Doolittle's method of LU factorization

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]=L U=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
l_{21} & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
l_{n 1} & l_{n 2} & \ldots & 1
\end{array}\right]\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

By matrix-matrix multiplication

$$
\begin{gathered}
a_{1 j}=u_{1 j}, \quad j=1,2, \ldots, n \\
a_{i j}= \begin{cases}\sum_{t=1}^{j} l_{i t} u_{t j}, & \text { when } j<i \\
\sum_{t=1}^{i-1} l_{i t} u_{t j}+u_{i j} & \text { when } j \geq i\end{cases}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& u_{1 j}=a_{1 j}, \quad j=1,2, \ldots, n(1 \text { st row of } U) \\
& l_{j 1}=a_{j 1} / u_{11}, \quad j=1,2, \ldots, n(1 \text { st column of } L) \\
& \text { For } i=2,3, \ldots, n-1 \text { do } \\
& u_{i i}=a_{i i}-\sum_{t=1}^{i-1} l_{i t} u_{t j} \\
& u_{i j}=a_{i j}-\sum_{t=1}^{i-1} l_{i t} u_{t j} \quad \text { for } j=i+1, \ldots, n \text { (ith row of } U \text {) } \\
& l_{j i}=\frac{a_{j i}-\sum_{t=1}^{i-1} l_{j t} u_{t i}}{u_{i i}} \quad \text { for } j=i+1, \ldots, n \text { (ith column of } L \text {) }
\end{aligned}
$$

End

$$
u_{n n}=a_{n n}-\sum_{t=1}^{n-1} l_{n t} u_{t n}
$$

$L D L^{\boldsymbol{t}}$ factorization for positive definite matrix

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]=L D L^{t}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
l_{21} & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
l_{n 1} & l_{n 2} & \ldots & 1
\end{array}\right]\left[\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right]\left[\begin{array}{cccc}
1 & l_{21} & \ldots & l_{n 1} \\
0 & 1 & \ldots & l_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right] \\
& \\
& \text { For } i=1,2, \ldots, n \text { do } \\
& \quad d_{i}=a_{i i}-\sum_{t=1}^{i-1} l_{i t} l_{i t} d_{t} \\
& l_{j i}=\frac{a_{j i}-\sum_{t=1}^{i=1} l_{j t} l_{i t} d_{t}}{d_{i}}
\end{aligned}
$$

End

Cholesky factorization ($\boldsymbol{L L}^{\boldsymbol{t}}$) for positive definite matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]=L L^{t}=\left[\begin{array}{cccc}
l_{11} & 0 & \ldots & 0 \\
l_{21} & l_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
l_{n 1} & l_{n 2} & \ldots & l_{n n}
\end{array}\right]\left[\begin{array}{cccc}
l_{11} & l_{21} & \ldots & l_{n 1} \\
0 & l_{22} & \ldots & l_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & l_{n n}
\end{array}\right]
$$

By matrix-matrix multiplication

$$
\begin{aligned}
l_{11} & =\sqrt{a_{11}} \\
l_{j 1} & =\frac{a_{j 1}}{l_{11}} \quad \text { for } j=2, \ldots, n(1 \text { st column of } L)
\end{aligned}
$$

For $i=2,3, \ldots, n-1$ do

$$
l_{i i}=\left(a_{i i}-\sum_{k=1}^{i-1} l_{i k}^{2}\right)^{\frac{1}{2}}
$$

$$
\text { For } j=i+1, \ldots, n \text { do }
$$

$$
l_{j i}=\left(a_{j i}-\sum_{k=1}^{i-1} l_{j k} l_{i k}\right) / l_{i i}
$$

End

End

$$
l_{n n}=\left(a_{n n}-\sum_{k=1}^{i-1} l_{n k}^{2}\right)^{\frac{1}{2}}
$$

Crout factorization for Tridiagonal matrices

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & 0 & \ldots & \ldots & 0 \\
a_{21} & a_{22} & a_{23} & & & \vdots \\
0 & a_{32} & a_{33} & a_{34} & & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \\
\vdots & \ddots & \ddots & \ddots & \ddots & a_{n-1, n} \\
0 & \ldots & \ldots & 0 & a_{n, n-1} & a_{n n}
\end{array}\right]=L U=\left[\begin{array}{ccccc}
l_{11} & 0 & 0 & \ldots & 0 \\
l_{21} & l_{22} & 0 & & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & l_{n, n-1} & l_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
1 & u_{12} & 0 & \ldots & 0 \\
0 & 1 & u_{23} & & \vdots \\
0 & \ddots & \ddots & \ddots & u_{n-1, n} \\
0 & \ldots & \ldots & 0 & 1
\end{array}\right] \\
\begin{array}{c}
a_{11}=l_{11} \\
a_{i, i-1}=l_{i, i-1} \\
\text { for } i=2,3, \ldots, n \\
a_{i i}=l_{i, i-1} u_{i-1, i}+l_{i i}
\end{array} \quad \text { for } i=2,3, \ldots, n \\
a_{i, i+1}=l_{i i} u_{i, i+1}
\end{gathered} \quad \text { for } i=1,2, \ldots, n-1 \begin{array}{ll}
\end{array}
$$

Algorithm.

$$
\begin{aligned}
& l_{11}=a_{11} \\
& u_{12}=a_{12} / l_{11} \\
& \text { For } i=1,2, \ldots, n-1 \text { do } \\
& \quad l_{i, i-1}=a_{i, i-1} \\
& \quad l_{i i}=a_{i i}-l_{i, i-1} u_{i-1, i} \\
& u_{i, i+1}=a_{i, i+1} / l_{i i}
\end{aligned}
$$

End
$l_{n, n-1}=a_{n, n-1}$
$l_{n n}=a_{n n}-l_{n, n-1} u_{n-1, n}$

