### 1.2 Round-off Errors and Computer Arithmetic

- In a computer model, a memory storage unit word is used to store a number.
- A word has only a finite number of bits.
- These facts imply:

1. Only a small set of real numbers (rational numbers) can be accurately represented on computers.
2. (Rounding) errors are inevitable when computer memory is used to represent real, infinite precision numbers.
3. Small rounding errors can be amplified with careless treatment.
So, do not be surprised that (9.4) $)_{10}=(1001 . \overline{0110})_{2}$ can not be represented exactly on computers.

## IEEE floating point numbers

- Binary number: $\left(\ldots b_{3} b_{2} b_{1} b_{0} . b_{-1} b_{-2} b_{-3} \ldots\right)_{2}$
- Binary to decimal:
$\left(\ldots b_{3} b_{2} b_{1} b_{0} \cdot b_{\overline{1}^{1}} b_{-2} b_{\overline{1}^{3}} \ldots\right)_{2}=$
$\left(\ldots b_{3} 2^{3}+b^{2} 2^{=}+b_{1} 2^{1}+b_{0} 2^{0}+b_{-1} 2^{-1}+b_{-2} 2^{-2}+b_{-3} 2^{-3} \ldots\right)_{10}$
- Double precision (long real) format
- Example: "double" in C
- A 64-bit (binary digit) representation
- 1 sign bit (s), 11 exponent bits - characteristic (c), 52 binary fraction bits mantissa (f)

| x | xxxxxxxxxxx |  |
| :---: | :---: | :---: |
| S | C | $f$ |

Represented number (Normalized IEEE floating point number):

$$
(-1)^{s} 2^{c-1023}(1+f)
$$

1023 is called exponent bias

$$
0 \leq \text { characteristic }(c) \leq 2^{11}-1=2047
$$

- Smallest normalized positive number on machine has $s=0, c=1, f=0: 2^{-1022} \cdot(1+0) \approx 0.22251 \times$ $10^{-307}$
- Largest normalized positive number on machine has $s=0, c=2046, f=1-2^{-52}: 2^{1023} \cdot(1+1-$ $2^{-52}$ ) $\approx 0.17977 \times 10^{309}$
- Underflow: numbers $<2^{-1022} \cdot(1+0)$
- Overflow: numbers $>2^{1023} \cdot\left(2-2^{-52}\right)$
- Machine epsilon $\left(\epsilon_{\text {mach }}\right)=2^{-52}$ : this is the difference between 1 and the smallest machine floating point number greater than 1.
- Positive zero: $s=0, c=0, f=0$.
- Negative zero: $s=1, c=0, f=0$.
- Inf: $s=0, c=2047, f=0$
- NaN: $s=0, c=2047, f \neq 0$


## Decimal machine numbers

- Normalized k-digit decimal machine numbers:

$$
\pm 0 . d_{1} d_{2} \ldots d_{k} \times 10^{n}, \quad 1 \leq d_{1} \leq 9,0 \leq d_{i} \leq 9
$$

- Any positive number within the numerical range of machine can be written:

$$
y=0 . d_{1} d_{2} \ldots d_{k} d_{k+1} d_{k+2} \ldots \times 10^{n}
$$

Chopping and Rounding Arithmetic:
Step 1: represent a positive number $y$ by
$0 . d_{1} d_{2} \ldots d_{k} d_{k+1} d_{k+2} \ldots \times 10^{n}$
Step 2:

- Chopping: chop off after $k$ digits:

$$
f l(y)=0 . d_{1} d_{2} \ldots d_{k} \times 10^{n}
$$

- Rounding: add $\left(5 \times 10^{-(k+1)}\right) \times 10^{n}$ to $y$, then chopping
a) If $d_{k+1} \geq 5$, add 1 to $d_{k}$ to get $f l(y)$
b) If $d_{k+1}<5$, simply do chopping


## Errors and significant digits

## Definition

If $p^{*}$ is an approximation to $p$, the absolute error is $\left|p-p^{*}\right|$, and the relative error is $\left|p-p^{*}\right| /|p|$, provided that $p \neq 0$.

## Definition

The number $p^{*}$ is said to approximate $p$ to $t$ significant digits (or figures) if $t$ is the largest nonnegative integer for which

$$
\frac{\left|p-p^{*}\right|}{|p|} \leq 5 \times 10^{-t}
$$

## Finite-digit arithmetic

- Machine addition, subtraction, multiplication, and division:

$$
\begin{aligned}
x \oplus y & =f l(f l(x)+f l(y)), & & x \circledast y=f l(f l(x) \times f l(y)) \\
x \ominus y & =f l(f l(x)-f l(y)), & & x \odot y=f l(f l(x) \div f l(y))
\end{aligned}
$$

- "Round input, perform exact arithmetic, round the result"
- Catastrophic events
a) Subtracting nearly equal numbers - this leads to fewer significant digits.
b) Dividing by a number with small magnitude (or multiplying by a number with large magnitude).


## Avoiding loss of accuracy by reformulating calculations

Quadratic formula to find roots of $a x^{2}+b x+c=$ 0 , where $a \neq 0$.

1. $x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$
2. $x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$

Key: Magnitudes of $b$ and $\sqrt{b^{2}-4 a c}$ decide whether we need to reformulate the formula.

