1.2 Round-off Errors and Computer Arithmetic

- In a computer model, a memory storage unit word is used to store a number.
- A word has only a finite number of bits.
- These facts imply:
 - 1. Only a small set of real numbers (rational numbers) can be accurately represented on computers.
 - 2. (Rounding) errors are inevitable when computer memory is used to represent real, infinite precision numbers.
 - 3. Small rounding errors can be amplified with careless treatment.

So, do not be surprised that $(9.4)_{10} = (1001.\overline{0110})_2$ can not be represented exactly on computers.

IEEE floating point numbers

- Binary number: $(\dots b_3 b_2 b_1 b_0, b_{-1} b_{-2} b_{-3} \dots)_2$
- Binary to decimal: $(\dots b_3 b_2 b_1 b_0. b_{-1} b_{-2} b_{-3} \dots)_2 =$ $(\dots b_3 2^3 + b^2 2^2 + b_1 2^1 + b_0 2^0 + b_{-1} 2^{-1} + b_{-2} 2^{-2} + b_{-3} 2^{-3} \dots)_{10}$
- Double precision (long real) format
 - Example: "double" in C
- A 64-bit (binary digit) representation
 - 1 sign bit (s), 11 exponent bits characteristic (c), 52 binary fraction bits mantissa (f)

x	xxxxxxxxxxx	*****
S	С	f

Represented number (Normalized IEEE floating point number):

$$(-1)^{s}2^{c-1023}(1+f)$$

1023 is called exponent bias

$0 \leq characteristic (c) \leq 2^{11} - 1 = 2047$

- Smallest normalized positive number on machine has s = 0, c = 1, f = 0: $2^{-1022} \cdot (1+0) \approx 0.22251 \times 10^{-307}$
- Largest normalized positive number on machine has $s = 0, c = 2046, f = 1 2^{-52}: 2^{1023} \cdot (1 + 1 2^{-52}) \approx 0.17977 \times 10^{309}$
- Underflow: numbers $< 2^{-1022} \cdot (1+0)$
- **Overflow**: *numbers* > $2^{1023} \cdot (2 2^{-52})$
- Machine epsilon $(\epsilon_{mach}) = 2^{-52}$: this is the difference between 1 and the smallest machine floating point number greater than 1.

- Positive zero: s = 0, c = 0, f = 0.
- Negative zero: s = 1, c = 0, f = 0.
- Inf: s = 0, c = 2047, f = 0
- NaN: $s = 0, c = 2047, f \neq 0$

Decimal machine numbers

- Normalized k-digit *decimal machine* numbers: $\pm 0. d_1 d_2 \dots d_k \times 10^n$, $1 \le d_1 \le 9, 0 \le d_i \le 9$
- Any positive number within the numerical range of machine can be written:

$$y = 0.d_1d_2 \dots d_kd_{k+1}d_{k+2} \dots \times 10^n$$

Chopping and Rounding Arithmetic:

- Step 1: represent a positive number y by $0. d_1 d_2 \dots d_k d_{k+1} d_{k+2} \dots \times 10^n$ Step 2:
 - Chopping: chop off after k digits:

$$fl(y) = 0. d_1 d_2 \dots d_k \times 10^n$$

- Rounding: add $(5 \times 10^{-(k+1)}) \times 10^n$ to y, then chopping

- a) If $d_{k+1} \ge 5$, add 1 to d_k to get fl(y)
- b) If $d_{k+1} < 5$, simply do chopping

Errors and significant digits

Definition

If p^* is an approximation to p, the *absolute error* is $|p - p^*|$, and the *relative error* is $|p - p^*|/|p|$, provided that $p \neq 0$.

Definition

The number p^* is said to approximate p to t significant digits (or figures) if t is the largest nonnegative integer for which

$$\frac{|p - p^*|}{|p|} \le 5 \times 10^{-t}.$$

Finite-digit arithmetic

Machine addition, subtraction, multiplication, and division:

$$\begin{split} x \bigoplus y &= fl(fl(x) + fl(y)), \quad |x \otimes y = fl(fl(x) \times fl(y)) \\ x \bigoplus y &= fl(fl(x) - fl(y)), \quad x \bigoplus y = fl(fl(x) \div fl(y)) \end{split}$$

"Round input, perform exact arithmetic, round the result"

Catastrophic events

- a) Subtracting nearly equal numbers this leads to fewer significant digits.
- b) Dividing by a number with small magnitude (or multiplying by a number with large magnitude).

Avoiding loss of accuracy by reformulating calculations

Quadratic formula to find roots of $ax^2 + bx + c = 0$, where $a \neq 0$.

1.
$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

2. $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Key: Magnitudes of b and $\sqrt{b^2 - 4ac}$ decide whether we need to reformulate the formula.