2.4 Error Analysis for Iterative Methods

Definition

- Order of Convergence

Suppose $\left\{p_{n}\right\}_{n=0}^{\infty}$ is a sequence that converges to p with $p_{n} \neq p$ for all n. If positive constants λ and α exist with

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lambda
$$

then $\left\{p_{n}\right\}_{n=0}^{\infty}$ is said to converges to \boldsymbol{p} of order $\boldsymbol{\alpha}$ with asymptotic error constant λ.
An iterative technique $p_{n}=g\left(p_{n-1}\right)$ is said to be of order $\boldsymbol{\alpha}$ if the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to the solution $p=g(p)$ of order $\boldsymbol{\alpha}$.

- Special cases

1. If $\alpha=1$ (and $\lambda<1$), the sequence is linearly convergent
2. If $\alpha=2$, the sequence is quadratically convergent
3. If $\alpha<1$, the sequence is sub-linearly convergent (undesirable, very slow)
4. If $\alpha=1$ and $\lambda=0$ or $1<\alpha<2$, the sequence is super-linearly convergent

- Remark:

High order $(\alpha) \Rightarrow$ faster convergence (more desirable)
λ is less important than the order (α)

Linear vs. Quadratic

Suppose we have two sequences converging to 0 with:

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}\right|}{\left|p_{n}\right|}=0.9, \quad \lim _{n \rightarrow \infty} \frac{\left|q_{n+1}\right|}{\left|q_{n}\right|^{2}}=0.9
$$

Roughly we have:

$$
\begin{gathered}
\left|p_{n}\right| \approx 0.9\left|p_{n-1}\right| \approx \cdots \approx 0.9^{n}\left|p_{0}\right| \\
\left|q_{n}\right| \approx 0.9\left|q_{n-1}\right|^{2} \approx \cdots \approx 0.9^{2^{n}-1}\left|q_{0}\right|
\end{gathered}
$$

Assume $p_{0}=q_{0}=1$

n	p_{n}	q_{n}
0	1	1
1	0.9	0.9
2	0.81	0.729
3	0.729	0.4782969
4	0.6561	0.205891132094649
5	0.59049	0.0381520424476946
6	0.531441	0.001300205086362
7	0.4782969	0.00000154453835975
8	0.43046721	0.00000000000021470

Fixed Point Convergence

- Theorem

Let $g \in C[a, b]$ be such that $g(x) \in[a, b]$ for all $x \in[a, b]$. Suppose g^{\prime} is continuous on (a, b) and that $0<k<1$ exists with $\left|g^{\prime}(x)\right| \leq k$ for all $x \in(a, b)$. If $g^{\prime}(p) \neq 0$, then for all number p_{0} in $[a, b]$, the sequence $p_{n}=g\left(p_{n-1}\right)$ converges only linearly to the unique fixed point p in $[a, b]$.

- Proof:

$$
p_{n+1}-p=g\left(p_{n}\right)-g(p)=g^{\prime}\left(\xi_{n}\right)\left(p_{n}-p\right), \xi_{n} \in\left(p_{n}, p\right)
$$

Since $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to $p,\left\{\xi_{n}\right\}_{n=0}^{\infty}$ converges to p.
Since g^{\prime} is continuous, $\lim _{n \rightarrow \infty} g^{\prime}\left(\xi_{n}\right)=g^{\prime}(p)$
$\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|}=\lim _{n \rightarrow \infty}\left|g^{\prime}\left(\xi_{n}\right)\right|=\left|g^{\prime}(p)\right| \Rightarrow$ linear convergence

Speed up Convergence of Fixed Point Iteration

- If we look for faster convergence methods, we must have $g^{\prime}(p)=0$
- Theorem

Let p be a solution of $x=g(x)$. Suppose $g^{\prime}(p)=0$ and $g^{\prime \prime}$ is continuous with $\left|g^{\prime \prime}(x)\right|<M$ on an open interval I containing p. Then there exists a $\delta>0$ such that for $p_{0} \in[p-\delta, p+\delta]$, the sequence defined by $p_{n+1}=$ $g\left(p_{n}\right)$, when $n \geq 0$, converges at least quadratically to p. For sufficiently large n

$$
\left|p_{n+1}-p\right|<\frac{M}{2}\left|p_{n}-p\right|^{2}
$$

Remark:
Look for quadratically convergent fixed point methods which $g(p)=p$ and $g^{\prime}(p)=0$.

Newton's Method as Fixed Point Problem

Solve $f(x)=0$ by fixed point method. We write the problem as an equivalent fixed point problem:

$$
\begin{gathered}
g(x)=x-f(x) \quad \text { solve: } x=g(x) \\
g(x)=x-\alpha f(x) \quad \text { solve } x=g(x), \quad \alpha \text { is a constant } \\
g(x)=x-\phi(x) f(x) \text { solve } x=g(x), \phi(x) \text { is differentiable }
\end{gathered}
$$

Newton's method is derived by the last form:
Find differentiable $\phi(x)$ with $g^{\prime}(p)=0$ when $f(p)=0$.

$$
g^{\prime}(x)=\frac{d}{d x}[x-\phi(x) f(x)]=1-\phi^{\prime} f-\phi f^{\prime}
$$

Use $g^{\prime}(p)=0$ when $f(p)=0$

$$
\begin{gathered}
g^{\prime}(p)=1-\phi^{\prime}(p) \cdot 0-\phi(p) f^{\prime}(p)=0 \\
\phi(p)=1 / f^{\prime}(p)
\end{gathered}
$$

This gives Newton's method

$$
p_{n+1}=g\left(p_{n}\right)=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}
$$

Multiple Roots

- How to modify Newton's method when $f^{\prime}(p)=0$. Here p is the root of $f(x)=0$.
- Definition: Multiplicity of a Root

A solution p of $f(x)=0$ is a zero of multiplicity m of f if for $x \neq p$, we can write $f(x)=(x-p)^{m} q(x)$, where $\lim _{x \rightarrow p} q(x) \neq 0$.

- Theorem
$f \in C^{1}[a, b]$ has a simple zero at p in (a, b) if and only if $f(p)=0$, but $f^{\prime}(p) \neq 0$.
- Theorem

The function $f \in C^{m}[a, b]$ has a zero of multiplicity m at point p in (a, b) if and only if
$0=f(p)=f^{\prime}(p)=f^{\prime \prime}(p)=\cdots=f^{(m-1)}(p)$, but $f^{(m)}(p) \neq 0$

Newton's Method for Zeroes of Higher Multiplicity ($m>1$)
Define the new function $\mu(x)=\frac{f(x)}{f^{\prime}(x)}$.
Write $f(x)=(x-p)^{m} q(x)$, hence

$$
\mu(x)=\frac{f(x)}{f^{\prime}(x)}=(x-p) \frac{q(x)}{m q(x)+(x-p) q^{\prime}(x)}
$$

Note that p is a simple zero of $\mu(x)$.

- Apply Newton's method to $\mu(x)$ to give:

$$
\begin{gathered}
x=g(x)=x-\frac{\mu(x)}{\mu^{\prime}(x)} \\
=x-\frac{f(x) f^{\prime}(x)}{\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)}
\end{gathered}
$$

- Quadratic convergence: $p_{n+1}=p_{n}-\frac{f\left(p_{n}\right) f^{\prime}\left(p_{n}\right)}{\left[f^{\prime}\left(p_{n}\right)\right]^{2}-f\left(p_{n}\right) f^{\prime \prime}\left(p_{n}\right)}$

Drawbacks:

- Compute $f^{\prime \prime}(x)$ is expensive
- Iteration formula is more complicated - more expensive to compute
- Roundoff errors in denominator - both $f^{\prime}(x)$ and $f(x)$ approach zero.

