2.6 Zeros of Polynomials and Horner's Method

Zeros of Polynomials

- Definition: Degree of a Polynomial

A polynomial of degree \boldsymbol{n} has the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, a_{n} \neq 0
$$

Where the $a_{i}^{\prime} s$ are constants (either real or complex) called the coefficients of $P(x)$

- Fundamental Theorem of Algebra

If $P(x)$ is a polynomial of degree $n \geq 1$, with real or complex coefficients, $P(x)=0$ has at least one root.

- Corollary

There exists unique constants $x_{1}, x_{2}, \ldots, x_{k}$ and unique positive integers $m_{1}, m_{2}, \ldots, m_{k}$ such that $\sum_{i=1}^{k} m_{i}=n$ and

$$
P(x)=a_{n}\left(x-x_{1}\right)^{m_{1}}\left(x-x_{2}\right)^{m_{2}} \ldots\left(x-x_{k}\right)^{m_{k}}
$$

Remark:

1. Collection of zeros is unique
2. m_{i} are multiplicities of the individual zeros
3. A polynomial of degree n has exactly n zeros, counting multiplicity.

- Corollary

Let $P(x)$ and $Q(x)$ be polynomials of degree at most n. If $x_{1}, x_{2}, \ldots, x_{k}$ with $k>n$ are distinct numbers with $P\left(x_{i}\right)=Q\left(x_{i}\right)$ for all $i=1,2, \ldots, k$, then $P(x)=Q(x)$ for all values of x.
Remark:
If two polynomials of degree n agree at at least $(n+1)$ points, then they must be the same.

Horner's Method

- Horner's method is a technique to evaluate polynomials quickly. Need n multiplications and n additions to evaluate $P\left(x_{0}\right)$.
- Assume $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. Evaluate $P\left(x_{0}\right)$.
Let $b_{n}=a_{n}, b_{k}=a_{k}+b_{k+1} x_{0}$,

$$
\text { for } k=(n-1),(n-2), \ldots, 1,0
$$

Then $b_{0}=P\left(x_{0}\right)$.

- At the same time, we also computed the decomposition:

$$
P(x)=\left(x-x_{0}\right) Q(x)+b_{0}
$$

Where $Q(x)=b_{n} x^{n-1}+b_{n-1} x^{n-2}+\cdots+b_{2} x+b_{1}$

Remark:

1. $P^{\prime}\left(x_{0}\right)=Q\left(x_{0}\right)$, which can be computed by using Horner's method in ($\mathrm{n}-1$) multiplications and ($n-1$) additions.
2. Horner's method is nested arithmetic

$$
\begin{aligned}
P(x) & =a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
& =\left(a_{n} x^{n-1}+a_{n-1} x^{n-2}+\cdots+a_{1}\right) x+a_{0} \\
& =\left(\left(a_{n} x^{n-2}+a_{n-1} x^{n-3}+\cdots\right) x+a_{1}\right) x+a_{0} \\
& =\underbrace{(\cdots((\underbrace{a_{n} x+a_{n-1}}_{b_{n-1}}) x+\cdots) x+a_{1}) x+a_{0}}_{n-1}
\end{aligned}
$$

- Example. Use Horner's method to evaluate $P(x)=2 x^{4}-3 x^{2}+3 x-4$ at $x_{0}=-2$.

Solution:

Step 1: $a_{4}=2, \quad b_{4}=2$
Step 2: $a_{3}=0, b_{3}=a_{3}+b_{4} x_{0}=0+2(-2)=-4$
Step 3: $a_{2}=-3, b_{2}=a_{2}+b_{3} x_{0}=-3+(-4)(-2)=5$
Step 4: $a_{1}=3, b_{1}=a_{1}+b_{2} x_{0}=3+(5)(-2)=-7$
Step 5: $a_{0}=-4, b_{0}=a_{0}+b_{1} x_{0}=-4+(-7)(-2)=10$ Thus $P(-2)=b_{0}=10$

Remark:

$$
\begin{aligned}
& a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}= \\
& \left(\left(\left(a_{4} x+a_{3}\right) x+a_{2}\right) x+a_{1}\right) x+a_{0}
\end{aligned}
$$

