2.1 The Bisection Method

Basic Idea

- Suppose function $f(x)$ is continuous on $[a, b]$, and $f(a), f(b)$ have opposite signs.
- By the Intermediate Value Theorem (IVT), there must exist an p in (a, b) with $f(p)=0$.
- Bisect (sub)intervals and apply IVT repeatedly.
f(p)
- The sequence of intervals $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{\infty}$ contains the desired root.
- Intervals containing the root: $\left(a_{1}, b_{1}\right) \supset$ $\left(a_{2}, b_{2}\right) \supset\left(a_{3}, b_{3}\right) \supset\left(a_{4}, b_{4}\right) \ldots$
- After n steps, the interval $\left(a_{n}, b_{n}\right)$ has the length:

$$
b_{n}-a_{n}=(1 / 2)^{n-1}(b-a)
$$

- Let $p_{n}=\frac{b_{n}+a_{n}}{2}$ be the mid-point of $\left(a_{n}, b_{n}\right)$. The limit of sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ is the root.

The Algorithm

INPUT a,b; tolerance TOL; maximum number of iterations NO.
OUTPUT solution p or message of failure.
STEP1 Set $\mathrm{i}=1$;
FA = f(a);
STEP2 While i \leq N0 do STEPs 3-6.
STEP3 Set $\mathbf{p}=\mathbf{a + (b - a}) / \mathbf{2} ; \quad / /$ a good way of computing middle point $F P=f(p)$.
STEP4 IF FP $=0$ or $(\mathbf{b}-\mathbf{a})<$ TOL then
OUTPUT (p); STOP.
STEP5 Set $\mathrm{i}=\mathrm{i}+1$.
STEP6 If FP•FA > 0 then
Set $\mathbf{a}=\mathrm{p}$;
FA = FP.
else

$$
\text { set } \mathbf{b}=\mathrm{p} \text {; }
$$

STEP7 OUTPUT("Method failed after N0 iterations"); STOP.

Matlab Code

function $p=$ bisection(f,a,b,tol)
while 1
$p=(a+b) / 2 ;$
if $p-a<t o l$, break; end
if $f(a) * f(p)>0$
$a=p ;$
else

$$
\mathrm{b}=\mathrm{p} \text {; }
$$

end
end \%while 1

Stopping Criteria

- Method 1: $\left|p_{n}-p_{n-1}\right|<\varepsilon$
- Method 2: $\left\{\begin{array}{c}\frac{\left|p_{n}-p_{n-1}\right|}{\left|p_{n}\right|}<\varepsilon, \quad p_{n} \neq 0 \text { or } \\ \left|f\left(p_{n}\right)\right|<\varepsilon\end{array}\right.$
- None is perfect. Use a combination in real applications.

Convergence

- Theorem

Suppose function $f(x)$ is continuous on $[a, b]$, and $f(a) \cdot f(b)<0$. The Bisection method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ approximating a zero p of $f(x)$ with

$$
\left|p_{n}-p\right|=(1 / 2)^{n}(b-a), \quad \text { when } n \geq 1
$$

- Convergence rate

The sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ converges to p with the rate of convergence $O\left((1 / 2)^{n}\right)$:

$$
p_{n}=p+O\left((1 / 2)^{n}\right)
$$

