
1

ψ

£
φc(0)− φc(κi1)

¤
.

The cash flow covariance measure λi enters the expression of βi explicitly whereas cash flow

duration measure zit enters only indirectly through κ
i
1. The impact of the duration on consumption

beta and expected return is difficult to examine. Assuming κi1 constant across stocks effectively

eliminates the impact of cash flow duration. This is why I choose to compute the exact solution

by examining each equity strip separately.

Appendix 3: Mean-reverting cash flow share in Bansal and Yaron’s (2004) economy
- Calibration and simulation

Bansal and Yaron (2004, BY thereafter) study an economy in which: (1) there is a persis-

tent and predictable component in consumption growth, and (2) the economy-wide volatility is

time-varying. They show that these dynamics, together with Epstein and Zin’s (1989) prefer-

ences, can explain key time series properties of asset market. This section of the appendix derives

the cross-sectional implication of the mean-reverting cash flow share in BY’s economy. The nu-

merical calibration exercise shows that (a) time-varying expected consumption growth and (b)

time-varying volatility make relatively small contributions to cross-sectional variation in expected

returns. Therefore, the two-factor cash flow model still does a good job in cross-section. This

Appendix also serves as a self-contained worked out example that illustrates the model intuition.

A3.1: Bansal and Yaron’s (2004) economy

For ψ 6= 1, log stochastic discount factor (SDF) for the Epstein and Zin utility can be expressed
as:

mt+1 = θ

∙
log δ − 1

ψ
∆ct+1

¸
+ (θ − 1)ra,t+1.

Again θ = (1−γ)/(1−1/ψ). δ is the time discount factor; γ and ψ represent the coefficients of
risk aversion and elasticity of intertemporal substitution, respectively; ∆ct+1 is the log consumption

growth and ra,t+1 is the log return on the wealth portfolio.

When there is a persistent component in ∆ct+1 and aggregate volatility is time-varying:
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∆ct+1 = µc + xt + σtwt+1, (21)

xt+1 = ρxt + σeσtet+1,

σ2t+1 = σ2 + v1(σ
2
t − σ2) + σηηt+1,

Appendix A.1 in Bansal and Yaron (2004, A10) then shows:34

mt+1 ≈ m0 +mxxt +mσσ
2
t +mwσtwt+1 +meσtet+1 +mησηηt+1, (22)

m0 = log δ − 1

ψ
µc,

mx = − 1
ψ
,

mσ = A2(κ1v1 − 1)(θ − 1),
mw = −γ,
me = (θ − 1)κ1A1σe,
mη = (θ − 1)A2κ1,

A1 =
1− 1

ψ

1− κ1ρ
,

A2 =

0.5θ

∙³
1− 1

ψ

´2
+ (κ1A1σe)

2

¸
σ2t

1− κ1v1
,

κ1 = 0.997.

The last three terms in mt+1 capture risk premium due to innovation in consumption growth,

expected growth rate, and time-varying volatility accordingly. Under standard power utility, θ = 1,

me = mη = 0 and innovations in expected growth rate and volatility are not priced. When ψ = 1,

mη = 0 and uncertainty in volatility is not priced.

I model the share of cash flow to aggregate consumption as a mean-reverting process. The

change in cash flow share is (omitting i superscripts):

∆st+1 = (1− φ)zt + λσtwt+1 + εt+1, (23)

zt+1 = φzt − λσtwt+1 − εt+1.

34The expression of mt+1 is approximate since it is derived using log-linearization on ra,t+1.
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λ measures cash flow covariance risk and zt = s − st measures cash flow duration. The cash

flow process in this paper differs from that of BY in two aspects. First, I allow the innovation

in cash flow to be contemporaneously correlated with the innovation in consumption growth;

therefore. there is a positive equity premium even with standard power utility. Second, I allow the

predictable component of cash flow growth zt to vary across stocks, therefore providing an extra

degree of freedom to capture the cross-sectional variation in cash flow duration.

A3.2: Solution to expected excess return

Again, I treat a stock as a portfolio of equity strips and solve for the expected return of each

equity strip using:

Et

∙
Mt+1

Dt+1

Dt

Pn−1,t+1
Dt+1

¸
=

Pn,t
Dt

. (24)

I conjecture:

Pn,t
Dt

= exp
©
A(n) +B(n)zt + C(n)xt +D(n)σ2t

ª
. (25)

Substitute (21), (22), (23) and (25) into (24) and match terms on zt, xt and σ2t , we have the

following system of difference equations:

m0 +D(n− 1)(1− v1)σ
2 +

1

2
[mη +D(n− 1)]2σ2η +A(n− 1) = A(n)

φB(n− 1) + (1− φ) = B(n),

1 +mx + ρC(n− 1) = C(n),

mσ +
1

2
[mw + 1 + λ−B(n− 1)λ]2 + 1

2
[me + C(n− 1)σe]2 +D(n− 1)v1 = D(n).

subject to initial conditions A(0), B(0), C(0), D(0) = 0

One period innovation in return on individual equity strip is:

−B(n− 1)λσtwt+1 + C(n− 1)σeσtet+1 +D(n− 1)σηηt+1 + λσtwt+1 + σtwt+1

= (1 + φn−1λ)σtwt+1 + C(n− 1)σeσtet+1 +D(n− 1)σηηt+1.

The risk premium is:
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logEt [Rn,t+1/Rft] = RP1,t(n) +RP2,t(n) +RP3,t(n)

RP1,t(n) = −mw(1 + φn−1λ)σ2t

= γ(1 + φn−1λ)σ2t

RP2,t(n) = −meC(n− 1)σeσ2t

=

³
γ − 1

ψ

´
(1− 1

ψ )κ1(1− ρn−1)

(1− κ1ρ)(1− ρ)
σ2eσ

2
t

RP3,t(n) = −mηD(n− 1)σ2η.

The first term RP1,t(n) captures the usual risk premium in CCAPM. It is increasing in λ,

which means that a higher contemporaneous covariance with consumption growth will lead to a

high risk premium. However, since the cash flow share is mean-reverting, the impact of the cash

flow covariance decreases with maturity n. In particular, if we look at an equity strip with infinite

maturity, the corresponding RP1,t is always γσ2t and does not depend at all on λ. For λ > 0,

RP1,t(n) is decreasing in n; for λ < 0, RP1,t(n) is increasing in n.

The second term RP2,t(n) captures the risk premium arising from the expected growth com-

ponent x. Since x is persistent, the impact of a shock in x on Et∆ct+n accumulates. If investors

care about long run risk (ψ > 1), they will command a positive risk premium, which pushes up

risk premium and helps to justify equity premium in BY. This is why for ψ > 1, RP1,t(n) is always

positive and increasing in n and ψ. When ψ is close to 1, RP2,t(n) is close to zero. Finally, for a

given maturity, RP2,t(n) is a constant across stocks.

The last term RP3,t(n) captures the uncertainty risk. Again, when ψ > 1, RP3,t(n) is pos-

itive. RP3,t(n), compared to RP1,t(n), varies less in a cross-section. In other words, although

time-varying volatility is crucial in explaining the time-series dynamics of asset market, it is less

important in explaining cross-sectional variation in averaged returns, at least in BY’s economy.

The stock expected return is just a weighted-average of equity strip returns:

Et

£
Ri
t+1/Rft

¤
=

∞P
n=1

P i
n,t exp [RP1,t(n) +RP2,t(n) +RP3,t(n)]

P i
t

. (26)

The expected excess return can also be decomposed into three parts as discussed:
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Et

£
Ri
t+1 −Rft

¤
≈

∞P
n=1

P i
n,t [RP1,t(n) +RP2,t(n) +RP3,t(n)]

P i
t

(27)

= RP1,t +RP2,t +RP3,t,

RPk,t =

∞P
n=1

P i
n,tRPk,t(n)

P i
t

, k = 1, 2, 3.

The excess return decomposition of (27) allows us to study the relative explanatory power of

consumption growth innovation, expected growth rate innovation and time-varying volatility, re-

garding cross-sectional variation in expected excess returns. We can decompose the cross-sectional

variance of excess return as:

vart
£
Ri
t+1 −Rft

¤
= covt(R

i
t+1 −Rft, RP1,t) + covt(R

i
t+1 −Rft, RP2,t) + covt(R

i
t+1 −Rft, RP3,t).

(28)

Divide both sides of (28) by vart
£
Ri
t+1 −Rft

¤
, we have:

1 = β1 + β2 + β3,

βk = covt(R
i
t+1 −Rft, RPi,t)/vart

£
Ri
t+1 −Rft

¤
, k = 1, 2, 3.

βk then measures the percentage contribution of kth term to the cross-sectional variation in

expected excess return.

A3.3: Calibration and simulation

The parameters of calibration are obtained from Bansal and Yaron (2004). Specifically, they

are: δ = 0.998, γ = 10, µc = 0.0015, ρ = 0.979, σe = 0.044, v1 = 0.987 and ση = 2.3 × 10−6.
The only exception is that I use a higher σ (.011) than BY (0.0078), since the annual consumption

growth computed using quarterly time-aggregated consumption data tends to underestimate the

true volatility of “spot” consumption growth.35 All numbers correspond to a monthly decision

horizon. For the baseline case, I also set ψ = 1.5, φ = 0.99, σ2t = σ2 and xt = 0. I vary λ

from −1.5 to 7.5 and and z from −2.5 to 2.5 with increments of 0.1 to generate a cross-section of
expected excess returns numerically using the true asset pricing model (26).
35Please refer to Breeden, Gibbons and Litzenberger (1989) for an excellent discussion of this “summation” bias

in consumption data. They also show the standard deviation of annual consumption (absolute) change measured
using quarterly data is 2/3 of the true value.
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I first numerically compute a fixed-income Macaulay duration measure in the baseline case as

a present value weighted time (in year):

∞P
n=1

Pn · n

P
.

Figure 1 plots such Macaulay duration as a function of cash flow duration z and cash flow

covariance λ. It is clear that for the same value of λ, cash flow duration and Macaulay duration

are always monotonically related to each other.

Figure 2 plots the expected excess return and cashflow-to-price ratio as functions of cash flow

duration and covariance for the baseline case. Consistent with the intuition behind my model,

the impact of duration z depends on the sign of λ even though expected excess return is always

increasing in cash flow covariance λ. For λ > 0, the expected return decreases in z; for λ < 0, the

expected return increases in z. The cash flow to price ratio is clearly decreasing in the cash flow

duration measure z, and for the range of λ considered in the simulation, the cash flow to price

ratio is increasing in λ. In addition, I am able to fit equity premium of 6.6% and market cash flow

to price ratio of 18.3 using a λ around 5.5, which is consistent with Longstaff and Piazzesi (2004),

in which the calibrated loading of the corporate fraction on consumption growth is around 6.

I then consider cross-sectional regressions of the two-factor model with cash flow duration:

Et

£
Ri
t+1 −Rft

¤
= γ0 + γ1λ

i + γ2(z
i
tλ

i),

a one-factor model without cash flow duration:

Et

£
Ri
t+1 −Rft

¤
= γ0 + γ1λ

i.

and a three-factor model:

Et

£
Ri
t+1 −Rft

¤
= γ0 + γ1λ

i + γ2(z
i
tλ

i) + γ3z
i
t.

The regression R-squares are reported for various cases in Table 1. In addition, for each case,

I decompose the cross-sectional variation in excess returns into three parts: the variation due

to consumption growth innovation, expected growth rate innovation and time-varying volatility

respectively. The relative importance of the three components, as measured by β1, β2 and β3, are

also reported in Table 1.

The variance decomposition shows the expected growth rate innovation and time-varying

volatility to be less important in determining the cross-sectional variation in expected excess
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returns. In most of the cases I consider, the variation is primarily driven by contemporaneous

consumption innovations. Consequently, the two-factor model should capture most of the varia-

tion. This is confirmed by the fact that the cross-sectional regression R-squares of the two-factor

model are usually above 95%. Adding the third factor provides very little incremental R-squares.

However, if we ignore cash flow duration and only consider cash flow covariance, the R-square will

decrease by 25% on average.

The two factor cash flow model approximation is illustrated graphically in Figure 3 for the

baseline case. The true return surface is plotted on the left and can be nicely approximated by

the return surface of the two factor cash flow model on the right. Table 1 also investigates the

impact of cross-sectional variation in the parameter of mean-reverting speed φ, which I assume

to be constant. In addition to varying λ and z, I also vary φ from 0.96 to 0.995 and generate a

new cross-section. The two-factor cash flow model still does a reasonably good job of explaining

approximately 80% of the cross-sectional return variations, even with the existence of a sizable

dispersion in the mean-reverting speed. In contrast, if we ignore cash flow duration, the R-square

will decrease by almost 30%.

Appendix 4: Econometric Issues

A4.1: Robust standard error estimation for the two-factor cash flow model

I want to estimate the two-factor cash flow model (equation 1) empirically as:

E
£
Ri
t+1 −Rft

¤
= γ0 + γ1Cov + γ2Cov ×Dur.

The risk premium [γ0, γ1, γ2] is consistently estimated using an OLS cross-sectional regression

on the 20 portfolios. However, the OLS standard errors are biased downward since they do not

account for the estimation errors in Cov and Dur. Following Cochrane (2001) and Bansal, Dittmar

and Lundblad (2002), I compute the robust standard errors by stacking moment conditions in both

time-series regressions and cross-sectional regressions in a one-stage GMM system.

Recall from equation (10) that Cov is identified in a time-series regression of:

Peeit = λi0 + Covi
P

wt,

where
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Peeit =
∞X
n=0

ρn
£
ei(t, n+ 1)−∆ct+n+1

¤
,

P
wt =

∞X
n=0

ρnφc(0)wt+n+1.

This corresponds to 40 moment conditions that identify [λ0, Cov]:

E[
Peeit − λi0 − Covi

P
wt] = 0 ∀ i = 1, ..., 20, (29)

E[Covi
¡Peeit − λi0 − Covi

P
wt

¢
] = 0 ∀ i = 1, ..., 20. (30)

Likewise, recall from equation (9) that Dur can be identified from moment conditions:

E[
P

zit −Duri] = 0 ∀ i = 1, ..., 20, (31)

where

P
zit = Σ

ei
t −

κ+ µc
1− ρ

− γit.

Finally, [γ0, γ1, γ2] can be identified by exploiting the following set of moment conditions:

ERi
t+1 −Rft − γ0 − γ1Cov

i − γ2Cov
i ×Duri] = 0 ∀ i = 1, ..., 20. (32)

All the parameters in the system can now be summarized in a 63× 1 vector:

Ψ = [λ
0
0 Cov

0 Dur0 γ0 γ1 γ2]
0.

I stack the sample counterparts to the moment conditions (29) to (32) in the following manner:

gT (Ψ) =
1

T

P
f(Xt,Ψ),

and gT (Ψ) is a 80× 1 vector. I then construct an exactly identified system:

A
0
T gT = 0.

AT is a 80× 63 matrix chosen in a such a way that the estimates of [γ0, γ1, γ2] coincide with
the cross-sectional OLS estimates. Specifically, we have:

AT =

"
I60×60 060×1 060×1 060×1

020×60 120×1 Cov Cov ×Dur

#
,
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where I denotes the identity matrix, 0 denotes vector or matrix of zeros and 1 denotes vector

or matrix of ones. We know that:

√
T (ΨT −Ψ0) ∼ N

³
0, (AD)−1(ASA0)(AD)−1

0
´
, (33)

where S is the variance-covariance matrix of the moment conditions, for which the sample

counterpart is estimated using Newey and West formula with 7 leads and lags, and D is the

gradient of gT . In this case, gT is computed as:

D63×80 = [D1 D2 D3],

D1 =

⎡⎢⎣ I20×20 E[
P

wt]× I20×20

E[
P

wt]× I20×20 E[(
P

wt)
2]× I20×20

023×20 023×20

⎤⎥⎦ ,

D2 =

⎡⎢⎣ 040×20I20×20

03×20

⎤⎥⎦ ,

D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

020×20

diag(γ1 + γ2Dur)

diag(γ2Cov)

11×20

Cov0

Cov ×Dur0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where diag(X) denotes a diagonal matrix whose diagonal elements are elements of the vector

X. The robust standard errors computed in (33) not only account for estimation errors in Cov

and Dur during the time-series regressions, but also adjust for possible error correlations across

section and across time.

A4.2: Robust standard error estimation for the Panel regression

I wish to estimate the following relation in a panel data setting with cross-sectional size of N

(balanced panel with N clusters) and time-series length of T :

Yit = α+Xit−1β + uit,

where I assume X is uncorrelated with u so β can be estimated consistently with OLS. In the

context of the paper, Yit is the discounted sum of all future log ROEs from t for portfolio i and
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Xit−1 is a vector of instruments measurable at time t−1 of portfolio i. Since Yit is measured across
over-lapping periods, I would expect uit to be correlated across time. In addition, I allow uit to

be correlated across portfolio since I expect earnings to increase (decrease) for most firms during

boom (recession). Specifically, I assume:

uit = vt + εit,

where vt is a fixed “time” effect capturing cross-sectional correlation of the error terms. εit is

independent across i but could be correlated across time. I do not impose a specific structure on

εit. It could contain both fixed “portfolio” effect and a time decaying term.

It is straightforward to eliminate the fixed “time” effect through a cross-sectional demean

procedure:

Yit − Yt = (Xit−1 −Xt−1)β + εit − εt, (34)

where variables with an upper bar denote those variables’ cross-sectional mean at time t.

Define

Y ∗it = Yit − Yt,

X∗
it−1 = Xit−1 −Xt−1,

ε∗it = εit − εt,

(34) becomes:

Y ∗it = X∗
it−1β + ε∗it. (35)

Without imposing distributional assumption, I can estimate β and its standard error using

GMM with moment conditions:

f = E[X∗(Y ∗ −X∗β)] = 0.

The estimate of β is numerically identical to the OLS estimate (X∗0X∗)−1X∗Y ∗ and

var(β) = d−1Sd−10,

where

50



d = X∗0X∗,

and S is computed using Newey-West method with M lags:

S =
NX
i=1

Ã
TX
t=1

X∗0
it−1ε

∗0
itε
∗
itX

∗
it−1 + 2

T−1X
t=1

TX
s=t+1

w(t− s)X∗0
it−1ε

∗0
itε
∗
itsX

∗
is−1

!
,

w(t− s) = 1− (t− s)/(M + 1).

51



 52

 
 

 
 

Figure 1: Relationship between the cash flow duration (z) and the fixed-income Macaulay duration 
for various cash flow covariances in Bansal and Yaron’s (2004) economy. The parameters for the 
baseline case are found in Appendix A3.3.
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Figure 2: Expected return and cash-flow-to-price ratio as functions of duration and covariance risk 
for the baseline case in Bansal and Yaron’s (2004) economy. The parameters for the baseline case 
are found in Appendix A3.3. 
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Figure 3: Two-factor cash flow model as an approximation for the baseline case in Bansal and 
Yaron’s (2004) economy. The parameters for the baseline case are found in Appendix A3.3. 
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     Holding period dimension        
               

    buy-and-hold        Cross-
section 

dimension 
t           t+12   

 b1t              
 ↓              
 b10t              
 s1t              
 ↓              
 s10t              
               
      buy-and-hold       
  t+1           t+13  
  b1t+1             
  ↓             
  b10t+1             
  s1t+1             
  ↓             
  s10t+1             
               
       buy-and-hold      
   t+2           t+14 
   b1t+2            
   ↓            
   b10t+2            
   s1t+2            
   ↓            
   s10t+2            
               
      time-series dimension       

Figure 4: Each year, 10 size-sorted and 10 book-to-market-sorted portfolios are formed and held for 12 years. 
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Figure 5: Realize and fitted excess returns of 20 portfolios. b1 and b10 are the extreme growth and 
value portfolios respectively and s1 and s10 are the smallest and biggest portfolios respectively. 
Details of the cross-sectional regressions are in Table 5. 
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Figure 6: Realize and fitted excess returns of book-to-market (BM) and size double sorted 
portfolios. The first digit of the portfolio ID represents size rank (1: small and 3: big) and the 
second digit represents BM rank (1: low book-to-market and 5: high book-to-market).  Details of 
the cross-sectional regressions are in Table 7. 
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Table 1: Cross-sectional regression and variance decomposition using simulated data 
 
 
I vary λ from -1.5 to 7.5 and z from -2.5 to 2.5 with increments of 0.1, to generate a cross-section 
of expected excess returns numerically using the true asset pricing model. I then consider cross-
sectional regressions of the two-factor model with cash flow duration: 

Two-factor model: ( ),]/[ 2101
ii

t
i

t
i
tt zRfRE λγλγγ ++=+  

, a one-factor model without cash flow duration: 
One-factor model: ,]/[ 101

i
t

i
tt RfRE λγγ +=+  

and a three-factor model: 
Three-factor model: ( ) .]/[ 32101

i
t

ii
t

i
t

i
tt zzRfRE γλγλγγ +++=+  

The regression R-squares are reported for various cases. In addition, for each case, I decompose the 
cross-sectional variation in excess returns into three parts: the variation due to consumption growth 
innovation, expected growth rate innovation and time-varying volatility respectively. The relative 
importance of the three components, as measured by 1β , 2β and 3β , are also reported.  
 

Finally, in addition to varying λ and z, I also vary cash flow share mean reverting speed: φ  from 
0.96 to 0.995 and report the R-squares of the regressions with this larger cross-section. 
 
The parameters for the baseline case are found in Appendix A3.3. 
 
 

 Regression R-square Variance Decomposition 
 One-factor Two-factor Three-factor 1β  2β  3β  

Baseline       
 80.5% 98.8% 99.4% 1.043 -0.055 0.013 

Risk aversion:  γ  
5 78.1% 98.9% 99.5% 1.042 -0.044 0.002 

15 78.2% 98.0% 98.6% 1.042 -0.074 0.032 
Cash flow share mean reverting speed: φ  

0.96 64.0% 93.6% 96.2% 1.043 -0.055 0.013 
IES: ψ  

0.5 48.7% 95.3% 97.7% 0.772 0.211 0.017 
Consumption growth volatility: σ  

0.008 79.0% 98.7% 99.5% 1.023 -0.049 0.026 
0.014 83.0% 98.6% 99.2% 1.054 -0.061 0.007 

Cash flow share mean reverting speed: φ  varying from 0.96 to 0.995 
 50.7% 79.5% 81.2%    

 
 



 59

Table 2: Descriptive statistics of 20 portfolios 
 

At June each year, I sort all stocks of industrial firms traded on NYSE, AMEX and NASDAQ into 
10 size-sorted portfolios and 10 book-to-market-sorted portfolios. The portfolio characteristics at 
formation, annual returns and annual excess returns (in excess of risk free rate) first year after 
portfolio formation, are reported. All values are time-series averages across a sampling period from 
1964 to 2002. Market Equity (ME) is measured in millions. BM denotes the book-to-market ratio 
and D/P denotes the dividend yield where the dividend also includes share repurchase. 
 
I also directly test the validity of the AR(1) assumption on the cash flow share for the 20 portfolios. 
I first fit an AR(1) process for the cash flow share and compute the residuals. I then test whether 
these residuals violate the white noise condition using the Ljung-Box Q test.  Both the Ljung-Box 
(LB) Q test statistics and the associated p-values are reported. In addition, I also test the stationarity 
of the cash flow share using the Augmented Dickey – Fuller test with a constant and a lag of one. 
The t-values are reported (** means the hypothesis of a unit root can be rejected at 99% confidence 
level and * means the hypothesis can be rejected at 95% confidence level). The cash flow share in 
year t is computed as the log of the ratio between the portfolio cash flow (sum of common dividend 
and common share repurchase) and aggregate consumption during year t.  
 
Panel A: 10 book-to-market (BM) sorted portfolios      
 growth 2 3 4 5 6 7 8 9 value 
ME 1955.2 1334.0 992.4 889.4 640.1 561.5 458.0 356.1 269.6 143.8 
BM 0.155 0.290 0.407 0.522 0.641 0.770 0.920 1.106 1.369 1.858 
D/P 0.018 0.026 0.032 0.035 0.039 0.044 0.046 0.047 0.052 0.050 
Return 0.108 0.100 0.126 0.124 0.123 0.144 0.136 0.161 0.163 0.174 
Excess return 0.045 0.037 0.063 0.061 0.060 0.081 0.073 0.098 0.100 0.111 
LB Q test stat 7.48 5.91 15.90 15.70 10.62 12.38 6.45 27.52 9.96 10.57 
p-value 0.680 0.822 0.103 0.108 0.388 0.261 0.776 0.002 0.444 0.392 
ADF t-value -5.32** -4.24** -3.65** -11.19** -5.91** -6.78** -3.36* -3.33* -1.37 -3.01* 
           
Panel B: 10 size (ME) sorted portfolios        
 small 2 3 4 5 6 7 8 9 big 
ME 4.3 10.4 19.0 31.6 52.1 87.6 151.7 282.9 651.6 6184.6 
BM 1.100 0.977 0.932 0.871 0.819 0.770 0.733 0.678 0.632 0.575 
D/P 0.021 0.023 0.024 0.024 0.024 0.026 0.027 0.028 0.030 0.037 
Return 0.272 0.190 0.173 0.148 0.151 0.148 0.138 0.136 0.138 0.116 
Excess return 0.209 0.127 0.111 0.085 0.088 0.085 0.075 0.073 0.075 0.053 
LB Q test stat 5.37 7.16 13.80 9.21 10.34 4.05 3.71 10.51 10.05 5.28 
p-value 0.865 0.711 0.182 0.512 0.411 0.945 0.959 0.397 0.436 0.872 
ADF t-value -8.11** -6.10** -5.22** -7.79** -7.01** -7.62** -1.16 -1.64 -3.03* -4.71** 
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Table 3: Cash flow duration measures of 20 portfolios 
 
 
I measure duration risk using: 

[ ] [ ]
ρ
µκ

γ
−
−

−−= ∑ 1
c

t
e
t EEDur , 

where [ ]∑ e
tE  is the average sum of discounted future accounting returns since portfolio 

formation. Its estimation is discussed in Section IV, A.2 of the paper. The cutoff N is chosen to be 

5; [ ]tE γ  is the average log cash-flow-to-book-equity ratio at portfolio formation and 
ρ
µκ

−
−

1
c  = 

4.43 in the sampling period from 1964-1997. The t-values are computed using GMM standard 
errors which account for both cross-sectional and time-series error correlations with Newey-West 
formula of 5 leads and lags. The last two columns report the differences in the cash flow duration 
estimates between extreme portfolios. 
 
 
 
Panel A: 10 book-to-market (BM) sorted portfolios       

 growth 2 3 4 5 6 7 8 9 value (1-10) 
(1,2,3)-
(8,9,10) 

[ ]∑ e
tE  3.40 3.04 2.66 2.46 2.15 2.00 1.74 1.56 1.23 0.87   

[ ]tE γ  -2.35 -2.44 -2.54 -2.66 -2.71 -2.79 -2.89 -3.04 -3.16 -3.52   
Dur 1.32 1.05 0.77 0.69 0.43 0.36 0.20 0.17 -0.04 -0.04 1.36 1.02 

t-value 9.56 13.14 10.32 8.45 3.12 2.60 1.29 1.28 -0.18 -0.28 6.16 5.61 
             
Panel B: 10 size (ME) sorted portfolios         

 small 2 3 4 5 6 7 8 9 big (1-10) 
(1,2,3)-
(8,9,10) 

[ ]∑ e
tE  0.03 0.46 0.73 0.81 1.05 1.30 1.49 1.76 1.89 2.35   

[ ]tE γ  -4.07 -3.80 -3.73 -3.57 -3.46 -3.35 -3.27 -3.14 -3.01 -2.62   
Dur -0.33 -0.17 0.03 -0.05 0.08 0.21 0.33 0.47 0.46 0.54 -0.87 -0.65 

t-value -1.02 -0.59 0.14 -0.18 0.31 0.91 1.73 2.85 3.23 4.39 -3.32 -3.59 
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Table 4: Cash flow covariance measures of 20 portfolios 
 
 

I regress [ ]∑
=

++∆−+
N

n
nt

n cnte
0

1)1,(ρ  on ∑
=

++

N

n
nt

cn w
0

1)0(φρ for each of the 20 portfolios, where 

{ }tc w)0(φ  are consumption growth innovations. The regression coefficient Cov measures the cash 
flow covariance up to a scaling factor. I repeat the regressions for different horizon – N, and the 
associated sampling period for each N is from 1964 to 2002 – N. I report the OLS estimates in the 
first row and the associated t-values below. The t-values are computed using GMM standard errors 
which account for both cross-sectional and time-series error correlations with Newey-West formula 
of N leads and lags. The last two columns report the differences in the cash flow covariance 
estimates between extreme portfolios. 
 
The estimates of Cov at the horizon of N = 7 are finally chosen as the measures of covariance risk. 
They are highlighted in bold. 
 

 
Panel A: 10 book-to-market (BM) sorted portfolios 

 growth 2 3 4 5 6 7 8 9 value (1-10) 
(1,2,3)-
(8,9,10) 

 N = 5 -3.78 -2.54 -2.00 -1.38 -0.50 -0.61 0.13 0.00 1.25 0.98 -4.76 -3.52 
 -2.38 -3.61 -3.17 -1.86 -0.54 -0.66 0.13 0.00 0.92 1.41 -2.24 -2.24 
 N = 7 -4.39 -3.33 -2.50 -1.81 -0.20 -0.96 0.43 0.32 1.04 0.79 -5.18 -4.12 
 -2.58 -3.35 -3.91 -1.80 -0.17 -0.95 0.44 0.35 0.90 1.35 -2.37 -2.47 
 N = 10 -4.39 -4.15 -2.89 -2.95 -0.74 -1.48 -0.50 -0.22 0.29 0.03 -4.42 -3.84 
 -1.54 -2.27 -3.08 -5.09 -0.91 -1.96 -1.32 -0.33 0.57 0.13 -1.48 -1.76 
 N = 12 -3.58 -3.75 -3.50 -3.71 -1.67 -2.02 -0.66 -0.91 -0.78 0.01 -3.59 -3.05 
 -1.21 -1.77 -4.08 -6.66 -3.50 -4.02 -2.05 -2.39 -2.17 0.02 -1.25 -1.42 
             
Panel B: 10 size (ME) sorted portfolios         

 small 2 3 4 5 6 7 8 9 big (1-10) 
(1,2,3)-
(8,9,10) 

 N = 5 1.07 0.19 -0.53 0.25 -0.45 0.38 0.24 -0.71 -1.05 -0.64 1.70 1.04 
 0.54 0.15 -0.35 0.15 -0.28 0.21 0.16 -0.68 -1.13 -0.82 1.10 1.27 
 N = 7 3.16 0.96 0.24 0.67 0.27 0.73 0.91 -0.37 -0.76 -0.85 4.01 2.11 
 1.18 0.52 0.12 0.32 0.14 0.36 0.55 -0.34 -0.87 -1.25 1.95 1.56 
 N = 10 4.82 1.48 2.66 2.85 2.03 1.97 1.57 -0.17 -0.47 -1.41 6.23 3.67 
 1.22 0.58 0.85 1.14 0.95 1.23 0.94 -0.17 -0.71 -4.63 1.60 1.38 
 N = 12 5.07 2.82 3.21 3.69 3.27 2.74 2.02 0.04 -0.04 -1.60 6.68 4.23 
 1.10 0.84 0.96 1.37 1.52 1.77 1.21 0.05 -0.07 -3.29 1.35 1.24 
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Table 5: Cross sectional regressions 
 

Results of cross-sectional regressions of expected returns on the 20 portfolios on cash flow 
duration and covariance measures are presented in Panel A. The coefficient estimates are obtained 
from OLS regressions. However, the robust t-values are computed using GMM standard errors 
which account for both cross-sectional and time-series error correlations with Newey-West formula 
of 7 leads and lags. The one-stage GMM estimation is carried out by stacking moment conditions 
of both time-series regressions and cross-sectional regressions. For comparison, I also run the 
standard Fama-MacBeth regressions and report the associated (FM) t-values. 
 
Results of cross-sectional regressions of alternative models are presented in Panel B as benchmarks. 
I report both Fama-MacBeth t-values and Shanken’s t-values which account for errors in the 
estimates of factor loadings.  
 
Finally, both R-squares and adjusted R-squares of the regressions are reported. Sampling period is 
from 1964-1995. 
 
Panel A: Cross-sectional regression using cash flow risk measures 

 intercept Cov Dur x Cov R-square 
One factor:     
Coefficient 0.099 0.020  0.642 
FM t-value 2.38 2.90  0.622 

Robust t-value 2.22 1.97   
     

Two Factors:     
Coefficient 0.088 0.034 -0.020 0.824 
FM t-value 2.28 2.78 -2.06 0.804 

Robust t-value 1.96 1.95 -2.03  
 

Panel B: Cross-sectional regression of alternative models  
 intercept ∆c MKT SMB HML  R-square 
CAPM:       

Coefficient -0.051  0.117   0.472 
FM t-value -0.78  1.60   0.472 

Shanken’s t-value -0.65  1.25    
       
CCAPM:       

Coefficient 0.009 0.020    0.518 
FM t-value 0.26 2.25    0.518 

Shanken’s t-value 0.16 1.34     
       
FF three factors:      

Coefficient 0.072  -0.014 0.039 0.049 0.727 
FM t-value 1.35  -0.21 1.57 1.73 0.695 

Shanken’s t-value 1.22  -0.18 1.09 1.19  
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Table 6: Two-factor cash flow model with “ex-ante” duration measure  
 

At each year from 1965 to 1999, I compute ∑ e
t  for each of the 20 portfolios and regress ∑ e

t  on 
a set of instruments in a panel data setting: 
  
 , [ , , ].e

t t t tX u where X e DIV SGβ= + =∑  
e is the log(1+ROE); DIV is the log current book dividend yield ; SG is the sales growth. Variables 
with upper bars are cross-sectionally de-meaned so there is no constant term in the regression. The 
robust t value is computed in a GMM system using with Newey-West formula of 7 leads and lags. 
Details are contained in Appendix A4.2. The results of the panel regression are provided in Panel A. 
 

Given the estimate of e
t∑ , an “ex-ante” duration measure can be defined as: 

1
e c

t t tDur κ µγ
ρ

−
= − −

−∑  

I report the average sample values of [e, DIV, SG] and the average sample estimate of tDur for 
each of the 20 portfolios in Panel B. 
 
Finally, I repeat the cross-sectional regression of the two-factor cash flow with the “ex-
ante” duration measure Dur  and the results are reported in Panel C. 
 
 
Panel A: Panel regression results 
 

 Full Sample 1965 - 1982 1983 - 1999 
 e DIV SG R2 e DIV SG R2 e DIV SG R2 
β 5.775 21.056 0.772 0.803 3.740 18.386 0.301 0.726 6.825 18.754 2.948 0.847 
t 11.84 20.84 3.81 0.803 6.81 12.79 1.96 0.725 9.81 13.73 6.61 0.846 

robust t 6.11 9.38 1.84  6.42 13.46 1.18  5.95 6.74 5.03  
 

Panel B: Ex-ante cash flow duration measure 
 
10 book-to-market (BM) sorted portfolios     
 growth 2 3 4 5 6 7 8 9 value 

e 0.136 0.142 0.135 0.135 0.110 0.100 0.087 0.080 0.062 0.038 
DIV 0.101 0.091 0.079 0.070 0.066 0.062 0.056 0.049 0.045 0.032 
SG 0.271 0.249 0.220 0.203 0.175 0.148 0.128 0.122 0.100 0.065 

Dur  1.163 1.060 0.856 0.758 0.564 0.483 0.351 0.306 0.218 0.142 

           
10 size (ME) sorted portfolios       
 small 2 3 4 5 6 7 8 9 big 

e -0.023 -0.011 0.004 0.013 0.033 0.049 0.069 0.086 0.102 0.126 
DIV 0.019 0.023 0.024 0.028 0.031 0.035 0.038 0.043 0.048 0.071 
SG -0.008 0.071 0.127 0.156 0.182 0.207 0.230 0.253 0.234 0.206 

Dur  -0.006 -0.018 0.070 0.062 0.158 0.229 0.343 0.429 0.498 0.711 
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Panel C: Two-factor cash flow model with ex-ante cash flow duration measure 
 

 intercept Cov Dur x Cov R-square 
Coefficient 0.087 0.040 -0.027 0.818 
FM t-value 2.27 2.62 -2.00 0.797 

Robust t-value 1.94 1.91 -1.87  
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Table 7: Diagnostic cross-sectional regressions 
 

I report results on additional cross-sectional regressions using Fama-MacBeth methodology. The 
regression in Panel A replaces Dur x Cov by Dur. The regression in Panel B replaces Dur x Cov by 
D/P x Cov.  

 
I also include characteristics of the 20 portfolios in the regressions. Log(ME) denotes the log of 
market value of equity and Log(BM) denotes the log of book-to-market ratio. Both R-squares and 
adjusted R-squares of the regressions are reported. Panel C reports the results for the two factor 
cash flow model and Panel D reports results of the Fama-French three factor model. Sampling 
period is from 1964-1995. 
 
 
Panel A: Duration alone as the second factor 

 intercept Cov Dur R-square 
Coefficient 0.111 0.010 -0.044 0.658 
FM t-value 2.47 2.49 -1.46 0.618 

 
Panel B: Dividend yield as alternative duration measure 

 intercept Cov D/P x Cov R-square 
Coefficient 0.099 0.026 -0.220 0.647 
FM t-value 2.38 2.73 -1.13 0.606 

 
Panel C: Two factor cash flow model with portfolio characteristic 
 Intercept Cov Dur x Cov Log(ME) Log(BM) R-square 

Coefficient 0.131 0.024 -0.015 -0.008  0.867 
FM t-value 1.51 3.81 -2.19 -0.78  0.842 
Coefficient 0.091 0.031 -0.022  0.016 0.831 
FM t-value 2.56 1.93 -2.98  0.49 0.799 

 
Panel D: FF 3 factor model with portfolio characteristic 
 Intercept MKT SMB HML Log(ME) Log(BM) R-square 

Coefficient 0.128 -0.012 0.028 0.035 -0.009  0.733 
FM t-value 1.78 -0.20 0.94 1.42 -1.85  0.701 
Coefficient 0.062 0.050 0.021 -0.091  0.097 0.783 
FM t-value 1.17 0.80 0.74 -2.24  4.27 0.758 

 
Panel E: FF 3 factor model v.s. Two factor Cash flow model 
 Intercept MKT SMB HML Cov Dur x Cov R-square 

Coefficient 0.082 -0.016 0.024 0.036 0.023 -0.020 0.876 
FM t-value 1.49 -0.25 0.81 1.33 4.85 -3.06 0.831 
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Table 8: Book-to-market / size double sorted portfolios results 
 

I repeat the estimations and asset pricing tests for 9 book-to-market / size doubled sorted portfolios. 
Panel A reports the descriptive statistics and the point estimates of Cov & Dur of the nine 
portfolios. Panel B reports Fama-MacBeth cross-sectional regression results of the two factor cash 
flow model using all nine portfolios and the regression results when the small growth portfolio is 
excluded. Sampling period is from 1964-1995. 
 

 
Panel A: Characteristics of the portfolios     
 Annual execess return     
 growth  value     
small 0.062 0.131 0.196     
 0.042 0.109 0.141     
big 0.046 0.065 0.100     
        
 Book-to-market  Size (million $) 
 growth  value  growth  value 
small 0.289 0.709 1.491  25.13 18.04 8.17 
 0.296 0.700 1.403  166.11 111.05 37.87 
big 0.295 0.684 1.299  4678.29 2066.64 836.14 
        
 Cov  Dur 
 growth  value  growth  value 
small 3.89 1.02 2.90  -0.46 0.19 0.24 
 -0.30 0.63 0.98  0.40 0.47 0.13 
big -2.33 -0.04 1.07  1.15 0.42 0.03 

 
 
Panel B: Regression results of the two factor cash flow model 
All nine portfolios: 
 intercept Cov Dur x Cov R-square 

Coefficient 0.101 0.009 0.026 0.525 
FM t-value 2.35 1.18 4.93 0.366 

     
Excluding the small growth portfolios: 
 intercept Cov Dur x Cov R-square 

Coefficient 0.071 0.053 -0.036 0.896 
FM t-value 1.60 5.33 -3.60 0.855 
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 Table 9: Duration and BM sorted portfolios 
 

At each year from 1975 to 1996, I sort all stocks first into 3 groups according to a rolling-window 
“ex-ante” cash flow duration measure, and within each group, I further sort stocks into 3 subgroups 
according to their book-to-market ratio. The book-to-market-ratio, annual excess returns, point 
estimates of cash flow duration and covariance are reported in the table. 
 

 BM  Excess Return 
 growth  value  growth  value 

Low Dur 0.502 1.063 2.269  0.063 0.077 0.123 
Med Dur 0.365 0.794 1.716  0.050 0.089 0.127 
High Dur 0.240 0.539 1.184  0.058 0.115 0.131 

        
 Dur  Cov 
 growth  value  growth  value 

Low Dur 1.28 0.22 -0.05  -3.83 -0.43 0.65 
Med Dur 0.67 0.92 0.71  -0.05 -0.22 4.14 
High Dur 2.41 2.77 2.76  -3.52 -1.30 0.18 

 
 

 


