
1.2 Round-off Errors and 
Computer Arithmetic 
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• In a computer model, a memory storage unit – 
word is used to store a number. 

• A word has only a finite number of bits.  

• These facts imply: 
1. Only a small set of real numbers (rational numbers) 

can be accurately represented on computers.  

2. (Rounding) errors are inevitable when computer 
memory  is used to represent real, infinite precision 
numbers. 

3. Small rounding errors can be amplified with careless 
treatment.  

So, do not be surprised that (9.4)10= (1001.0110)2 

can not be represented exactly on computers.  
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IEEE floating point numbers 
• Binary number: (… 𝑏3𝑏2𝑏1𝑏0. 𝑏−1𝑏−2𝑏−3 … )2 

• Binary to decimal: 
(… 𝑏3𝑏2𝑏1𝑏0. 𝑏−1𝑏−2𝑏−3 … )2=
(… 𝑏323 +𝑏2 22 + 𝑏121 + 𝑏020 + 𝑏−12−1 + 𝑏−22−2 + 𝑏−32−3 … )10 

• Double precision (long real) format  
– Example: “double” in C  

• A 64-bit (binary digit) representation 
– 1 sign bit (s), 11 exponent bits – characteristic (c), 52 binary fraction bits – 

mantissa (f) 

Represented number (Normalized IEEE floating point number): 
−1 𝑠2𝑐−1023(1 + 𝑓) 

1023 is called exponent bias 
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0 ≤ 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑐 ≤ 211 − 1 = 2047 
• Smallest normalized positive number on machine has 

𝑠 = 0, 𝑐 = 1, 𝑓 = 0:  2−1022 ∙ (1 + 0) ≈ 0.22251 ×
10−307 

• Largest normalized positive number on machine has 
𝑠 = 0, 𝑐 = 2046, 𝑓 = 1 − 2−52: 21023 ∙ (1 + 1 −
2−52) ≈ 0.17977 × 10309 

• Underflow: 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 < 2−1022 ∙ (1 + 0) 
• Overflow: 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 > 21023 ∙ (2 − 2−52) 
• Machine epsilon 𝜖𝑚𝑎𝑐ℎ = 2−52: this is the 

difference between 1 and the smallest machine 
floating point number greater than 1.   
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• Positive zero: 𝑠 = 0, 𝑐 = 0, 𝑓 = 0. 

• Negative zero: 𝑠 = 1, 𝑐 = 0, 𝑓 = 0. 

• Inf: 𝑠 = 0, 𝑐 = 2047, 𝑓 = 0 

• NaN: 𝑠 = 0, 𝑐 = 2047, 𝑓 ≠ 0 
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Decimal machine numbers 
• Normalized k-digit decimal machine numbers: 

±0. 𝑑1𝑑2 … 𝑑𝑘 × 10𝑛, 1 ≤ 𝑑1 ≤ 9, 0 ≤ 𝑑𝑖 ≤ 9 

• Any positive number within the numerical range of 
machine can be written: 

𝑦 = 0. 𝑑1𝑑2 … 𝑑𝑘𝑑𝑘+1𝑑𝑘+2 … × 10𝑛 

 

Chopping and Rounding Arithmetic: 

Step 1: represent a positive number 𝑦 by 
0. 𝑑1𝑑2 … 𝑑𝑘𝑑𝑘+1𝑑𝑘+2 … × 10𝑛 

Step 2:  
– Chopping: chop off after 𝑘 digits: 

𝑓𝑙 𝑦 = 0. 𝑑1𝑑2 … 𝑑𝑘 × 10𝑛 

 6 



Errors and significant digits 

– Rounding: add (5 × 10− 𝑘+1 ) × 10𝑛 to 𝑦, then 
chopping 

a) If 𝑑𝑘+1 ≥ 5, add 1 to 𝑑𝑘 to get  𝑓𝑙 𝑦  

b) If 𝑑𝑘+1 < 5, simply do chopping 
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Finite-digit arithmetic 

• Catastrophic  events 

a) Subtracting nearly equal numbers – this leads to 
fewer significant digits.  

b) Dividing by a number with small magnitude (or 
multiplying by a number with large magnitude). 
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Avoiding loss of accuracy by 
reformulating calculations 

Quadratic formula to find roots of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 =
0, 𝑤ℎ𝑒𝑟𝑒 𝑎 ≠ 0. 

1. 𝑥1 =
−𝑏+ 𝑏2−4𝑎𝑐

2𝑎
 

2. 𝑥2 =
−𝑏− 𝑏2−4𝑎𝑐

2𝑎
 

 

Key: Magnitudes of 𝑏 𝑎𝑛𝑑 𝑏2 − 4𝑎𝑐 decide 
whether we need to reformulate the formula. 
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