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Abstract

In the Merton (1973) ICAPM, state variables that capture the evolution of the in-

vestor’s opportunity set are necessary to explain observed asset prices. We show that

augmenting the CAPM by a measure of market-wide volatility innovation yields a two-

factor model that performs well in explaining the cross-section of returns on securities in

several asset classes. The consistent pricing of volatility risk (with a negative risk pre-

mium) suggests that volatility risk indeed acts as a state variable rather than being just

another statistical factor. In addition, we propose a novel method for extracting volatility

risk factors from the cross-section and find it help to price assets, especially synthetic

volatility swaps.
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1 Introduction

The idea that volatility risk should be priced has received considerable attention in the

asset pricing literature.1 In a discrete-time version of the Merton (1973) intertemporal

capital asset pricing model (ICAPM), Campbell (1993) shows that any variable that fore-

casts future returns or future volatility is a good candidate state variable. This result is

simplified considerably in a continuous-time setting (with no jumps), where Nielsen and

Vassalou (2006) demonstrate that a single state variable (the instantaneous maximum

Sharpe ratio) is a sufficient statistic to describe the investor opportunity set. Empiri-

cally, Brennan, Wang, and Xia (2004) show that including a measure of innovations to

the maximum Sharpe ratio improves the performance of their pricing model significantly.

Without strong parametric assumptions, however, it is not practical to work directly with

Sharpe ratio innovations. Moreover, state variables that reliably forecast future returns

out-of-sample are hard to come by, as mixed evidence on return predictability shows.2

This implies that, to the extent Sharpe ratios are predictable, the predictability is likely

driven mainly by the predictability of the denominator.3

Most of the existing studies of volatility risk have almost exclusively investigated the

pricing of risk in portfolios of a single asset class (e.g., stocks). This approach, how-

ever, fails to fully leverage the strong implications of the ICAPM framework: If market

volatility is truly a state variable in the ICAPM sense rather than just another statistical

factor, it should be priced consistently across asset classes. Moreover, any valid proxy for

the underlying state variable should produce similar results in asset pricing tests. The

discipline imposed by cross-asset class pricing improves statistical power against certain

alternatives that might otherwise yield a spuriously high volatility risk premium.

It is well known that linear beta pricing may incorrectly price non-linear payoffs, as

noted by Wang and Zhang (2006) among others. For instance, in a model where some

stocks have higher betas in down markets and lower betas in up markets, a spurious
1We review this literature in detail in the next section.
2see Boudoukh, Richardson, and Whitelaw (2008), Campbell and Thompson (2008), Cochrane (2008), Lettau

and Nieuwerburgh (2008), and Welch and Goyal (2008)
3A point Breen, Glosten, and Jagannathan (1989) make in a market timing context.
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finding of a negative volatility risk premium is to be expected, as we show in Appendix A.

Yet, in such a non-linear beta world, other asset classes, say, static delta-neutral option

portfolios, should not show any significant volatility premium in pricing. On the other

hand, the finding of a very high negative volatility risk premium in the market for certain

stock options may in part reflect a liquidity premium earned by option market makers

rather than a risk premium, but this should not be reflected in, say, bond prices.4

To our best knowledge, our paper is the first to examine the pricing of volatility risk

across multiple asset classes in a coherent framework using a single volatility proxy, which

allows us to compare not only the sign but also the magnitude of volatility risk premium

across various asset classes.5 We find that a simple two-factor model, consisting of the

market excess return factor and a volatility innovation factor, can price different assets

such as portfolios of stocks, stock options and corporate bonds. Consistent with the prior

literature, we find a significant negative volatility risk premium especially in the stock

and the option market. The volatility risk premium is also negative but not significant for

corporate bonds, due to the fact that the corporate bond returns are extremely volatile

during the short sample period we examine. Adding to the literature, we establish that

the magnitude of the volatility risk premium is similar across asset assets, supporting

the notion that volatility is a state-variable in the ICAPM sense and not just another

statistical pricing factor derived from an underlying factor structure in asset returns.

We measure the volatility innovations using a number of commonly used broad-based

stock indices. These measures all perform similarly in our asset pricing tests, although

it is crucial that a measure of unforecastable innovations be used rather than levels or

first-differences, and it appears that value-weighted indices do better than equal-weighted

ones.

One area of some concern is the arbitrariness of the stock index choice, which results in

a volatility proxy that may be affected by time-varying portfolio weights and correlations.

A novel alternative approach, which we pursue in this paper, is to construct a “non-

parametric” volatility proxy by analyzing the cross-section of realized monthly volatility
4Deng (2008) for instance finds that option market inefficiencies are first order important.
5More recently Bollerslev, Marrone, Xu, and Zhou (2011) have studied volatility risk pricing across countries.
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innovations of US equities over a long sample period. We find that the (unbalanced)

panel of univariate volatility innovations is well described by a simple factor structure.

Moreover, the principal factor is highly correlated with the various market index volatility

innovations, although substantially less noisy and yields the best pricing performance of

the volatility measures considered.

An additional advantage of the non-parametric principal component analysis is that it

allows us to entertain the possibility of more than one priced component of stock market

volatility. When we price synthetic volatility swaps, it appears that at least one additional

volatility factor may be helpful in explaining the cross-section of swap returns.

We find that our simple two-factor model prices different assets as well as the Fama

and French (1993) three-factor model. The fact that the Fama-French three-factor model

has any pricing ability at all beyond portfolios of stocks suggests that there is more to

the HML and SMB factors than merely sorting stocks into portfolios on the basis of a

characteristic that ex-post is correlated with expected stock returns, as McKinlay (1995),

and Ferson, Sarkissian, and Simin (1999) suggest. This is confirmed by the close relation

between the loadings on the HML and SMB factors and the loading on our volatility

factor. The finding is robust across asset classes, and, in fact, augmenting our two-factor

model by the HML and SMB factors yields no further improvement in pricing ability.

Liewa and Vassalou (2000), Vassalou (2003), and Petkova (2006) suggest that the

Fama-French factors are related to macroeconomic variables that appear to span the SMB

and HML factors (or their projection onto the payoff space of size and book-to-market

sorted portfolios). Their work is very different from ours, as it is based on arbitrage

pricing theory (APT) rather than the ICAPM. The fact that the HML and SMB factors

appear related to macroeconomic variables is of course not entirely surprising, as the link

between stock market volatility and indicators of economic fundamentals has been well

documented (see Schwert (1989) and Hamilton and Lin (1998) among others).

The remainder of the paper is structured as follows. Section 2 briefly reviews the

pricing of volatility risk and the most closely related empirical literature. Section 3 dis-

cusses the measurement of aggregate volatility innovations while section 4 investigates the

pricing implications for portfolios of stocks, stock options, and corporate bonds. Section
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5 concludes.

2 The Pricing of Volatility Risk

Aggregate market volatility is a natural state variable that describes the investor’s in-

vestment opportunity set, and, in the Merton (1973) ICAPM framework, covariance with

volatility innovations will therefore be priced. In a discrete time setting with Epstein-

Zin utility and time-varying volatility, Campbell (1993) derives an equation for the (log-

linearized) stochastic discount factor as a function of the current market return and in-

novations in expectations about future market return and volatility:

mt+1 = γEt∆rm,t+1 + (1− γ)(Et+1 − Et)
∞∑
j=1

ρjrm,t+1+j

− θ

2σ (Et+1 − Et)
∞∑
j=1

ρjVart+j [∆ct+j+1 − σrm,t+j+1] (1)

where rm and ∆c represent the (log) market return and aggregate consumption growth,

respectively. Since aggregate consumption growth is less volatile than the market return

empirically, we have Vart [∆ct+1 − σrm,t+1] ≈ σ2Vart [rm,t+1], and any factor that can

predict future market return (as in the second term) or predict future market volatility

(as in the third term) is therefore a good candidate state variable. Because volatility is

persistent, one may therefore argue that the volatility innovations of the stock market

index represents a reasonable choice of pricing factor.

We follow the empirical literature and abstract from the literal setting of Campbell

(1993). Instead we focus on the specific components of the stochastic discount factor

(SDF) made up by the (gross) market excess return (Rm) and volatility innovations (∆V ),

by positing the SDF specification:

Mt+1 = 1
Rf

(λ0 − λ1Rm,t+1 − λ2∆Vt+1) (2)

If we denote the investor’s value function by J and level of wealth by W , we can rewrite
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the coefficients in (2) as resulting from the investor’s first-order conditions:

λ1 = −JWWW/JW (≡ γ in (1) ) , λ2 = −JWV /JW

The SDF specification (2) leads to the pricing equation for an arbitrary asset’s (gross)

return Rt+1:

Et[Mt+1Rt+1] = 1 ⇒

Et[Rt+1]−Rf = λ1Covt(Rt+1, Rm,t+1) + λ2Covt(Rt+1,∆Vt+1) (3)

The model (3) represents the most parsimonious pricing framework in which to study the

relationship between volatility risk and expected returns. The sign of the variance risk

premium λ2 is likely to be negative for at least two reasons. First, all else equal, unex-

pectedly high volatility worsens the investor’s risk-return trade-off and hence corresponds

to a bad state of the world. Second, high volatility often coincides with periods of low

market returns so that assets that are highly sensitive to market volatility serve as a good

hedge (JWV > 0), and therefore should earn a lower expected return.

Examination of the risk-return relation implied in (3) is of fundamental importance to

the asset pricing literature. The existing research can be divided into two broad groups,

according to focus. Papers in the first group focus on the time-series risk-return relation.

To focus on the market return itself, (3) becomes:

Et+1[Rm,t+1]−Rf = λ1Vart(Rm,t+1) + λ2Covt(Rm,t+1,∆Vt+1) (4)

Many authors either fail to identify a statistically significant intertemporal relation be-

tween risk and return of the market portfolio or find a negative relation. Examples include

L.R. Glosten (1993), Whitelaw (1994), and Harvey (2001).

More recently, better estimating expected return and expected volatility or explicitly

accounting for hedging demands [the second term in (3)], several authors have found a

positive risk-return relation in the time series. French, Schwert, and Stambaugh (1987)

and Ghysels, Santa-Clara, and Valkanov (2005), for instance, estimate Vart(Rm,t+1) using
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squared daily returns, while Guo and Whitelaw (2006) explicitly model both the risk

component and the hedging component. Bollerslev, Tauchen, and Zhou (2009) consider

the difference between implied and realized variance, and show that it predicts future

market return. Moving away from a single market return, Bali (2008) establishes a positive

time series risk-return relation for a large cross-section of stock portfolios using a GARCH

estimation procedure. In a recent paper, Smith and Whitelaw (2009) suggest that a model

with a (counter-cyclical) time varying risk premium may resolve some of the difficulty in

identifying a positive significant λ1.

The second group of research examines the cross-sectional risk-return relation, partic-

ularly the pricing of volatility risk implied by the hedge component [the second term in

(3)]. If the volatility risk premium (λ2) is negative, then the asset with more sensitivity

to volatility risk should earn a lower average return in the cross-section. This approach

has been used to examine the pricing of volatility risk in the stock market. Ang, Hodrick,

Xing, and Zhang (2006), for instance, measure volatility risk using changes in the VIX

index from the Chicago Board Options Exchange. They document over their sampling

period of 1986 - 2000 a negative volatility risk premium, and confirm that stocks that

are more sensitive to volatility risk do earn lower returns. Adrian and Rosenberg (2008)

decompose the market volatility into separate long-run and short-run components and

show that the return covariance with each component is priced, and risk premia on both

components are negative.

The pricing of volatility risk has also been examined in stock options markets. The

identification strategy involves constructing a set of market-neutral option portfolios that

are sensitive only (or at least to first-order) to volatility risk, making it a clean test

asset for testing the pricing of volatility risk. Two examples are: (1) delta-hedged index

and individual stock options (see Bakshi and Kapadia (2003a), (2003b), and Duarte and

Jones (2007)); and (2) synthetic variance swaps (see Bondarenko (2004) and Carr and Wu

(2009)).

To see clearly how the identification works in the options setting, let Ro be the (gross)

return on a delta-neutral portfolio of options written on stock i, and let Vi be the volatility
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of the underlying. Using equation (3) and Stein’s lemma, we have:

λ1Covt(Ro,t+1, Rm) = λ1Et

[
∂Ro
∂Vi

]
Covt(Vi,t+1, Rm,t+1),

λ2Covt(Ro,t+1,∆Vt+1) = λ2Et

[
∂Ro
∂Vi

]
Covt(Vi,t+1,∆Vt+1)

= λ2β
V
i Et

[
∂Ro
∂Vi

]
Vart(∆Vt+1),

where βVi ≡ Covt(Vi,t+1,∆Vt+1)/Vart(∆Vt+1),

and all other partial derivatives are zero by portfolio construction. In this case (3) can be

rewritten as:

Et[Ro,t+1]−Rf = λ1Et

[
∂Ro
∂Vi

]
Covt(Vi,t+1, Rm,t+1) + (5)

λ2β
V
i Et

[
∂Ro
∂Vi

]
Vart(∆Vt+1)

Most of the recent empirical findings on variance risk in option markets can be under-

stood using the pricing equation (6). First, using index options data, the market price of

aggregate variance risk is shown to be negative as in Bakshi and Kapadia (2003a), Bon-

darenko (2004), and Carr and Wu (2009). Second, for the index option, Vi,t+1 = Vt+1 and

βVi = 1. The first term, λ1E
[
∂Ro,t+1
∂Vi

]
Covt(Vm, Rm), is usually estimated to be negative

(but close to zero) since down markets tend to be associated with above-average levels of

volatility. Therefore, if the option portfolios have very large negative returns on average,

as found elsewhere, it must be the case that λ2 is negative. Third, the excess return on the

options portfolio could be positive for an individual stock, as found in both Bakshi and

Kapadia (2003b) and Carr and Wu (2009). This is consistent with (6), provided that βVi

is negative, which means that the underlying stock tends to be less volatile than average

when aggregate volatility is high. Finally, in a cross-sectional regression, the expected

excess return on options portfolios should decline with βVi , which is documented by Carr

and Wu (2009) using synthetic variance swaps for a sample of 40 stocks and stock indices

(although their conclusion arguably may depend on a few index option outliers).

Our research falls squarely within the second group in that we focus on estimating
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λ2, but it differs from the literature in two important aspects. First, rather than focus

on the testing the pricing of volatility risk in a single market, we take the implications

of the ICAPM seriously and examine pricing performance across multiple asset classes

within a coherent pricing framework. While recent papers by Moise (2010) and DeLisle,

Price, and Sirmans (2011) have explored the pricing of volatility risk in alternative asset

classes such as treasury bonds and REITs, to our best knowledge, our paper is the first

to examine the pricing of volatility risk across stocks, bonds, and options in a coherent

framework using a single volatility proxy, which allows us to compare not only the sign

but also the magnitude of volatility risk premium across various asset classes. Second,

we examine the impact of the choice of volatility proxy and propose a non-parametric

measure of volatility innovations based on a principal component analysis, which allows

us to investigate whether more than one component of volatility risk is priced in a linear

beta pricing setting.

3 Measuring Aggregate Volatility Innovations

To examine the volatility risk premium, one needs to measure the aggregate volatility in-

novations first. In this section, we consider two ways to do that. We first follow standard

practice in the literature to proxy the aggregate volatility by the the volatility on equity

indices. As a non-parametric alternative, we also extract the aggregate volatility inno-

vation as the first principal component from a cross-section of individual stock volatility

innovations. This alternative allows us to extract additional volatility risk factors that

are potentially useful in cross-sectional asset pricing.

3.1 Stock index volatility innovations

The fundamental unobservability of the market portfolio, and hence market returns, as

pointed out by Roll (1977), applies equally to the measurement of volatility risk. While

stocks are a non-trivial element of the overall market portfolio, stock market volatility

risk is just one component of aggregate volatility risk. Yet if covariance with aggregate
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volatility risk is priced, and the assets of interest are, say, equities, equity options, or

low-grade corporate bonds, then stock market volatility risk is arguably a component of

first-order importance in determining this covariance. It is therefore reasonable to consider

stock market volatility as a proxy for aggregate volatility when we price such assets.6 In

fact, much of the literature on the pricing of volatility risk has implicitly followed this

logic by choosing stock index volatility innovations as the proxy for volatility risk.

As is the case with the CAPM, theory provides no guidance for which specific stock

index to choose, except that it should be broad-based and that value-weighted indices

are preferred. Moreover, any noisy proxy ought to lead to similar pricing implications.

Consistent with this conjecture, we confirm later that the CRSP value-weighted index and

the S&P 500 produce very similar pricing predictions and that the value-weighted indices

result in smaller pricing errors. The Dow Jones and the NYSE indices do slightly worse,

possibly because of reduced market coverage (e.g., the NYSE misses out on a big part

of the technology sector). Consequently, we choose to define our benchmark stock index

volatility estimates using the daily returns of the CRSP value-weighted index.

It is important to note that it is the unforecastable volatility innovations and not the

level of volatility itself that is priced.7 In order to identify innovations, one must first take

a stand on a reasonable forecasting model. Ang, Hodrick, Xing, and Zhang (2006) use

first-differences of stock index volatility as innovations, which implies a random walk fore-

casting model. In our data, the random walk model is inferior to the ARMA(1,1) in terms

of forecasting the log volatility of the CRSP value-weighted index, and the pricing per-

formance of the random walk innovations is significantly poorer than that of ARMA(1,1)

innovations. In Table 1, we justify the choice of the ARMA(1,1) model by its superior

average out-of-sample volatility forecast performance.

Specifically, for each stock and each month between January 1962 and December 2006,

we calculate realized volatility as the sum of squared daily returns. We then compute
6It would make a lot less sense to price, say, portfolios of Treasuries. In that case, other components of

volatility could be considered. For instance, yield curve volatility innovations can be extracted from options on
Treasury futures or from the swap curve based on swaptions, an exercise that we do not undertake.

7Figure 1 shows the time series of realized index volatility versus the options-implied index volatility. The
latter of course includes a risk premium, but nonetheless it is clear that the unanticipated component is sizable
and that investor expectations appear to react with a lag.
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one-month-ahead out-of-sample forecast errors of log realized volatilities based on 60-

month moving windows. We do not consider more sophisticated higher-frequency volatility

estimates since the lack the pre-requisite intra-day data would severely curtail our sample

size. The forecast model is fitted according to jump-filtered data to avoid dependence

on outliers, but the forecast errors are not filtered. We thus have for each stock a time

series of forecast errors under each model. We report the cross-sectional average and

median R2 from regressing the realization of log realized volatility onto its forecast. We

also report the fraction of stocks for which the intercept of this regression is insignificant

and the slope insignificantly different from one. Finally, we report the cross-sectional

average and median mean squared error (MSE). We conclude that ARMA(1,1), which

has the highest R2 and the lowest MSE, seems to be the best model specification (on

average) for computing expected future volatility. We therefore use ARMA(1,1) and the

corresponding one-period-ahead innovations in (log) realized volatilities as our measures

of aggregate volatility innovations, denoted as mktvolinno.

An alternative approach, is to impose a parametric assumption about the joint be-

havior of stock market returns and volatility (e.g., GARCH, EGARCH) and extract the

market volatility innovations as the in-sample model residuals. The use of in-sample resid-

uals, however, has the drawback of inducing a potential for look-ahead bias that must be

controlled for in subsequent asset pricing tests. Moreover, we do not want to build-in

any parametric dependence between first and second moments. We sidestep these issues

by instead relying on out-of-sample forecast errors from a parsimonious (univariate) fore-

casting model. We should emphasize that the choice of the ARMA(1,1) is deliberately

not made based on any ex-ante expectation of “optimal” pricing performance but merely

represents what in our sample appears to be a reasonable filter for extracting a measure

of unforecastable innovations.

3.2 Volatility factors from the cross-section

As an alternative to picking an arbitrary index, one can extract information about aggre-

gate volatility from the cross-section of individual stock volatility innovations. There are
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at least two reasons for conducting such an analysis. First, it allows us to confirm that

the stock index volatility innovations are indeed the principal common driver of individ-

ual stock volatility innovations, even though an index represents only a small subset of

all stocks (except for the CRSP index) and is subject to time-varying portfolio weights.

Second, we can entertain the possibility that more than one component of volatility is

priced in a linear beta pricing setting.8

We start with a cross-section of one-period-ahead ARMA(1,1) innovations in the (log)

realized volatilities of individual stocks. We then extract the principal components using

the approximate principal component analysis (APCA) of Connor and Korajczyk (1988).

We conduct the APCA in a rolling window 60 months long. We shift the rolling window

one month at a time to extract the entire time series of the principal components from

January 1967 through December 2006. Appendix B provides details on the estimation

procedure. There are of course many alternative methods of extracting systematic volatil-

ity innovations from the cross-section of individual stock volatilities. The method we

propose is only one of many possible, and is not intended to be optimal in any statistical

sense but merely intuitive and easy to implement.

Table 2 shows that the number of significant factors and their explanatory power re-

main remarkably constant over most of the 1967-2006 sample period. The first component

is clearly dominant; it consistently explains at least 15%-25% of the cross-sectional varia-

tion in volatility innovations with the notable exception of the early 1990s. The Bai and

Ng (2002) information criteria consistently suggest the presence of only one statistically

significant factor, so we will focus on the pricing implications of this factor. The second

and third factors are clearly less important statistically, accounting for less than 3%-4%

of the cross-sectional variation each, but could still be priced in the cross section.9 We

denote these first three principal components as F1, F2, and F3. The time series of

the first principal component (F1) along with the log volatility innovations of the CRSP
8We stress that the factors extracted from the cross section of stock return volatility innovations are very

different from statistical factors extracted from the cross section of stock returns.
9The mapping from statistical importance to pricing power not obvious. For instance, a factor may be

statistically important without carrying any pricing implications (e.g. a common component of idiosyncratic
volatility). On the other hand, a factor with low statistical significance can be an important pricing factor (e.g.
factors capturing long run risk).
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value-weighted market (mktvolinno) are shown in Figure 2. All volatility factors and inno-

vations throughout are normalized so that the market excess return has a regression slope

of −1 when regressed on the factor. The first factor is clearly similar to, but distinct from,

the market innovations, with a correlation of 0.77. In fact, it appears to be a smoothed

version of the index volatility innovations.

4 The Pricing of Volatility Risk Across Asset Classes

We test the performance of the two-factor (volatility augmented CAPM) in the cross-

section by considering pricing of stock portfolios, portfolios of stock options formed to

replicate variance swap contracts, and bond index portfolios, and comparing the estimated

risk premia.

4.1 Pricing tests using stock portfolios

We use the 25 Fama-French size/book-to-market portfolios as the test assets. Fama and

French (1992 and 1996) show that sorting on size and book-to-market ratio generates

cross-sectional variation in expected portfolio returns that is not explained by the CAPM.

We examine here whether augmenting the CAPM with our volatility risk factor might

help. We use the Fama-French three-factor model (1993) as a benchmark for comparison

over the sampling period from January 1967 through December 2006.

We estimate the factor loadings by regressing the monthly value-weighted returns on

the 25 portfolios on the market excess return factor (MKT ) and a volatility risk factor

(either mktvolinno or F1). The factor loadings are reported in Panel A of Table 3. In line

with the previous literature, we find growth stocks to have higher loadings on the MKT

factor or CAPM betas. Because value stocks with higher book-to-market ratios earn

higher average returns empirically, the CAPM is unable to explain the value premium.

When we examine the factor loadings on the volatility factor, we find that small and

value stocks have lower (more negative) volatility factor loadings than big and growth

stocks. In addition, the average volatility factor loadings in the cross-section are negative.
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This means that, on average, stock portfolios tend to do poorly when volatility increases

(consistent with the “leverage effect”), and this is more so for small and value stocks.10

The patterns in volatility betas are similar whether we measure the aggregate volatility

innovations using mktvolinno or F1. In their study of equity option pricing, Coval and

Shumway (2001) find a similar result: When regressing the excess return of size sorted

portfolios on the excess market return and the return to delta neutral straddles, small

stocks load more negatively on the straddle returns.

Once the factor loadings are estimated in the time series regressions, we test their pric-

ing in the cross-section using Fama and MacBeth (1973) cross-sectional regressions. Each

month, portfolio returns are regressed on the factor loadings. The regression coefficients

are then averaged across time to produce estimates of risk premia on the factors. The cor-

responding t-values are computed after accounting for the first-step estimation error and

potential error autocorrelation using the Newey-West correction with 12 lags. Lewellen,

Nagel, and Shanken (2010) argue that, when returns follow factor structures, the OLS R2

from cross-sectional regression may not be a good model performance measure. Following

their prescription, we calculate both OLS R2 and GLS R2. The results are presented in

Panel B of Table 3.

Across all models, we document a negative risk premium on the MKT factor. This

is not too surprising, given that value stocks are associated with higher returns but lower

CAPM betas. Petkova (2006) obtains a similar finding. One potential explanation is that

the market portfolio acts as a hedge against uncertainty in some missing state variables.

Consistent with this interpretation, we find a positive and significant intercept term in

the cross-sectional regressions across all models including the Fama-French three-factor

model.11 Another possible explanation is that risk premia are simply time varying, as

suggested by Smith and Whitelaw (2009). We do not here take a stand on the source of
10We note that a mechanical “leverage effect” does not drive the cross-sectional variations in volatility factor

loadings. Orthogonalizing the volatility factors on the market excess return factor and then computing the
volatility factor loadings using the residual volatility factors yields very similar results throughout our study.

11By contrast, Adrian and Rosenberg (2008) report a positive risk premium on the MKT factor, which they
obtain by imposing zero pricing error in the cross-section. Specifically, they set the intercept term to be zero in
the second-stage cross-sectional regressions, thereby imposing correct pricing of the risk-free asset. Due to this
difference, their volatility risk premia estimates are not directly comparable to ours.
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the possible mis-specification, but merely note that the two-factor model is a convenient

and parsimonious model for studying the relation between volatility risk and expected

returns.

As expected, the CAPM does not seem to explain return variation across the 25

portfolios over our sample period. The adjusted OLS R2 is a meager 0.174, and the GLS

R2 is even lower at 0.146. After including a volatility factor, the resulting two-factor model

does a remarkable job of explaining the returns on the 25 portfolios. When we use F1 as

the measure of aggregate volatility risk, the adjusted OLS R2 jumps to 0.841 and the GLS

R2 to 0.405. More important, the risk premium on the volatility factor is negative and

significant (-0.0045 per month with a t-value of -3.33). We obtain similar improvements

in R2s and a significantly negative volatility risk premium when we measure aggregate

volatility risk using mktvolinno. Interestingly, the 25 portfolios do not appear to load on

the second and third volatility principal components (F2 and F3) implying that there is

little evidence that additional components of volatility are priced in the stock sample.

The performance of our two-factor model is comparable to that of the Fama-French

three-factor model in explaining the returns on the 25 portfolios. Over the same sampling

period, the Fama-French three-factor model has a slightly lower adjusted R-square of

0.758. In Figure 3 we graph this result, for simplicity only considering F1 as the aggregate

volatility risk measure. Both our two-factor model (MKT and F1) and the Fama-French

three-factor model do a good job in fitting the cross-sectional variation in average excess

returns across the 25 portfolios. However, the size and book-to-market factors (SMB

and HML) are purely technical factors without clear economic interpretation while the

volatility risk factor has a more direct interpretation as a state variable in an ICAPM

framework.

4.2 Pricing tests using synthetic variance swaps

In this subsection, we examine the pricing of volatility risk in a cross-section of returns on

synthetic variance swaps constructed using portfolios of equity options. One complication

of working with synthetic variance swaps is that the panel is generally unbalanced. This
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occurs both because the number of stocks with liquid option chains increased over our

sampling period but also because the variance swap construction requires that a wide

range of (liquid) strikes be available which may not be the case in a given month. The

result is that there can be large gaps in the return data for a given swap contract. To

overcome this problem, we choose to work with log returns which will allow us to calculate

factor betas using the innovation in the realized volatility of the underlying stock rather

than the (at times unobserved) return on the swap contract itself.

4.2.1 Pricing framework

Let SWt denote the swap rate determined at time t for a contract that pays an amount

RVt+1 at time t+ 1, which is equal to the realized variance between t and t+ 1. Applying

the pricing formula with the stochastic discount factor (SDF) Mt+1 and denoting by mt+1

the log SDF, we have:

SWt = Et[Mt+1RVt+1] =⇒

SWt = Et[exp (mt+1 + logRVt+1)]

logSWt ≈ Et[mt+1] + Et[logRVt+1] + 1
2Vart[mt+1] + 1

2Vart[logRVt+1] (6)

+Covt [mt+1, logRVt+1]

Denote the one-period gross risk-free return by Rf,t+1 and rf,t+1 = logRf,t+1, we have:

1 = Et[Mt+1Rf,t] =⇒

0 ≈ Et[mt+1] + rf,t + 1
2Vart[mt+1]. (7)

Combining (6) and (7), we obtain the pricing equation:

Et

[
log

(
RVt+1
SWt

)]
− rf,t + 1

2Vart[logRVt+1] = −Covt [mt+1, logRVt+1] .

If we consider a linear beta pricing model where mt+1 = at − b′tFt+1 and ignore any

potential jump component in the volatility, the excess return of the variance swap (after
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the convexity adjustment term) is linear in volatility factor betas:

Et

[
log

(
RVt+1
SWt

)]
− rf,t + 1

2Vart[logRVt+1] = β′λt, (8)

βi = Covt(Fi,t+1, logRVt+1)/Vart(Fi,t+1),

λi,t = Vart(Fi,t+1)bi,t.

Variance swaps are traded mostly in the over-the-counter (OTC) market where prices are

not readily available,12, but price can be accurately replicated using portfolios of calls

and puts discussed in Bondarenko (2004) and Carr and Wu (2009). Carr and Wu (2009)

shows that the variance swap contract can be replicated by a continuum of positions in

out-of-the-money (OTM) calls and puts:

SWi = EQ[RVi]
.= 2ert

T − t

∫ F

−∞

P (K)
K2 dK +

∫ ∞
F

C(K)
K2 dK. (9)

The weight on an option with a strike of K is w(K) = 2ert

(T−t)K2 . Equation (9) can be

estimated accurately by interpolating the implied volatility surface and using numerical

integration. In a cross-sectional regression, Carr and Wu (2009) test a similar version of

(8) using only one volatility factor — the volatility on the S&P 500 index. Working with a

small sample of 35 stocks and 5 indices, they document a negative risk premium. We test

(8) directly using aggregate volatility innovations and the volatility factors we extracted

using the APCA in a larger sample.

4.2.2 Empirical results

We obtain options data from the OptionMetrics’ Ivy database. Between 1997 and 2006,

on the Monday after the third Friday in each month, we retain the options that mature in
12The market for variance swaps has grown in size dramatically. According to Richard Carson, Deutsche

Bank’s London-based global head of structured products trading, the market for variance swaps was more than
e1 billion in vega in 2005, which represents about e300 billion of equivalent options notional.
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the next month that have at least 2 out-of-the-money calls and 2 out-of-the-money puts

and positive trading volume.13 We include 10 stock index options from the major index

list in OptionMetrics. The underlying stock indices are listed in Panel A of Table 4. The

number of individual stocks included in the sample per month increases from 50 in 1997

to more than 180 in 2006 (see Table 4, Panel B). The number of traded strikes per option

for individual stock options average around 6. The range of strikes on which index options

are traded is much wider; the average number of traded strikes per option is above 20.

For each option, OptionMetrics provides its implied volatility, adjusted for dividends and

the American exercise feature. We use these option-implied volatilities to compute the

implied variance swap rate SWi using (9).

As we are dealing with an unbalanced panel, we test the factor pricing model (8) using

the Fama and MacBeth (1973) regression approach. In each month t and for stock i with

variance swap rate SWi,t, we compute the stock’s factor betas by regressing Vi,t+1 on the

factors in a five-year rolling window.14 The conditional variance of realized volatility -

Vart[logRVi,t+1] is the in-sample ARMA(1,1) residual variance over the 60 months leading

up to time t for each individual stock. In each month t, we then run a cross-sectional

regression:

log
(
RVi,t+1
SWi,t

)
− rf,t + 1

2Vart[logRVi,t+1] = λ0,t + β̂′i,tλt + ui,t

and finally compute the time series average of λ0,t, λt and the associated t-values. We

also compute the Newey-West corrected t-values, which account for the autocorrelation

of the estimates with up to 12 lags .

The regression results are provided in Panel A of Table 5. For all volatility factor

models, the intercept terms of the regressions do not significantly differ from zero. It

follows that we cannot reject the factor models (8). In our two-factor model with the two

factors being market excess return (MKT ) and the volatility innovation on the CRSP
13We choose the Monday after the third Friday because options trading volume is much higher then due to

contract rollover. We skip the year 1996 because there are few options in each cross-section, and there are no
options data on most stock indices.

14We require a stock to have a minimum of 24 months of data to be included in the rolling window regression.
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value-weighted stock index (mktvolinno), the volatility factor (mktvolinno) carries a sig-

nificant negative risk premium: about -58 basis points per month (t-value = -3.53). When

we measure the aggregate volatility risk using the first principal component (F1) in the

two-factor model, we find that F1 also carries a significant negative risk premium. The

fact that F1 and mktvolinno produce similar results confirms the robustness of our two-

factor model to choice of the aggregate volatility risk measure. For brevity, we again focus

on F1 as the aggregate volatility risk measure for the rest of this subsection.

When we add the second volatility principal component (F2), the negative risk pre-

mium on F1 becomes even more significant. F2, while statistically important, is not

significantly priced. Finally, when we add the third volatility principal component (F3),

both F1 and F3 are priced with negative risk premia. Overall, both the first and the

third volatility factor seem to be important in pricing the cross-section of variance swap

contracts. This suggests that additional volatility risk factors, while less important in

pricing equity returns, could be helpful in pricing assets whose payoffs are directly tied to

volatility.

More important, the risk premium on the first volatility factor is still significantly

negative. In addition, we show that volatility risk premium of -0.0022 is similar to that

obtained from the stock market. In Panel B of Table 5, we estimate the two-factor model

in the 25 Fama-French size and book-to-market sorted portfolios during the same sampling

period. The volatility risk premium (coefficient on F1) is estimated at -0.0027. A paired

t-test fails reject the null hypothesis that these two risk premia are different (p-value of

the test is 0.5896, and the Newey-West t-value of -0.49 is also close to zero).

Interestingly, the Fama-French (1993) factors SMB and HML also turn out to be

useful in pricing the cross-section of variance swaps. As shown in Panel A, HML carries a

significantly positive risk premium (t-value = 2.81), and SMB is associated with a negative

risk premium that is close to significant (t-value = -1.62). The SMB and HML factors

are constructed to capture average return premia in the underlying equity market; the

fact that they are also helpful in pricing volatility-based assets suggests that they likely

capture state variable risk in the spirit of Merton’s ICAPM, confirming the conjecture by

Fama and French (1996). We explore this issue further later.
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The regression results can be more intuitively represented using a single cross-sectional

regression similar to that used in Carr and Wu (2009). From 1997 through 2006, for

each stock and index with more than 70 observations over the 10-year sample period, we

compute the time-series averages of the actual excess returns on their variance swaps.15

We then run a cross-sectional regression of these excess returns on their volatility factor

betas. The regression results are plotted in Figure 4. The Fama-French three-factor

model yields a respectable adjusted R-square (AR2) of 0.382. If we use the benchmark

two-factor model (MKT + F1) instead, the adjusted R-square improves to 0.45. As in

our pricing results, the third volatility factor provides additional explanatory power. A

four-factor model has an AR2 of 0.514. Moreover, the stock indices mostly lie below the

45 degree line, indicating that index options in fact are more expensive than individual

stock options. The relative expensiveness of index options shrinks with inclusion of the

additional volatility factors in the model, and, in contrast to the results in Carr and Wu

(2009), the negative estimate of the volatility risk premium is not driven purely by index

options.

Finally, we conduct out-of-sample pricing tests by estimating factor loadings and risk

premium during the in-sample period of 1997-2004 and then pricing the average variance

swap returns during the out-of-sample period from 2005-2006. We keep in sample stock

and index portfolios with more than 50 observations during the in-sample period and

more than 16 observations during the out-of-sample period. We use the corresponding

average variance swap returns and factor loadings during the in-sample period to estimate

factor risk premia. For each stock and index, we then compute a predicted excess return

on the variance swap as an inner product between factor betas (computed in the rolling

window ending in December 2004) and estimated factor risk premia suggested by the

pricing equation (8). We then plot the predicted variance swap excess returns against the

actual average excess returns during the out-of-sample period in Figure 5. We also report

the root mean square errors (RMSE). As in the earlier results, the benchmark two-factor

model does better than the Fama-French three-factor model in predicting future returns

on variance swaps, while addition of the additional volatility factors do not appear to help
15This leaves us with 46 observations in the cross-section.
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at the margin.

If a second and/or third volatility factor (F2 or F3) is indeed priced, it should ideally

have an economic interpretation. To access this question, we study the pattern of pricing

errors between the two-factor model (MKT + F1) and the four-factor model MKT +

F1 + F2 + F3). Figure 7 shows the change in the relative pricing error for each index

option portfolio as well as the average change in absolute relative pricing error across

GICS categories for individual stock options. The average absolute two-factor pricing

errors are shown as well. It appears that the additional volatility factors do help improve

the pricing of index options across the board, but are particularly helpful in reducing the

pricing error of the small-cap stock index (RUT). The pattern of changes in pricing errors

across sectors one the other hand is less clear-cut, with a somewhat stronger impact on

health care and technology. One interpretation of the (weak) evidence of additional priced

volatility factors is that an additional small-cap volatility risk factor is needed to explain

the cross-section of option portfolio returns. This may also be related to the non-linear

relation between size and volatility risk sensitivity documented in Panel A of Table 3.

4.3 Pricing tests using corporate bond index portfolios

Finally, we also examine total returns on Lehman Brothers US corporate bond index

portfolios across different maturities and credit rating categories.

Bond index returns from April 1990 through December 2006 are obtained from Datas-

tream. We exclude bond indices with missing returns during the sampling period. This

leaves us with 19 corporate bond index portfolios described in Panel A of Table 6. An

intermediate bond index portfolio includes bonds with maturities shorter than 10 years

and a long bond index portfolio includes bonds with maturities longer than 10 years.

The composition and the duration of the bond index portfolio changes over time. To

minimize the impact of time-varying duration on the asset pricing test, we compute the

excess returns on the bond index portfolio by taking the difference between the total

return on the bond index and the return on a portfolio of Treasury STRIPs constructed

with matching duration. Since this duration match is performed at the beginning of each
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month, the resulting excess returns will be less affected by the term structure of interest

rates but are of course still subject to the term structure of credit risk and liquidity.

We estimate the factor loadings by regressing the monthly excess returns on the 19

corporate bond portfolios on the market excess return factor (MKT ) and a volatility

risk factor (either mktvolinno or F1). The average excess returns and factor loadings are

reported in Panel A of Table 6. As expected, corporate bonds with lower credit ratings

earn higher average returns after adjusting for duration effects. The factor loadings on the

volatility risk factor (mktvolinno or F1) is negative across all bond portfolios, indicating

that the corporate bond return is lower during volatile periods. Corporate bonds with

lower credit ratings also have more negative volatility risk betas. This is especially true

when we use F1 as the measure of aggregate volatility. As a result, the average bond

returns are almost perfectly negatively correlated with volatility risk betas in the cross-

section, suggesting a negative volatility risk premium.

The negative volatility risk premium is confirmed in cross-sectional regressions. Each

month, portfolio excess returns are regressed on the factor loadings. The regression coef-

ficients are then averaged across time to produce estimates of risk premia on the factors.

t-values are computed after accounting for estimation error in factor loadings and also

error autocorrelation using the Newey-West formula with 12 lags. The results are pre-

sented in Panel B of Table 6. The risk premium on the volatility factor is indeed negative

(-0.0016 per month using F1). We obtain similar results with mktvolinno as the aggregate

volatility risk measure, and therefore will focus on F1 for the rest of this subsection.

The sampling period is short, and high-yield bond returns were extremely volatile

during the period, so the risk premium estimate is not significant. In fact, no factor is

significant across all models during this sampling period. In addition, the volatility risk

premium of -0.0016 is similar in magnitude to that obtained from the stock market during

the same sampling period. In Panel C of Table 6, we estimate the two-factor model in the

25 Fama-French size and book-to-market sorted portfolios for the same sampling period.

The volatility risk premium (coefficient on F1) is estimated to be -0.0018. A paired t-test

fails to reject the null hypothesis that the two risk premia are different (p-value of the

test is 0.9609 and the Newey-West t-value of -0.04 is also close to zero).
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Most of the models, including the two-factor model, do a good job of explaining the

cross-sectional variations in the average excess returns across the 19 bond portfolios. The

adjusted OLS R2 of the two-factor model (MKT and F1) is 0.937 (the GLS R2 is 0.819).

Adding two additional volatility risk factors does not improve the R2 much. The Fama-

French three-factor model has an adjusted R2 of 0.967 (the GLS R2 is 0.857).16 Figure

6 plots this result. Both our two-factor model and the Fama-French three-factor model

do a good job in fitting the cross-sectional variation in the excess returns across the 25

portfolios.

Overall, we find the two-factor model to be comparable to the Fama-French three

factor model in pricing the cross-section of corporate bond returns. The volatility risk

premium is also negative in the bond market and of a magnitude comparable to that in

the stock market. However, the risk premium is not significant for corporate bonds, due

to the fact that the corporate bond returns are extremely volatile during the short-sample

period we examine.

4.4 Interpreting the Fama-French factors

Throughout our tests, we find that the Fama-French (1993) three-factor model performs

much like our two-factor model in pricing average returns in the stock, option, and bond

markets. Why does the Fama-French three-factor model perform so well across asset

classes? The SMB and HML factors often construed as purely technical factors designed

to capture the cross-sectional variation in returns on book-to-market and size-sorted port-

folios, but not to price delta-neutral option portfolios.

Fama and French (1996) conjecture that their SMB and HML factors may be capturing

state variable risk in the spirit of Merton’s ICAPM. If so, it is not surprising that the

Fama and French (1993) three-factor model performs consistently well across asset classes

despite the fact that the factors are constructed using stock returns. To the extent that our

two-factor model is a more direct implementation of Merton’s ICAPM, we would expect
16The high R2 occurs because the returns on the 19 bond portfolios have a strong two-factor structure, with

the first factor (accounting for about 70% of the variation) the level of the corporate-Treasury spread, and the
second (accounting for roughly 20% of the variation) the investment-grade - non-investment-grade spread.
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comparable asset pricing performance between the three-factor model and our two-factor

model. Both Fama-French factors and the volatility factor could be capturing the state

variables with a significant amount of noise, leading to low correlations among the factors.

But for them to have similar asset pricing performance as implied by the CAPM, we would

expect factor loadings of test assets on these two set of factors to be closely related.

Panel A of Table 3 appears to indicate that there is a systematic relation between size

and book-to-market ratios on the one hand and sensitivity to volatility risk on the other.

We saw in particular that small stocks and value stocks are more sensitive to volatility risk

than large stocks (and hence should earn a higher return because the loading is negative).

This suggests that there may be a relation between volatility betas and HML and SMB

betas. This is explored in Figure 8. In Panel (a) we ask whether the volatility betas of

the 25 stock portfolios can be explained by their SMB and HML loadings. The answer is

yes, the adjusted R-square is around 90%, which explains why the two-factor model and

the three-factor model do about equally well in this sample.

Panels (b)-(c) show that the SMB loading is most closely related to volatility beta,

but that the relation is not a univariate one; using HML and SMB loadings together

yields a significant boost over using the SMB loading alone. This is reinforced by looking

at option portfolios in Figure 9. Here the relation is more noisy. The HML and SMB

loadings explain only about 28% of the cross-sectional variation in the principal volatility

betas. Interestingly, the HML and SMB betas also seem to span the loadings on the third

volatility factor (AR2 ≈ 34%) but not the betas of the second volatility factor, which does

not help in pricing (compare with Figure 5). Correspondingly, the three-factor model

has somewhat less explanatory power than the two-factor model, a respectable adjusted

R-square of 38% versus 45% and 51% for the models with one and three volatility factors,

respectively. The HML loading is most closely related to the volatility beta, while the SMB

loading appears unrelated but helps explain the loadings on the third volatility factor; the

opposite was true in the stock sample. Part of the reason for this difference may be that

the option portfolios fail to produce a clear spread in the SMB loadings, leading to very

imprecise point estimates.17

17In addition, the betas in the swap sample are based on 5-year rolling window regressions due to the extreme
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More formally, we compute the components of SMB and HML factor loadings that

are orthogonal to the volatility factor loadings. In the cross-section, we regress the factor

loadings on SMB on the factor loadings on our volatility factor F1. SMBRes refers

to the residuals of this regression. We also regress the factor loadings on HML on the

factor loadings on the volatility factor F1, and denote the residual as HMLRes. We then

include these residual Fama-French factor loadings in the Fama-MacBeth cross-sectional

regressions. The cross-sectional regressions are computed separately for the sample of

Fama-French 25 stock portfolios (1967:01-2006:12), the sample of 19 corporate bond index

portfolios (1990:05-2006:12), and the sample of variance swaps (1997:01-2006:12). The

results are presented in Table 7.

We find that the residual factor loadings on both SMB and HML add little incremental

explanatory power in the cross-section. In the stock sample, neither SMBRes norHMLRes

is significant, and the adjusted R2 of the regression actually drops (from 0.841 to 0.820).

In the bond sample, neither SMBRes nor HMLRes is significant again, and the adjusted

R2 of the regression improves by less than 3% (from 0.937 to 0.964). In the sample of

variance swaps, the increase in adjusted R2 is slightly higher at 6.8% (from 0.450 to 0.518)

and both SMBRes and HMLRes are significant. This may be explained by the fact that

SMB and HML span the third volatility factor, and indeed the three volatility factor

model has a comparable adjusted R2 of 51.4%.

4.5 Alternative volatility specifications

So far we have used the volatility innovations on the CRSP value-weighted stock index

mktvolinno and the principal component F1 as the proxies for volatility risk in the pricing

tests, and they perform very similarly. We can also evaluate of alternative specifications

based on observed stock index volatilities. In Table 8 we show the pricing performance

of two-factor models using stock and options portfolios where volatility risk carries a

significant negative risk premium.

In the options sample, all the broad-based market indices perform much the same

unbalanced nature of the panel. This leads to fairly noisy beta estimates, which may account for the weaker
spanning in the option sample versus the stock sample.
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as the volatility factor F1, provided innovations are constructed as ARMA(1,1) forecast

errors. If first-differences are used instead, the explanatory power is significantly reduced,

but the estimated risk premium is negative and significant in all cases. In the stock sample,

a slightly different picture emerges. All the indices have roughly the same explanatory

power (although the Dow Jones index does slightly more poorly), but all have lower levels

of significance than F1. One reason for this is evident in a look at Figure 2. The principal

volatility factor F1 tends to be much less noisy than the market index-based factors, and

what matters most for pricing are low-frequency persistent movements rather than high-

frequency transitory movements, a point raised in Adrian and Rosenberg (2008). In all

cases, however, the point estimate of the volatility risk premium is negative (although not

significant) when first-differences are used instead of ARMA(1,1) innovations.

We therefore conclude that the two-factor model (volatility-augmented CAPM) is ro-

bust to the choice of the broad-based market index used to proxy for market volatility.18 It

is, however, of first-order importance how innovations are defined. A naive first-difference

approach appears to work well in pricing book-to-market and size-sorted stock portfolios

but falls short in pricing options. This once again illustrates the importance of considering

multiple asset classes.

5 Conclusion

We find that a simple ICAPM-inspired two-factor model combining a measure of volatility

risk and the market excess return factor performs well in explaining the cross-section of

returns across portfolios of stocks, options, and corporate bonds. Using this coherent

pricing framework, we find that volatility risk is priced consistently, with a negative risk

premium of similar magnitude, across diverse portfolios of different assets. This suggests

that stock market volatility risk, as captured by the range of proxies we consider, acts as

a state variable in the ICAPM sense, and is not just yet another statistical pricing factor.

The Fama-French three-factor model performs surprisingly well even in pricing port-
18This may not appear surprising given the high correlation between these indices, but high correlation of

returns does not guarantee equally high correlation of second moments and does not ex-ante guarantee equal
pricing performance.
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folios of delta-neutral options. We provide direct evidence suggesting that the SMB and

HML factors are proxying for market volatility risk, thus supporting the Fama and French

(1996) conjecture that the Fama-French factors are indeed capturing state-variable risk.

We propose a “non-parametric” proxy for aggregate volatility risk by applying principal

component analysis to the cross-section of realized monthly volatility innovations of US

equities. Our results show that the principal factor is highly correlated with the various

market index volatility innovations although it is appear to be substantially less noisy

and thus yields the best pricing performance of the volatility measures considered. One

additional advantage of the principal component analysis is that it allows us to entertain

the possibility that more than one component of stock market volatility is priced. In the

pricing of synthetic volatility swaps, for example, it emerges that at least one additional

volatility factor may be helpful in explaining the cross-section of returns.
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A Non-linear Payoffs and Linear Beta Pricing

In a standard linear beta-pricing framework, non-linearities in payoffs may lead to an

inflated covariance with volatility risk and the finding of a volatility risk premium. The

reason linear pricing models have difficulty in pricing non-linear payoffs is that positivity of

the implied stochastic discount factor is not guarannteed, as Dybvig and Ingersoll (1982)

note in the context of the CAPM and Connor (1984) points out in the context of linear

factor models.19

To see how this mispricing may be confused with a volatility risk premium, consider

pricing a non-linear payoff within the standard CAPM model. The strategy consists of

buying one unit of the index and shorting θ out-of-the-money put options with strike

Kput < S0, where S0 is the level of the index. This payoff is shown in Figure 10 for

θ = 1/2 and can be interpreted as the payoff of a stock whose CAPM beta increases in

down markets (abstracting from idiosyncratic risk).

The put contracts has a negative CAPM alphas, implying that this strategy will have

a positive alpha (for θ > 0) and that the alpha increases with the number of contracts

θ. Denote by ∆RV ≡
∫ 1

0 σ
2
udu − E

[∫ 1
0 σ

2
udu

]
the volatility innovation estimated by the

econometrician. In models with “leverage” effects, Cov(Rstock,∆RV ) is negative, although

in practice, this effect tends to be small in magniture. The covariance Cov(Rput,∆RV ) is

positive. To see this, note that, all else equal, an unexpected increase in volatility is good

news for the existing owner of the option. Secondly, to the extent that the leverage effect

is present, it is even better news since the index value tends to fall. Thus, as strategy

which is long the index and short the put option will have a negative covariance with

volatility innovations, and the more negative the larger is θ. This therefore implies a

negative relation between the CAPM alpha and the volatility beta in such models leading

to the finding of a negative volatility risk premium.

Consider the constant elasticity of variance (CEV) model of Cox and Ross (1976),
19For en elegant exposition, seeWang and Zhang (2006) and Guasoni, Huberman, and Wang (2011) in the

context of performance evaluation.
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which for γ < 2 displays the leverage effect:

dSt = µStdt+ σS
γ/2
t dBt (10)

Since volatility is a deterministic function of the stock price, volatility risk is by construc-

tion absent. Nonetheless, a linear factor model will mistakenly imply that volatility risk

is priced.

To illustrate this, we conduct a Monte Carlo experiment, generating daily stock

prices (St) from model (10) with parameters µ = 8%/year, σ = 20%/year, and γ ∈

{0.0, 0.5, 1.0, 1.5}. We calculate the time series of monthly returns (??) for θ ∈ [0; 1] and

the realized volatility as the sum of squared daily returns during each month. From this

monthly time series (setting rf = 3%/year) the CAPM alpha and the volatility beta are

computed as for each level of optionality (θ) in the return. Figure 11 shows the relation

between the CAPM alpha and the loading on ∆RV in a two-factor volatility risk aug-

mented CAPM for θ ranging between 0 and 1 and for various values of elasticities γ. In the

CEV model, the result is a clear negative relation between CAPM α and the two-factor

model volatility beta, leading to a finding of a negative volatility risk premium.

While the CEV model is hardly a realistic model model of asset prices, it does illustrate

how small degrees of optionality in returns may lead to a non-trivial covariance with

volatility risk and (in the example) an overstated estimated volatility risk premium in a

linear factor pricing framework.

B Constructing a Volatility Innovation Index

Construction of a realized volatility innovation index extracted from the cross-section of

individual realized stock volatilities follows a two-step procedure. In the first step, we

follow common practice in the volatility forecasting literature and determine the volatility

innovations stock by stock from a univariate time series of estimated realized volatility

(see Andersen, Bollerslev, Christoffersen, and Diebold (2005)). In the second step, the

volatility innovations are then extracted from the large panel of individual stock volatility
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innovations by principal component analysis.20

For a given stock i during a given month t, we estimate the realized volatility by

RVi,t = 252
Nt

Nt∑
n=1

r2
it,n (11)

where Nt is the number of trading days in month t and rit,n is the return on stock i

on day n during month t. For pricing purposes it is convenient to work with the log

realized volatility, which has the additional advantage of having a near-Gaussian marginal

distribution. Once a time series of realized (log) volatilities is constructed, the task is

to extract the volatility innovations as the unforecastable component of month-to-month

volatility changes.

We follow common practice in the volatility forecasting literature and base our one-

step-ahead forecasts on univariate models. In order to avoid making any strict parametric

assumptions about the dynamics of individual stock volatilities, we focus on simple ARMA

filtering rules:21

Φ(L) log(RVi,s) = Θ(L)εi,s s = t− 59, . . . , t (12)

where the model is fitted using a moving 60-month window in order to accommodate

possible parameter non-stationarities. This estimation procedure also allows us to com-

pute the volatility innovations ε̂i,t+1 as the one-month-ahead out-of-sample forecast errors

rather than relying on in-sample residuals from the model with the best in-sample fit.

Table 1 in the text shows that the ARMA(1,1) model dominates alternative specifications

across all forecast evaluation measures, and we use it to extract the volatility innovations
20An alternative procedure would be first to extract principal components from a panel of realized volatilities

and then filter out the innovations to the extracted factors using a VARMA filter. This procedure has the
drawback that many factors are typically found in the first step because of strong serial dependence in the data,
and there is no easy way to determine the actual number of (non-dynamic) factors. For this reason, we choose
not to pursue this alternative strategy here.

21A large number of alternative volatility forecasting models have been considered in the literature. We rule
out implied volatility based estimates due to insufficient data and forego ARCH/GARCH models in order to
avoid building in any assumption about the joint behavior of first and second moments of returns. We also do
not report ARIMA and ARFIMA results since the one-step-ahead forecasting performance was too poor based
on estimation windows up to 120 months.

34



(13) throughout:22

ε̂i,t+1
def.≡ log(RVi,t+1)− Êt[log(RVi,t+1)] (13)

We assume that the volatility innovations have a common (systematic) component, Ft:23

ε̂t
N×1

= Γ
N×k

Ft
k×1

+ ηt
N×1

t = 1, . . . , T (14)

Assuming that the fitted forecast errors are only weakly dependent across time and across

stocks, Bai and Ng (2002) show that the Connor and Korajczyk (1988) approximate

principal component analysis (APCA) approach can be used to estimate the number of

factors and extract the common components from the cross-section of individual stock

volatility innovations.24 A key assumption underlying the factor structure specification

(14) is that the factor loadings Γ remain constant over the estimation period for a given

firm.

To address the concern of parameter non-stationarity, we opt to extract factors using a

rolling 60-month window as follows: The value of the k×1 vector of common components

in month t, Ft, is found by applying the APCA (14) to the (balanced) panel of log volatility

forecast errors {ε̂i,s}s=t−59,...,t for the subset of stocks with a complete record of forecast

errors during months t − 59, . . . , t. This procedure results in estimates {Fs}s=t−59,...,t of

which we keep only the time t value, Ft. Our time series of factor realizations is thus

the result of a sequence of overlapping window factor extractions. Apart from providing

us with robustness to parameter non-stationarity, this construction largely eliminates the

otherwise severe survivorship bias and enables us to work with much larger cross-sections,

as the ACPA procedure requires a continuous record for each stock. Table 2 shows that
22Note that the forecast errors (13) need not be serially uncorrelated, although they in practice exhibit very

low autocorrelation
23There turns out to be significant serial correlation in the extracted principal factor even though the univariate

forecast errors are approximately white. This strong predictability of the common component of individual stock
volatility forecast errors has yet to be exploited in the volatility forecasting literature.

24This leads to consistent estimation of the common components of the true log volatility innovations (as
min(N,T )→∞) as long as the measurement errors stemming from the first-step ARMA estimation are small,
as argued by Amengual and Watson (2007).
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only 149 firms are present every month during our 40-year sample period, much lower than

the number available in each 5-year window. The only cost is a likely loss of efficiency

compared to running a single factor extraction in the event the data is truly stationary.

If, on the other hand, the factor loadings Γ are not constant, running a single factor

extraction would allow us to detect of additional spurious factors.
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C Figures & Tables
Table 1: Out-of-sample model selection criteria. For each stock and each month between
January 1962 and December 2006, we calculate the realized volatility as the sum of squared daily
returns (subject to at most 5 trading days missing). We then compute the one-month-ahead out-of-
sample forecast errors of log realized volatilities based on 60-month moving windows. The forecast
model is fitted using jump-filtered data to avoid dependence on outliers, but the forecast errors are
not filtered. We thus have for each stock a time series of forecast errors for each model. We report
the cross-sectional average and median R2 from regressing the realization of log realized volatility
onto its forecast. We also report the fraction of stocks for which the intercept of this regression is
insignificant and the slope insignificantly different from one. Finally we report the cross-sectional
average and median mean squared error (MSE).

Model Average R2 Median R2
Fraction H0: α=0 
not rejected

Fraction H0: β=1 
not rejected

Average MSE Median MSE

ARMA(1,0) 0.181 0.161 0.733 0.752 0.681 0.531

ARMA(0,1) 0.135 0.108 0.683 0.691 0.750 0.582

ARMA(1,1) 0.211 0.198 0.744 0.762 0.647 0.498

ARMA(2,0) 0.194 0.176 0.709 0.734 0.671 0.516

ARMA(0,2) 0.150 0.127 0.644 0.662 0.727 0.565

ARMA(2,1) 0.204 0.187 0.665 0.685 0.658 0.505

ARMA(1,2) 0.201 0.183 0.622 0.648 0.662 0.508

ARMA(3,0) 0.201 0.183 0.661 0.684 0.663 0.507

ARMA(0,3) 0.168 0.148 0.602 0.621 0.709 0.549

ARMA(2,2) 0.191 0.172 0.486 0.516 0.683 0.523

ARMA(3,1) 0.199 0.180 0.571 0.594 0.667 0.511

ARMA(1,3) 0.194 0.176 0.508 0.529 0.678 0.520

ARMA(3,2) 0.187 0.166 0.399 0.412 0.691 0.534

ARMA(2,3) 0.186 0.166 0.403 0.428 0.692 0.535

ARMA(3,3) 0.184 0.161 0.310 0.328 0.701 0.547

Table 2: Results of the Asymptotic Principal Component Analysis (APCA).
From January 1967 through December 2006, we run an asymptotic principal component analysis
(APCA) in each of the eight five-year windows. We report: the number of stocks in each period;
the optimal number of factors according to the Bai and Ng (2002) information criteria; and the
percentage of the cross-sectional variance explained by each of the three first factors.

Period #Stocks
Factor 1 

%explained
Factor 2 

%explained
Factor 3 

%explained
IC1  

#factors
IC2  

#factors

January 1967 ­ December 2006 149 26.5% 4.2% 1.5% 2 2

January 1967 ‐ December 1971 621 15.0% 3.5% 2.8% 1 1

January 1972 ‐ December 1976 710 21.9% 3.4% 2.5% 1 1

January 1977 ‐ December 1981 799 15.2% 3.2% 2.7% 1 1

January 1982 ‐ December 1986 976 12.8% 3.4% 2.9% 1 1

January 1987 ‐ December 1991 922 34.0% 2.5% 2.2% 1 1

January 1992 ‐ December 1996 1159 8.1% 3.7% 3.0% 1 1

January 1997 ‐ December 2001 1105 24.1% 3.1% 2.6% 1 1

January 2002 ‐ December 2006 1220 20.7% 4.8% 3.4% 1 1
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Table 3: Cross-sectional Regressions on Fama-French 25 size / book- to-market
sorted portfolios. Panel A reports factor loadings and the associated t-values on the Fama-
French 25 portfolios sorted on size and book-to-market ratio. Panel B reports results from Fama
and MacBeth (1973) regressions. Each month, portfolio returns are regressed on the factor loadings.
The regression coefficients are then averaged across-time to produce estimates of risk premia on the
factors. t-values are computed after accounting for the estimation error in factor loadings and also
error autocorrelation using the Newey-West formula of 12 lags. The goodness of fit measures are
based on a regression of average returns on average factor loadings. The GLS R2 is calculated as in
Lewellen, Nagel, and Shanken (2010). The sampling period is 1967-2006.
Panel A: Factor loadings

small 2 3 4 big small 2 3 4 big
growth 1.459 1.447 1.369 1.264 1.013 28.1 37.5 42.4 52.2 56.6

2 1.224 1.164 1.105 1.074 0.956 27.3 37.7 46.8 53.3 54.8
3 1.069 1.017 0.960 0.969 0.851 29.0 36.2 40.7 43.6 40.0
4 0.981 0.959 0.890 0.902 0.793 28.0 33.9 35.4 38.2 32.1

value 1.003 1.028 0.976 0.976 0.821 26.2 30.7 31.0 32.3 25.4

small 2 3 4 big small 2 3 4 big
growth -0.627 -0.459 -0.333 -0.131 0.255 -3.5 -3.5 -3.0 -1.6 4.2

2 -0.722 -0.538 -0.295 -0.184 0.050 -4.7 -5.1 -3.6 -2.6 0.8
3 -0.594 -0.551 -0.351 -0.140 0.070 -4.7 -5.7 -4.3 -1.8 1.0
4 -0.640 -0.512 -0.272 -0.162 0.188 -5.4 -5.3 -3.1 -2.0 2.2

value -0.721 -0.630 -0.450 -0.219 0.080 -5.5 -5.5 -4.2 -2.1 0.7

small 2 3 4 big small 2 3 4 big
growth -0.912 -0.780 -0.534 -0.227 0.330 -2.4 -2.7 -2.2 -1.3 2.5

2 -1.160 -0.960 -0.661 -0.414 0.009 -3.5 -4.2 -3.8 -2.8 0.1
3 -0.977 -1.079 -0.783 -0.408 0.080 -3.6 -5.2 -4.5 -2.5 0.5
4 -1.108 -1.000 -0.662 -0.382 0.349 -4.3 -4.8 -3.6 -2.2 1.9

value -1.288 -1.199 -0.836 -0.491 0.176 -4.5 -4.8 -3.6 -2.2 0.7

Factor loading on MKT t -value

Factor loading on mktvolinno t -value

Factor loading on F1 t -value

Panel B: Cross-sectional regression results

CAPM + vol factors
Intercept MKT mktvolinno F1 F2 F3 Adj R 2 / GLS R 2

Coeff. 0.0136 -0.0058 0.174
t -value 3.54 -1.20 0.146
Coeff. 0.0177 -0.0121 -0.0070 0.821
t -value 4.16 -2.38 -2.72 0.420
Coeff. 0.0161 -0.0108 -0.0045 0.841
t -value 3.90 -2.18 -3.33 0.405
Coeff. 0.0148 -0.0095 -0.0052 0.0001 0.0000 0.837
t -value 4.07 -1.99 -3.88 0.96 -0.04 0.418
Fama-French Three-factor Model

Intercept MKT SMB HML Adj R 2 / GLS R 2

Coeff. 0.0137 -0.0085 0.0020 0.0049 0.758
t -value 4.38 -1.98 0.93 2.45 0.317
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Table 4: Option sample description. Panel A lists the 10 stock indices in the sample
taken from the list of major indices in OptionMetrics. Panel B lists the average number of stocks
and indices in our sample, and the average number of options associated with each stock/index
used in computing the variance swap rate.

Panel A: Stock indices included

Table 4: Option sample description. Panel A lists the average number of stocks and indices
in our sample, and the average number of strikes associated with each stock/index. Panel B lists
the 10 stock indices in the sample taken from the list of major indices in OptionMetrics.

 31

Panel A: Sample description 
 

Individual Stock Stock Index 
year Avg # of obs per 

month 
Avg # of strikes 

per option 
Avg # of obs per 

month 
Avg # of strikes 

per option 
1997 90.3 5.6 5.3 22.2 
1998 111.6 5.7 6.1 20.3 
1999 201.4 7.3 5.6 23.6 
2000 342.3 8.8 5.4 25.7 
2001 242.9 6.3 5.5 22.9 
2002 209.4 5.7 5.5 22.6 
2003 192.8 5.5 6.4 20.1 
2004 207.5 5.6 6.3 22.2 

 
Panel B: Stock index options included 
 

Index Name Ticker 
Dow Jones Industrial Average DJX 

NASDAQ 100 Index NDX 
CBOE Mini MNX 

AMEX Major Market Index XMI 
S&P 500 Index SPX 
S&P 100 Index OEX 

S&P Midcap 400 Index MID 
S&P Smallcap 600 Index SML 

Russell 2000 Index RUT 
PSE Wilshire Smallcap Index WSX 

 
 
Table 6: Panel A reports the average number of stocks and indices included in our sample, 
and the average number of strikes associated with each stock/index. 
Panel B lists the 10 stock indices included in the sample which are taken from the list of 
major indices in OptionMetrics. 
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Panel B: Sample description

year Num of obs
per month

Num of options
per underlying

Num of obs
per month

Num of options
per underlying

1997 50.0 5.8 5.4 22.5
1998 68.5 5.8 5.7 21.0
1999 96.4 6.5 5.7 23.4
2000 147.9 7.4 5.0 26.9
2001 134.3 6.0 4.5 25.5
2002 133.1 5.6 4.6 25.2
2003 122.3 5.4 5.4 21.8
2004 125.5 5.2 5.3 23.7
2005 143.1 5.5 5.9 23.3
2006 182.7 6.1 6.7 30.2

Average 120.4 5.9 5.4 24.3

Individual Stock Option Index Option
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Table 5: Cross-sectional regression results on variance swaps. Panel A reports
the cross-sectional regression results on variance swaps. F1 to F3 are the first three volatility
factors extracted using Asymptotic Principal Component Analysis (APCA). The Fama
and MacBeth (1973) cross-sectional regressions are estimated from 1997 to 2006. We
report the Newey-West t-values which account for the autocorrelation of the estimates with
a lag of 12. Panel B reports the cross-sectional regression results on the 25 Fama-French
stock portfolios during the same sampling period, which allows for a direct comparison
of volatility risk premium in these two markets. We direct test for the inequality of
the volatility risk premia in the two markets. The goodness of fit measures in Panel B
are based on a regression of average returns on average factor loadings. The GLS R2 is
calculated as in Lewellen, Nagel, and Shanken (2010). GLS R2 are not reported in Panel
A as the panel is unbalanced.

Panel A: Sample of variance swaps

CAPM + vol factors
Intercept MKT mktvolinno F1 F2 F3 Adj R2

Coeff 0 0671 0 0065 -0 0058 0 450Coeff. 0.0671 0.0065 -0.0058 0.450
t -value 0.98 1.16 -3.53
Coeff. 0.0740 -0.0010 -0.0019 0.450
t -value 1.20 -0.23 -2.63
Coeff. 0.0567 0.0033 -0.0022 0.0000 0.449
t -value 0.75 0.62 -2.72 1.05
Coeff. 0.0613 -0.0007 -0.0019 0.0285 0.0004 0.514
t -value 0.84 -0.13 -2.19 1.85 -2.26
Fama-French Three-factor Model

Intercept MKT SMB HML Adj R2

Coeff. -0.0058 0.0186 -0.0046 0.0114 0.383
t -value -0.12 3.56 -1.62 2.81

Panel B: Fama-French 25 portfolios in the same sampling period

Intercept MKT F1 Adj R 2 / GLS R 2

Coeff. 0.0116 -0.0070 -0.0027 0.737
t -value 1 44 -0 73 -1 57 0 454t -value 1.44 -0.73 -1.57 0.454
p-value of the equal-mean test: 0.5896
Newey-West t-value: -0.49
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Table 6 Cont’ed: Cross-sectional Regressions on 19 bond index portfolios.
Panel B: Cross-sectional regression results

CAPM + vol factors
Intercept MKT mktvolinno F1 F2 F3 Adj R 2 / GLS R 2

Coeff 0 0005 0 0048 0 899Coeff. 0.0005 0.0048 0.899
t -value 0.71 0.60 0.819
Coeff. 0.0004 0.0047 -0.0716 0.909
t -value 0.81 0.56 -0.21 0.838
Coeff. 0.0003 0.0002 -0.0016 0.937
t -value 0.45 0.01 -0.34 0.819
Coeff. 0.0002 0.0029 -0.0010 0.0000 0.0000 0.941
t -value 0.34 0.29 -0.32 0.28 0.03 0.868
Fama-French Three-factor Model

Intercept MKT SMB HML Adj R 2 / GLS R 2

Coeff. 0.0000 0.0105 -0.0113 0.0062 0.967
t -value -0.04 0.41 -0.32 0.46 0.857

Panel C: Fama-French 25 portfolios in the same sampling period

Intercept MKT F1 Adj R 2 / GLS R 2

Coeff. 0.0144 -0.0080 -0.0018 0.661
t -value 2 52 -1 19 -1 36 0 333t -value 2.52 -1.19 -1.36 0.333
p-value of the equal-mean test: 0.9609
Newey-West t-value: -0.04
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Table 7: Performance of residual Fama-French factor loadings. In the cross
section, we regress the factor loadings on SMB on the factor loadings on our volatility factor F1.
SMBRes refers to the residuals of this regression. Likewise, we regress the factor loadings on
HML on the factor loadings on our volatility factor F1 and denote the residual as HMLRes.
We then include these residual Fama-French factor loadings in the Fama-MacBeth cross-sectional
regressions. The cross-sectional regressions are done separately in the sample of Fama-French 25
stock portfolios (196701-200612), the sample of 19 corporate bond index portfolios (199005-200612)
and the sample of variance swaps (199701-200612).

Fama-French 25 portfolios, 196701-200612
Intercept MKT F1 SMB_Res HML_Res Adj R 2

Coeff. 0.0177 -0.0121 -0.0070 0.841
t -value 4.16 -2.38 -2.72
Coeff. 0.0145 -0.0092 -0.0042 -0.0001 0.0007 0.820
t -value 5.11 -2.48 -3.03 -0.05 0.44
Corporate bond index portfolios (duration adjusted), 199005-200612
Coeff. 0.0003 0.0002 -0.0016 0.937
t -value 0.45 0.01 -0.34
Coeff. 0.0008 0.0135 0.0025 -0.0165 0.0134 0.964
t -value 0.75 0.81 0.46 -1.19 0.76
Variance swaps, 199701-200612
Coeff. 0.0567 0.0033 -0.0019 0.450
t -value 0.75 0.62 -2.63
Coeff. 0.0753 0.0110 -0.0019 -0.0073 0.0077 0.518
t -value 1.12 2.27 -2.74 -2.86 2.16
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Table 8: Performance of alternative volatility specifications. We replace the
volatility factor F1 by the innovations in specific stock indices. The innovations are either
ARMA(1,1) out-of-sample forecast errors (denoted “inno”) or first differences (denoted “diff”).
The left panel shows the performance based on the option portfolios and the right panel the per-
formance based on the Fama-French 25 stock portfolios. The goodness of fit measures are based
on a regression of average returns on average factor loadings. For the FF25 (which is a balanced
panel), the GLS R2 is calculated as in Lewellen, Nagel, and Shanken (2010).

Model intercept mkt volfactor Adj R2 intercept mkt volfactor Adj R2/GLS R2

F1 coeff 0.0671 0.0065 -0.0019 0.450 0.0161 -0.0108 -0.0045 0.841
t-value 0.98 1.16 -2.63 3.90 -2.18 -3.33 0.405

mktvolinno coeff 0.0739 -0.0013 -0.0058 0.450 0.0177 -0.0121 -0.0070 0.821
t-value 1.20 -0.23 -3.53 4.16 -2.38 -2.72 0.420

NYSEvwdiff coeff 0.0429 0.0019 -0.0057 0.317 0.0210 -0.0156 -0.0063 0.824
t-value 0.81 0.29 -3.81 2.89 -1.91 -1.75 0.402

sp500diff coeff 0.0404 0.0021 -0.0050 0.286 0.0198 -0.0144 -0.0064 0.829
t-value 0.78 0.32 -3.93 3.13 -2.00 -1.99 0.425

djidiff coeff 0.0195 0.0094 -0.0023 0.235 0.0183 -0.0126 -0.0050 0.771
t-value 0.36 1.59 -2.59 2.00 -1.23 -1.43 0.340

NYSEvwinno coeff 0.0745 -0.0012 -0.0059 0.492 0.0173 -0.0119 -0.0065 0.826
t-value 1.30 -0.21 -4.39 4.07 -2.33 -2.76 0.420

sp500inno coeff 0.0701 -0.0010 -0.0057 0.473 0.0175 -0.0121 -0.0067 0.827
t-value 1.25 -0.17 -4.28 4.10 -2.36 -2.75 0.433

djiinno coeff 0.0483 0.0071 -0.0028 0.449 0.0159 -0.0099 -0.0052 0.759
t-value 0.76 1.31 -3.07 3.41 -1.81 -2.74 0.317

Volatility Swaps (1997-2006) FF25 portfolios (1967-2006)
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Figure 1: Unforecastable volatility innovations. We compare the monthly realized
volatility, RV, of the S&P 500 index (calculated as the square root of the annualized sum of squared
daily returns) with the option-implied risk-neutral expected S&P 500 volatility that month (captured
by the VIX). The y-axis can be interpreted as annualized return standard deviation, ranging from
less than 10% per year to close to 90% per year.
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Figure 2: Time series plot of standardized principal component. The principal
component extracted from the cross-section of individual stock log volatility innovations vs. the
time series of standardized market log volatility innovations. The innovation series are based on
ARMA(1,1) forecast errors of log realized volatility.
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Figure 3: Realized and fitted excess returns of the 25 Fama-French size and
book-to-market sorted portfolios. This figure shows average excess returns for the 25 size
and book-to-market sorted portfolios against the fitted excess returns from the two-factor model
and the Fama-French three-factor model.
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Figure 4: Average predicted and actual excess returns on variance swaps across
stocks and indices. From 1997 to 2006, for each stock and index with more than 70 observations,
we compute the time series averages of the actual excess returns on its variance swap. We then
run a cross-sectional regression of these excess returns on their factor betas. We plot the factor-
model-predicted excess returns against the actual excess returns on variance swaps separately for the
Fama-French three-factor model (FF3) and two-factor (MKT+F1), three-factor (MKT+F1+F2)
and four-factor (MKT + F1 + F2 + F3) models. The adjusted R-squares are also reported. Stock
indices are represented using (∗), and individual stocks are represented using (•).
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Figure 5: Average predicted and actual excess returns on variance swaps across
stocks out-of-sample. We estimate factor loadings and risk premium during the in-sample
period from 1997 through 2004 and then price the average variance swap returns during the out-of-
sample period from 2005 to 2006. We keep stock and index with more than 50 observations during
the in-sample period and more than 16 observations during the out-of-sample period. We use the
corresponding average variance swap returns and factor loadings during the in-sample period to
estimate factor risk premia. For each stock and index, we then compute a predicted excess return on
the variance swap as an inner product between factor betas (computed in the rolling window ending
in December 2004) and estimated factor risk premia suggested by the pricing equation (8). We
then plot the predicted excess returns on variance swaps against the actual average excess returns
during the out-of-sample period. We also report root mean square errors (RMSE). Stock indices are
represented using (∗), and individual stocks are represented using (•).
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Figure 6: Realized and fitted excess returns of the 19 bond index portfolios.
This figure shows average excess returns for the 19 bond index portfolios against the fitted excess
returns from the two-factor model and the Fama-French three-factor model.
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Figure 7: Change in pricing errors by inclusion of additional volatility factors.
We group individual stock option by their two-digit Global Industry Classification System (GICS)
classification and display the relative improvement in absolute pricing error from including two
additional volatility factors (vertical bars corresponding to the left y-axis) along with the average
absolute pricing error from the benchmark two-factor model (solid line corresponding to the right
y-axis). An individual stock symbol is included if the synthetic swap contract can be constructed
during at least 70 months. Index options are indicated by their tickers (first five bars).
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Figure 8: Spanning of the volatility beta by the Fama-French SMB and HML
betas. We regress the volatility betas estimated from stocks (FF25 portfolios) on the corresponding
Fama-French SMB and HML betas (including a constant). Panels (a)-(c) show the results based on
the 25 book to market and size sorted portfolios. The volatility beta (x-axis) is plotted against the
fitted value using the HML betas (panel c) or SMB betas (panel b) or both (panel a) on the y-axis.
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Figure 9: Spanning of the volatility beta by the Fama-French SMB and HML
betas. For each of the three principal volatility factors (columns denoted F1, F2, F3), we regress
the volatility betas estimated from options (synthetic variance swap contracts) on the corresponding
Fama French SMB and HML betas (including a constant). Panels (a)-(c) show the results for the
first volatility factor, F1, Panels (d)-(f) the results for the second volatility factor, F2, and Panels
(g)-(i) the results for the third volatility factor, F3. In each case, the volatility beta (x-axis) is
plotted against the fitted value using the HML betas (third row) or SMB betas (second row) or both
(first row) on the y-axis.
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• Consider a non-linear payoff:





Long 1 stock at price S0 = $1

Short θ puts at strike Kput < $1

Short θ/2 calls at strike Kcall > $1

S1

Payoff

Kput $1

1

Figure 10: A Non-linear payoff. The one-period payoff to investing S0 = $1 in the stock index
and shorting θ = 1

2 out-of-the-money puts (solid line) compared to the payoff to a $1 investment in
the stock index (dashed line).
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Figure 8: Volbeta and CXAPM α

6

Figure 11: CAPM Alpha - Volatility Beta. The relation between CAPM α and the factor
loading on realized volatility in an augmented CAPM. The stock price is assumed to follow the CEV
model: dSt = µSdt + σSγ/2dBt, where µ = 8%/year, σ = 20%/year. θ ∈ (0; 1) is the number of
puts shorted (as in Figure 10).
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