4.7 Gaussian Quadrature

Motivation: When approximate $\int_{a}^{b} f(x) d x$, nodes $x_{0}, x_{1}, \cdots, x_{n}$ in $[a, b]$ are not equally spaced and result in the greatest degree of precision (accuracy).

Figure 1 Trapezoidal rule

Figure 2 Gaussian quadrature

Consider $\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)$. Here c_{1}, \cdots, c_{n} and x_{1}, \cdots, x_{n} are $2 n$ parameters. We therefore determine a class of polynomials of degree at most $2 n-1$ for which the quadrature formulas have the degree of precision less than or equal to $2 n-1$.

Example Consider $n=2$ and $[a, b]=[-1,1]$. We want to determine x_{1}, x_{2}, c_{1} and c_{2} so that quadrature formula $\int_{-1}^{1} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)$ has degree of precision 3 .
Solution: Let $f(x)=1 . c_{1}+c_{2}=\int_{-1}^{1} 1 d x=2 \quad$ (Eq. 1) \quad Let $f(x)=x . \quad c_{1} x_{1}+c_{2} x_{2}=\int_{-1}^{1} x d x=0 \quad$ (Eq. 2)
Let $f(x)=x^{2} . c_{1} x_{1}^{2}+c_{2} x_{2}^{2}=\int_{-1}^{1} x^{2} d x=\frac{2}{3} \quad$ (Eq. 3) Let $f(x)=x^{3} . c_{1} x_{1}^{3}+c_{2} x_{2}^{3}=\int_{-1}^{1} x^{3} d x=1$
Use equations (1)-(4) to solve for x_{1}, x_{2}, c_{1} and c_{2}.
We obtain:

$$
\int_{-1}^{1} f(x) d x \approx f\left(\frac{-\sqrt{3}}{3}\right)+f\left(\frac{\sqrt{3}}{3}\right)
$$

Remark: Quadrature formula $\int_{-1}^{1} f(x) d x \approx f\left(\frac{-\sqrt{3}}{3}\right)+f\left(\frac{\sqrt{3}}{3}\right)$ has degree of precision 3. Trapezoidal rule has degree of precision 1.

Legendre Polynomials

Legendre polynomials satisfy: 1) For each $n, P_{n}(x)$ is a monic polynomial of degree n. 2) $\int_{-1}^{1} P(x) P_{n}(x) d x=0$ whenever $P(x)$ is a polynomial of degree less than $n\left(P(x)\right.$ and $P_{n}(x)$ are orthogonal).
First five Legendre polynomials: $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=x^{2}-1 / 3, P_{3}(x)=x^{3}-\frac{3}{5} x, P_{4}(x)=x^{4}-\frac{6}{7} x^{2}+\frac{3}{35}$.
Theorem 4.7 Suppose that x_{1}, \cdots, x_{n} are the roots of the nth Legendre polynomial $P_{n}(x)$ and that for each $i=1,2, \cdots n$, the numbers c_{i} are defined by

$$
c_{i}=\int_{-1}^{1} \prod_{\substack{j=1 ; \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} d x
$$

If $P(x)$ is any polynomial of degree less than $2 n$, then

$$
\int_{-1}^{1} P(x) d x=\sum_{i=1}^{n} c_{i} P\left(x_{i}\right)
$$

Remark: Gaussian quadrature formula (more in Table 4.12)

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

n	Abscissae $\left(x_{i}\right)$	Weights $\left(c_{i}\right)$	Degree of Precision
2	$\sqrt{3} / 3$	1.0	3
	$-\sqrt{3} / 3$	1.0	
3	0.7745966692	0.5555555556	5
	0.0	0.8888888889	
	-0.7745966692	0.5555555556	

Example 1 Approximate $\int_{-1}^{1} e^{x} \cos (x) d x$ using Gaussian quadrature with $\mathrm{n}=3$.

Gaussian quadrature on arbitrary intervals

Use substitution or transformation to transform $\int_{a}^{b} f(x) d x$ into an integral defined over $[-1,1]$.
Let $x=\frac{1}{2}(a+b)+\frac{1}{2}(b-a) t$, with $t \in[-1,1]$
Then

$$
\int_{a}^{b} f(x) d x=\int_{-1}^{1} f\left(\frac{1}{2}(a+b)+\frac{1}{2}(b-a) t\right) \frac{b-a}{2} d t
$$

Example 2 Consider $\int_{1}^{3} x^{6}-x^{2} \sin (2 x) d x=317.3442466$. Compare results from the closed Newton-Cotes formula with $\mathrm{n}=1$, the open Newton-Cotes formula with $\mathrm{n}=1$ and Gaussian quadrature when $\mathrm{n}=2$.
Solution:
(a) $\mathrm{n}=1$ closed Newton-Cotes formula (Trapezoidal rule): $\int_{1}^{3} x^{6}-x^{2} \sin (2 x) d x \approx \frac{2}{2}[f(1)+f(3)]=731.605$
(b) $\mathrm{n}=1$ open Newton-Cotes formula: $\int_{1}^{3} x^{6}-x^{2} \sin (2 x) d x \approx \frac{3}{2}\left(\frac{2}{3}\right)\left[f\left(\frac{5}{3}\right)+f\left(\frac{7}{3}\right)\right]=188.786$
(c) $\mathrm{n}=2$ Gaussian quadrature:

$$
\begin{aligned}
\int_{1}^{3} x^{6}-x^{2} & \sin (2 x) d x=\int_{-1}^{1} f\left(\frac{1}{2}(4)+\frac{1}{2}(2) t\right) \frac{2}{2} d t=\int_{-1}^{1}\left((t+2)^{6}-(t+2)^{2} \sin (t+2)\right) d t \\
& \approx\left(\left(\frac{\sqrt{3}}{3}+2\right)^{6}-\left(\frac{\sqrt{3}}{3}+2\right)^{2} \sin \left(\frac{\sqrt{3}}{3}+2\right)\right)(1)+\left(\left(\frac{-\sqrt{3}}{3}+2\right)^{6}-\left(\frac{-\sqrt{3}}{3}+2\right)^{2} \sin \left(\frac{-\sqrt{3}}{3}+2\right)\right)(1) \\
& =306.820
\end{aligned}
$$

