2.2 Fixed-Point Iteration

Basic Definitions

- A number p is a fixed point for a given function g if $g(p)=p$
- Root finding $f(x)=0$ is related to fixed-point iteration $g(p)=p$
- Given a root-finding problem $f(p)=0$, there are many g with fixed points at p :
Example: $g(x):=x-f(x)$

$$
g(x):=x+3 f(x)
$$

If g has fixed point at p, then $f(x)=x-g(x)$ has a zero at p

Why study fixed-point iteration?

1. Sometimes easier to analyze
2. Analyzing fixed-point problem can help us find good root-finding methods

A Fixed-Point Problem
Determine the fixed points of the function
$g(x)=x^{2}-2$.

When Does Fixed-Point Iteration Converge?

Existence and Uniqueness Theorem
a. If $g \in C[a, b]$ and $g(x) \in[a, b]$ for all $x \in$ $[a, b]$, then g has a fixed-point in $[a, b]$
b. If, in addition, $g^{\prime}(x)$ exists on (a, b) and a positive constant $k<1$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \quad \text { for all } x \in(a, b)
$$

then there is exactly one fixed point in $[a, b]$.

Note:

1. $g \in C[a, b]-g$ is continuous in $[a, b]$
2. $g(x) \in C[a, b]-g$ takes values in $[a, b]$

Proof

- If $g(a)=a$, or $g(b)=b$, then g has a fixed point at the endpoint.
- Otherwise, $g(a)>a$ and $g(b)<b$.
- Define a new function $h(x)=g(x)-x$ $-h(a)=g(a)-a>0$ and $h(b)=g(b)-b<0$ $-h$ is continuous
- By intermediate value theorem, there exists $p \in(a, b)$ for which $h(p)=p$.
- Thus, $g(p)=p$.
b) $\left|g^{\prime}(x)\right| \leq k<1$. Suppose we have two fixed points p and q.
By the mean value theorem, there is a number ξ between p and q with

$$
g^{\prime}(\xi)=\frac{g(p)-g(q)}{p-q}
$$

Thus $|p-q|=|g(p)-g(q)|=\left|g^{\prime}(\xi)\right||p-q| \leq$ $k|p-q|<|p-q|$, which is a contradiction.
This shows the supposition is false. Hence, the fixed point is unique.

Fixed-Point Iteration

- For initial p_{0}, generate sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ by

$$
p_{n}=g\left(p_{n-1}\right)
$$

- If the sequence converges to p, then
$p=\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} g\left(p_{n-1}\right)=g\left(\lim _{n \rightarrow \infty} p_{n-1}\right)=g(p)$

A Fixed-Point Problem

Determine the fixed points of the function $g(x)=\cos (x)$ for $x \in[-0.1,1.8]$.

Remark: See also the Matlab code.

The Algorithm

INPUT p0; tolerance TOL; maximum number of iteration NO.
OUTPUT solution \mathbf{p} or message of failure
STEP1 Set $\mathrm{i}=1$.
// init. counter
STEP2 While i \leq N0 do Steps 3-6
STEP3 Set $\mathbf{p}=\mathbf{g}(\mathbf{p} \mathbf{0})$.
STEP4 If $|\boldsymbol{p}-\mathbf{p} \mathbf{0}|<$ TOL then
$\operatorname{OUTPUT}(\mathrm{p})$; // successfully found the solution STOP.

STEP5 Set $\mathrm{i}=\mathrm{i}+1$.
STEP6 Set $\mathbf{p 0}=\mathbf{p} . \quad / /$ update $\mathbf{p} 0$
STEP7 OUTPUT("The method failed after N0 iterations"); STOP.

Convergence

Fixed-Point Theorem

Let $g \in C[a, b]$ be such that $g(x) \in[a, b]$, for all $x \in[a, b]$. Suppose, in addition, that g^{\prime} exists on (a, b) and that a constant $0<k<1$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \quad \text { for all } x \in(a, b)
$$

Then, for any number p_{0} in $[a, b]$, the sequence defined by

$$
p_{n}=g\left(p_{n-1}\right)
$$

converges to the unique fixed point p in $[a, b]$.
Corollary
If g satisfies the above hypotheses, then bounds for the error involved using p_{n} to approximating p are given by

$$
\begin{gathered}
\left|p_{n}-p\right| \leq k^{n} \max \left\{p_{0}-a, b-p_{0}\right\} \\
\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right|
\end{gathered}
$$

Proof: $\left|p_{n}-p\right|=\left|g\left(p_{n-1}\right)-g(p)\right|$

$$
\begin{gathered}
=\left|g^{\prime}\left(\xi_{n}\right)\right|\left|p_{n-1}-p\right| \text { by MVT } \\
\leq k\left|p_{n-1}-p\right|
\end{gathered}
$$

Remark: Since $k<1$, the distance to fixed point is shrinking every iteration
Keep doing the above procedure:

$$
\begin{aligned}
& \left|p_{n}-p\right| \leq k\left|p_{n-1}-p\right| \leq k^{2}\left|p_{n-2}-p\right| \leq \cdots \\
& \quad \leq k^{n}\left|p_{0}-p\right| . \\
& \lim _{n \rightarrow \infty}\left|p_{n}-p\right| \leq \lim _{n \rightarrow \infty} k^{n}\left|p_{0}-p\right|=0
\end{aligned}
$$

