## 11.1-11.4 Boundary-Value Problems for Ordinary Differential Equations

## 11.1

Cooling Example: A beam of rectangular cross section subject to fixed temperature at two ends:

$$
\begin{aligned}
& \frac{d^{2} T}{d x^{2}}-m^{2} T=0 \\
m= & \text { heat transfer coefficient }
\end{aligned}
$$

and, $T(x=0)=T_{0} ; \quad T(x=L)=T_{1}$.

## Theorem

Suppose the linear boundary-value problem (BVP)

$$
\begin{equation*}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x), \text { for } a \leq x \leq b, \text { with } y(a)=\alpha \text { and } y(b)=\beta \tag{1}
\end{equation*}
$$

## satisfies

(i) $p(x), q(x)$ and $r(x)$ are continuous on $[a, b]$,
(ii) $q(x)>0$ on $[a, b]$.

Then the linear BVP has a unique solution.

## Shooting Method for Linear BVP

Consider the following initial value problems:

$$
\begin{equation*}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x) \text { with } a \leq x \leq b, y(a)=\alpha, \text { and } y^{\prime}(a)=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y, \text { with } a \leq x \leq b, y(a)=0, \text { and } y^{\prime}(a)=1 . \tag{3}
\end{equation*}
$$

Let $y_{1}(x)$ be the solution to Eq . (2) and $y_{2}(x)$ be the solution to Eq . (3). Then

$$
\begin{equation*}
y(x)=y_{1}(x)+\frac{\beta-y_{1}(b)}{y_{2}(b)} y_{2}(x) \tag{4}
\end{equation*}
$$

is the solution to the linear-BVP (1).

## Solving IVP defined by Eq. (2)

Rewrite as two first order ODEs

$$
\begin{array}{r}
\frac{d y}{d x}=z(x) \\
\frac{d z}{d x}=p(x) z+q(x) y+r(x) \tag{5}
\end{array}
$$

with $y(a)=\alpha$ and $z(a)=0$.

## Solving IVP defined by Eq. (3)

Rewrite as two first order ODEs

$$
\begin{array}{r}
\frac{d y}{d x}=w(x) \\
\frac{d w}{d x}=p(x) w+q(x) y \tag{6}
\end{array}
$$

with $y(a)=0$ and $w(a)=1$.

## RK4 for solving Eq. (5): Set $Y_{0}=\alpha, Z_{0}=0$

$$
\text { for } \begin{align*}
&(i=0 ; i<N ; i++) \\
& x_{i}=a+i h . \quad k_{1, Y}=h Z_{i} ; \quad k_{1, Z}=h\left(p\left(x_{i}\right) Z_{i}+q\left(x_{i}\right) Y_{i}+r\left(x_{i}\right)\right) ;  \tag{7}\\
& k_{2, Y}=h\left(Z_{i}+1 / 2 k_{1, Z}\right) ; \\
& k_{2, Z}=h\left(p\left(x_{i}+\frac{h}{2}\right)\left(Z_{i}+\frac{1}{2} k_{1, Z}\right)+q\left(x_{i}+\frac{h}{2}\right)\left(Y_{i}+\frac{1}{2} k_{1, Y}\right)+r\left(x_{i}+\frac{h}{2}\right)\right)  \tag{8}\\
& k_{3, Y}=h\left(Z_{i}+1 / 2 k_{2, Z}\right) ; \\
& k_{3, Z}=h\left(p\left(x_{i}+\frac{h}{2}\right)\left(Z_{i}+\frac{1}{2} k_{2, Z}\right)+q\left(x_{i}+\frac{h}{2}\right)\left(Y_{i}+\frac{1}{2} k_{2, Y}\right)+r\left(x_{i}+\frac{h}{2}\right)\right)  \tag{9}\\
& k_{4, Y}=h\left(Z_{i}+k_{3, Z}\right) ; \\
& k_{4, Z}=h\left(p\left(x_{i}+h\right)\left(Z_{i}+k_{3, Z}\right)+q\left(x_{i}+h\right)\left(Y_{i}+k_{3, Y}\right)+r\left(x_{i}+h\right)\right) \\
& Y_{i+1}=Y_{i}+1 / 6\left(k_{1, Y}+2 k_{2, Y}+2 k_{3, Y}+k_{4, Y}\right) ; \\
& Z_{i+1}=Z_{i}+1 / 6\left(k_{1, Z}+2 k_{2, Z}+2 k_{3, Z}+k_{4, Z}\right)
\end{align*}
$$

## Shooting Method for Nonlinear BVP

Consider to solve

$$
\begin{equation*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \text { for } a \leq x \leq b, \text { with } y(a)=\alpha \text { and } y(b)=\beta . \tag{12}
\end{equation*}
$$

Example: $-\frac{d}{d x}\left(\kappa(y) \frac{d y}{d x}\right)+y(x)=p(x), 0<x<1$
with diffusion coefficient $\kappa(y)=\frac{1}{\sqrt{(d y / d x)^{2}+c}}$

### 11.2 Basic idea of shooting method for nonlinear BVP

Construct a sequence of IVPs with parameter $t$, which have the form

$$
\begin{equation*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \text { for } a \leq x \leq b, \text { with } y(a)=\alpha \text { and } y^{\prime}(a)=t \tag{13}
\end{equation*}
$$

Choosing parameters $t=t_{k}$ to ensure that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} y\left(b, t_{k}\right)=y(b)=\beta . \tag{14}
\end{equation*}
$$

## Secant method

Recast Eq. (14) as a root-finding problem:

$$
\begin{equation*}
y(b, t)-\beta=0 . \tag{15}
\end{equation*}
$$

Solving Eq. (15) by Secant method:

$$
\begin{equation*}
t_{k}=t_{k-1}-\frac{\left(y\left(b, t_{k-1}\right)-\beta\right)\left(t_{k-1}-t_{k-2}\right)}{y\left(b, t_{k-1}\right)-y\left(b, t_{k-2}\right)}, \quad k=2,3, \cdots \tag{16}
\end{equation*}
$$

## Newton's method (1)

Solving Eq. (15) by Newton's method:

$$
\begin{equation*}
t_{k}=t_{k-1}-\frac{\left(y\left(b, t_{k-1}\right)-\beta\right)}{d y\left(b, t_{k-1}\right) / d t}, \quad k=1,3, \cdots \tag{17}
\end{equation*}
$$

Differentiating Eq. (13) $y^{\prime \prime}(x, t)=f\left(x, y(x, t), y^{\prime}(x, t)\right)$ with respect to $t$ :

$$
\begin{equation*}
\frac{\partial y^{\prime \prime}}{\partial t}(x, t)=\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial t} \tag{18}
\end{equation*}
$$

Differentiating initial condition of Eq. (13) gives: $\frac{\partial y}{\partial t}=0 ; \quad \frac{\partial y^{\prime}}{\partial t}=1$. Let $z(x, t)=\frac{\partial y}{\partial t}(x, t)$ and assume orders of differentiation of $x$ and $t$ can be reversed.
Eq. (18) becomes an IVP:

$$
\begin{equation*}
z^{\prime \prime}(x, t)=\frac{\partial f}{\partial y} z+\frac{\partial f}{\partial y^{\prime}} z^{\prime}(x, t) \text { with } z(a, t)=0 ; \text { and } z^{\prime}(a, t)=1 \tag{19}
\end{equation*}
$$

## Newton's method (2)

Eq. (17) can be solved by

$$
\begin{equation*}
t_{k}=t_{k-1}-\frac{\left(y\left(b, t_{k-1}\right)-\beta\right)}{z\left(b, t_{k-1}\right)}, \quad k=1,3, \cdots \tag{20}
\end{equation*}
$$

## Nonlinear shooting method - Newton's method

Let $M$ be max. number of iterations. Set $T K=\frac{\beta-\alpha}{b-a} ; \quad k=1 ; \quad t_{0}=T K$. while $(k \leq M)$ do
(i) Solve the following IVPs respectively:

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \text { for } a \leq x \leq b, \text { with } y(a)=\alpha \text { and } y^{\prime}(a)=t_{k-1}
$$

$$
z^{\prime \prime}\left(x, t_{k-1}\right)=\frac{\partial f}{\partial y} z\left(x, t_{k-1}\right)+\frac{\partial f}{\partial y^{\prime}} z^{\prime}\left(x, t_{k-1}\right) \text { for } a \leq x \leq b
$$

$$
\begin{equation*}
\text { with } z\left(a, t_{k-1}\right)=0 ; \text { and } z^{\prime}\left(a, t_{k-1}\right)=1 \tag{21}
\end{equation*}
$$

(ii) Solve for $t_{k}$ :

$$
\begin{equation*}
t_{k}=t_{k-1}-\frac{\left(y\left(b, t_{k-1}\right)-\beta\right)}{z\left(b, t_{k-1}\right)} \tag{22}
\end{equation*}
$$

(iii) If $\left|y\left(b, t_{k}\right)-\beta\right|<\varepsilon$, STOP.

## Example of nonlinear shooting method

Solve $y^{\prime \prime}=1 / 8\left(32+2 x^{3}-y y^{\prime}\right)$, for $1 \leq x \leq 3$, with $y(1)=17$ and $y(3)=43 / 3$.
Solution:
$t_{0}=(43 / 3-17) /(3-1)$

$$
y^{\prime \prime}=1 / 8\left(32+2 x^{3}-y y^{\prime}\right), \quad \text { with } y(1)=17, \text { and } y^{\prime}(1)=t_{k-1}
$$

$$
z^{\prime \prime}=\frac{\partial f}{\partial y} z\left(x, t_{k-1}\right)+\frac{\partial f}{\partial y^{\prime}} z^{\prime}\left(x, t_{k-1}\right)=-\frac{1}{8}\left(y^{\prime} z+y z^{\prime}\right)
$$

with $z\left(1, t_{k-1}\right)=0$; and $z^{\prime}\left(1, t_{k-1}\right)=1$.

### 11.4 Finite Difference

Consider to solve Eq. (12)
(i) divide interval $[a, b]$ into $N$ subintervals with $h=(b-a) / N, x_{i}=a+i h$ for $i=0, \cdots, N+1$.
(ii) approximate derivatives of Eq. (12) by differences respectively:

$$
\begin{array}{r}
\frac{y\left(x_{i+1}\right)-2 y\left(x_{i}\right)+y\left(x_{i-1}\right)}{h^{2}}= \\
f\left(x_{i}, y\left(x_{i}\right), \frac{y\left(x_{i+1}\right)-y\left(x_{i-1}\right)}{2 h}-h^{2} / 6 y^{\prime \prime \prime}\left(\eta_{i}\right)\right)+h^{2} / 12 y^{(4)}\left(\xi_{i}\right) . \tag{23}
\end{array}
$$

Finite difference method:
Set $w_{0}=\alpha, w_{N+1}=\beta$.

$$
\begin{array}{r}
\frac{w_{i+1}-2 w_{i}+w_{i-1}}{h^{2}}-f\left(x_{i}, w_{i}, \frac{w_{i+1}-w_{i-1}}{2 h}\right)=0  \tag{24}\\
\text { for each } i=1,2, \cdots, N .
\end{array}
$$

Individual equations of (24) are:

$$
\begin{array}{r}
w_{2}-2 w_{1}-h^{2} f\left(x_{1}, w_{1}, \frac{w_{2}-\alpha}{2 h}\right)+\alpha=0, \\
w_{i+1}-2 w_{i}+w_{i-1}-h^{2} f\left(x_{i}, w_{i}, \frac{w_{i+1}-w_{i-1}}{2 h}\right)=0  \tag{25}\\
\text { for each } i=2,3, \cdots, N-1 . \\
-2 w_{N}+w_{N-1}-h^{2} f\left(x_{N}, w_{N}, \frac{\beta-w_{N-1}}{2 h}\right)+\beta=0 .
\end{array}
$$

Solve Eq. (25) for $w_{1}, w_{2}, \cdots, w_{N}$ by Newton's method.

