4.7 Gaussian Quadrature

Motivation: When approximate $\int_a^b f(x)dx$, nodes x_0, x_1, \dots, x_n in [a, b] are not equally spaced and result in the greatest degree of precision (accuracy).

Consider $\int_a^b f(x) dx \approx \sum_{i=1}^n c_i f(x_i)$. Here c_1, \dots, c_n and x_1, \dots, x_n are 2n parameters. We therefore determine a class of polynomials of degree at most 2n - 1 for which the quadrature formulas have the degree of precision less than or equal to 2n - 1.

Example Consider n = 2 and [a, b] = [-1,1]. We want to determine x_1, x_2, c_1 and c_2 so that quadrature formula $\int_{-1}^{1} f(x) dx \approx c_1 f(x_1) + c_2 f(x_2)$ has degree of precision 3. **Solution**: Let f(x) = 1. $c_1 + c_2 = \int_{-1}^{1} 1 dx = 2$ (Eq. 1) Let f(x) = x. $c_1 x_1 + c_2 x_2 = \int_{-1}^{1} x dx = 0$ (Eq. 2) Let $f(x) = x^2$. $c_1 x_1^2 + c_2 x_2^2 = \int_{-1}^{1} x^2 dx = \frac{2}{3}$ (Eq. 3) Let $f(x) = x^3$. $c_1 x_1^3 + c_2 x_2^3 = \int_{-1}^{1} x^3 dx = 1$ (Eq. 4) Use equations (1)-(4) to solve for x_1, x_2, c_1 and c_2 .

$$\int_{-1}^{1} f(x) dx \approx f\left(\frac{-\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$

1

Remark: Quadrature formula $\int_{-1}^{1} f(x) dx \approx f\left(\frac{-\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$ has degree of precision 3. Trapezoidal rule has degree of precision 1.

Legendre Polynomials

Legendre polynomials satisfy: 1) For each n, $P_n(x)$ is a monic polynomial of degree n. 2) $\int_{-1}^{1} P(x)P_n(x)dx = 0$ whenever P(x) is a polynomial of degree less than n (P(x) and $P_n(x)$ are orthogonal). First five Legendre polynomials: $P_0(x) = 1$, $P_1(x) = x$, $P_2(x) = x^2 - 1/3$, $P_3(x) = x^3 - \frac{3}{5}x$, $P_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}$.

Theorem 4.7 Suppose that x_1, \dots, x_n are the roots of the nth Legendre polynomial $P_n(x)$ and that for each $i = 1, 2, \dots n$, the numbers c_i are defined by

$$c_{i} = \int_{-1}^{1} \prod_{\substack{j=1; \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

If P(x) is any polynomial of degree less than 2n, then

$$\int_{-1}^{1} P(x) dx = \sum_{i=1}^{n} c_i P(x_i)$$

Remark: Gaussian quadrature formula (more in Table 4.12)

	$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} c_i f(x_i)$		
n	Abscissae (x_i)	Weights (c_i)	Degree of Precision
2	$\sqrt{3}/3$	1.0	3
	$-\sqrt{3}/3$	1.0	
3	0.7745966692	0.555555556	5
	0.0	0.8888888889	
	-0.7745966692	0.555555555	

Example 1 Approximate $\int_{-1}^{1} e^x \cos(x) dx$ using Gaussian quadrature with n = 3.

Gaussian quadrature on arbitrary intervals

Use substitution or transformation to transform $\int_a^b f(x)dx$ into an integral defined over [-1,1]. Let $x = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)t$, with $t \in [-1,1]$ Then

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f\left(\frac{1}{2}(a+b) + \frac{1}{2}(b-a)t\right)\frac{b-a}{2}dt$$

Example 2 Consider $\int_{1}^{3} x^{6} - x^{2} \sin(2x) dx = 317.3442466$. Compare results from the closed Newton-Cotes formula with n=1, the open Newton-Cotes formula with n =1 and Gaussian quadrature when n = 2. Solution:

(a) n = 1 closed Newton-Cotes formula (Trapezoidal rule): $\int_{1}^{3} x^{6} - x^{2} \sin(2x) dx \approx \frac{2}{2} [f(1) + f(3)] = 731.605$ (b) n = 1 open Newton-Cotes formula: $\int_{1}^{3} x^{6} - x^{2} \sin(2x) dx \approx \frac{3}{2} \left(\frac{2}{3}\right) \left[f\left(\frac{5}{3}\right) + f\left(\frac{7}{3}\right)\right] = 188.786$ (c) n = 2 Gaussian quadrature:

$$\int_{1}^{3} x^{6} - x^{2} \sin(2x) \, dx = \int_{-1}^{1} f\left(\frac{1}{2}(4) + \frac{1}{2}(2)t\right) \frac{2}{2} \, dt = \int_{-1}^{1} ((t+2)^{6} - (t+2)^{2} \sin(t+2)) \, dt$$
$$\approx \left(\left(\frac{\sqrt{3}}{3} + 2\right)^{6} - \left(\frac{\sqrt{3}}{3} + 2\right)^{2} \sin\left(\frac{\sqrt{3}}{3} + 2\right)\right) (1) + \left(\left(\frac{-\sqrt{3}}{3} + 2\right)^{6} - \left(\frac{-\sqrt{3}}{3} + 2\right)^{2} \sin\left(\frac{-\sqrt{3}}{3} + 2\right)\right) (1)$$
$$= 306.820$$