2.2 Fixed-Point Iteration

Basic Definitions

- A number p is a *fixed point* for a given function g if g(p) = p
- Root finding f(x) = 0 is related to fixed-point iteration q(p) = p
 - Given a root-finding problem f(p) = 0, there are many g with fixed points at p:

Example:
$$g(x) \coloneqq x - f(x)$$

 $g(x) \coloneqq x + 3f(x)$

If g has fixed point at p, then f(x) = x - g(x) has a zero at p

Why study fixed-point iteration?

- 1. Sometimes easier to analyze
- 2. Analyzing fixed-point problem can help us find good root-finding methods

A Fixed-Point Problem

Determine the fixed points of the function $g(x) = x^2 - 2$.

When Does Fixed-Point Iteration Converge?

Existence and Uniqueness Theorem

- a. If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$, then g has a fixed-point in [a, b]
- b. If, in addition, g'(x) exists on (a, b) and a positive constant k < 1 exists with

 $|g'(x)| \le k$, for all $x \in (a, b)$,

then there is **exactly one** fixed point in [a, b]. **Note:**

1. $g \in C[a, b] - g$ is continuous in [a, b]2. $g(x) \in C[a, b] - g$ takes values in [a, b]

Proof

- If g(a) = a, or g(b) = b, then g has a fixed point at the endpoint.
- Otherwise, g(a) > a and g(b) < b.
- Define a new function h(x) = g(x) x-h(a) = g(a) - a > 0 and h(b) = g(b) - b < 0
 - -h is continuous
- By intermediate value theorem, there exists $p \in (a, b)$ for which h(p) = p.
 - $-\operatorname{Thus}, g(p) = p.$

b) $|g'(x)| \le k < 1$. Suppose we have two fixed points p and q.

By the mean value theorem, there is a number ξ between p and q with

$$g'(\xi) = \frac{g(p) - g(q)}{p - q}$$

Thus $|p - q| = |g(p) - g(q)| = |g'(\xi)||p - q| \le |p - q| < |p - q|$, which is a contradiction.

This shows the supposition is false. Hence, the fixed point is unique.

Fixed-Point Iteration

- For initial p_0 , generate sequence $\{p_n\}_{n=0}^{\infty}$ by $p_n = g(p_{n-1})$.
- If the sequence converges to p, then $n = \lim_{n \to \infty} n = \lim_{n \to \infty} a(n + c) = a(\lim_{n \to \infty} n + c) = a(n + c)$

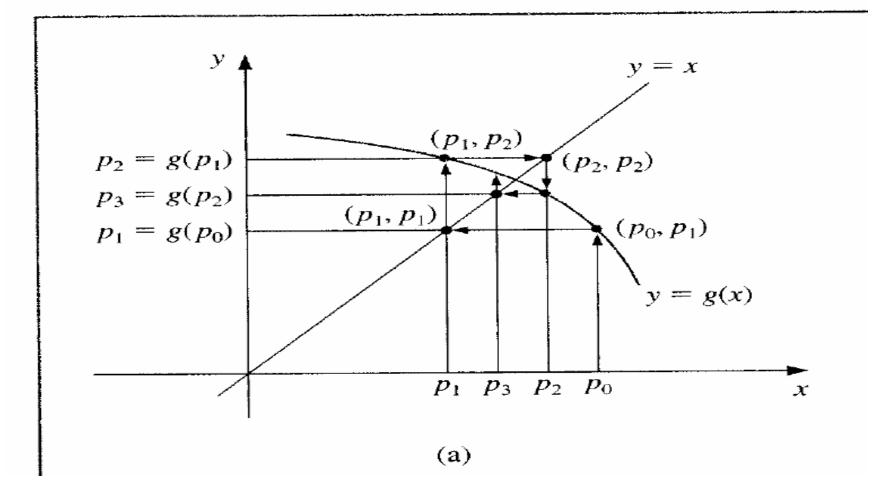
$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p)$$

A Fixed-Point Problem

Determine the fixed points of the function g(x) = cos(x) for $x \in [-0.1, 1.8]$.

Remark: See also the Matlab code.

The Algorithm



INPUT **p0**; tolerance **TOL**; maximum number of iteration **N0**. OUTPUT solution **p** or message of failure STEP1 Set i = 1. // init. counter While i \leq N0 do Steps 3-6 STEP2 STEP3 Set **p**= g(**p0**). If |**p**-**p0**| < **TOL** then STEP4 OUTPUT(p); // successfully found the solution STOP. STEP5 Set i = i + 1. STEP6 Set **p0** = **p**. // update **p0** OUTPUT("The method failed after **N0** iterations"); STEP7 STOP.

Convergence

Fixed-Point Theorem

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$, for all $x \in [a, b]$. Suppose, in addition, that g' exists on (a, b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$

Then, for any number p_0 in [a, b], the sequence defined by

$$p_n = g(p_{n-1})$$

converges to the unique fixed point p in [a, b].

Corollary

If g satisfies the above hypotheses, then bounds for the error involved using p_n to approximating p are given by

$$p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$$
$$|p_n - p| \le \frac{k^n}{1 - k}|p_1 - p_0|$$

Proof:
$$|p_n - p| = |g(p_{n-1}) - g(p)|$$

= $|g'(\xi_n)||p_{n-1} - p|$ by MVT
 $\leq k|p_{n-1} - p|$

Remark: Since k < 1, the distance to fixed point is shrinking every iteration

Keep doing the above procedure:

$$\begin{split} |p_n - p| &\leq k |p_{n-1} - p| \leq k^2 |p_{n-2} - p| \leq \cdots \\ &\leq k^n |p_0 - p|. \\ &\lim_{n \to \infty} |p_n - p| \leq \lim_{n \to \infty} k^n |p_0 - p| = 0 \end{split}$$