# 2.1 The Bisection Method

# Basic Idea

- Suppose function f(x) is continuous on [a, b], and f(a), f(b) have opposite signs.
- By the Intermediate Value Theorem (IVT),
   there must exist an p in (a, b) with f(p) = 0.
- Bisect (sub)intervals and apply IVT repeatedly.



 The sequence of intervals {(a<sub>i</sub>, b<sub>i</sub>)}<sup>∞</sup><sub>i=1</sub> contains the desired root. • Intervals containing the root:  $(a_1, b_1) \supset$  $(a_2, b_2) \supset (a_3, b_3) \supset (a_4, b_4) \dots$ 

• After *n* steps, the interval  $(a_n, b_n)$  has the length:

$$b_n - a_n = (1/2)^{n-1}(b-a)$$

• Let  $p_n = \frac{b_n + a_n}{2}$  be the mid-point of  $(a_n, b_n)$ . The limit of sequence  $\{p_n\}_{n=1}^{\infty}$  is the root.

# The Algorithm

- INPUT **a,b**; tolerance **TOL**; maximum number of iterations **N0**.
- OUTPUT solution p or message of failure.
- STEP1 Set i = 1;

```
FA = f(a);
```

- STEP2 While i  $\leq$  **N0** do STEPs 3-6.
  - STEP3 Set  $\mathbf{p} = \mathbf{a} + (\mathbf{b}-\mathbf{a})/2$ ; // a good way of computing middle point FP = f( $\mathbf{p}$ ).
  - STEP4 IF FP = 0 or  $(\mathbf{b}-\mathbf{a}) < \text{TOL then}$

```
OUTPUT (p);
```

STOP.

- STEP5 Set i = i + 1.
- STEP6 If FP·FA > 0 then

$$FA = FP.$$

else

```
set b = p;
```

STEP7 OUTPUT("Method failed after N0 iterations");

```
STOP.
```

### Matlab Code

function p=bisection(f,a,b,tol)

```
while 1
  p=(a+b)/2;
  if p-a<tol, break; end
  if f(a)*f(p)>0
    a=p;
  else
    b=p;
  end
end %while 1
```

# **Stopping Criteria**

• Method 1:  $|p_n - p_{n-1}| < \varepsilon$ 

• Method 2: 
$$\begin{cases} \frac{|p_n - p_{n-1}|}{|p_n|} < \varepsilon, & p_n \neq 0 \text{ or} \\ |f(p_n)| < \varepsilon \end{cases}$$

None is perfect. Use a combination in real applications.

# Convergence

#### Theorem

Suppose function f(x) is continuous on [a, b], and  $f(a) \cdot f(b) < 0$ . The Bisection method generates a sequence  $\{p_n\}_{n=1}^{\infty}$  approximating a zero p of f(x) with

$$|p_n - p| = (1/2)^n (b - a), \quad \text{when } n \ge 1$$

#### Convergence rate

The sequence  $\{p_n\}_{n=1}^{\infty}$  converges to p with the rate of convergence  $O((1/2)^n)$ :

$$p_n = p + O((1/2)^n)$$