3.1 Interpolation and Lagrange Polynomial

Interpolation

- Problem to be solved: Given a set of $n+1$ sample values of an unknown function f, we wish to determine a polynomial of degree n so that

$$
P\left(x_{i}\right)=f\left(x_{i}\right)_{1}=y_{i}, i=0,1, \ldots, n
$$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	0
1	0.84
2	0.91
3	0.14
4	-0.76

Weierstrass Approximation theorem
Suppose $f \in C[a, b]$. Then $\forall \epsilon>0, \exists$ a polynomial $P(x)$: $|f(x)-P(x)|<\epsilon, \forall x \in[a, b]$.
Remark:

1. The bound is uniform, i.e. valid for all x in $[a, b]$
2. The way to find $P(x)$ is unknown.

- Question: Can Taylor polynomial be used here?
- Taylor expansion is accurate in the neighborhood of one point. We need to the (interpolating) polynomial to pass many points.
- Example. Taylor polynomial approximation of e^{x} for $x \in[0,3]$

- Example. Taylor polynomial approximation of $\frac{1}{x}$ for $x \in[0.5,5]$. Taylor polynomials of different degrees are expanded at $x_{0}=1$

Linear Lagrange Interpolating Polynomial Passing

 through 2 Points- Problem: Construct a functions passing through two points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$.
First, define $L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}, L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}$
Note: $L_{0}\left(x_{0}\right)=1 ; ~ L_{0}\left(x_{1}\right)=0$

$$
L_{1}\left(x_{0}\right)=0 ; \quad L_{0}\left(x_{1}\right)=1
$$

Then define the interpolating polynomial

$$
P(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)
$$

Note: $P\left(x_{0}\right)=f\left(x_{0}\right)$, and $P\left(x_{1}\right)=f\left(x_{1}\right)$
Claim: $P(x)$ is the unique linear polynomial passing through $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$.

n-degree Polynomial Passing through $n+1$ Points

- Constructing a polynomial passing through the points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right)$,
$\left(x_{2}, f\left(x_{2}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$.
Define Lagrange basis functions
$L_{n, k}(x)=\prod_{i=0, i \neq k}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}=$
$\frac{x-x_{0}}{x_{k}-x_{0}} \ldots \frac{x-x_{k-1}}{x_{k}-x_{k-1}} \cdot \frac{x-x_{k+1}}{x_{k}-x_{k+1}} \ldots \frac{x-x_{n}}{x_{k}-x_{n}}$ for $k=0,1 \ldots n$.
Remark: $L_{n, k}\left(x_{k}\right)=1 ; L_{n, k}\left(x_{i}\right)=0, \forall i \neq k$.

- $L_{6,3}(x)$ for points $x_{i}=i, i=0, \ldots, 6$.
- Theorem. If x_{0}, \ldots, x_{n} are $n+1$ distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial $P(x)$ of degree at most \boldsymbol{n} exists with $P\left(x_{k}\right)=f\left(x_{k}\right)$, for each $k=0,1, \ldots n$.
$P(x)=f\left(x_{0}\right) L_{n, 0}(x)+\cdots+f\left(x_{n}\right) L_{n, n}(x)$.
Where $L_{n, k}(x)=\prod_{i=0, i \neq k}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}$.

Error Bound for the Lagrange Interpolating Polynomial

Theorem. Suppose x_{0}, \ldots, x_{n} are distinct numbers in the interval $[a, b]$ and $f \in C^{n+1}[a, b]$. Then for each x in $[a, b]$, a number $\xi(x)$ (generally unknown) between x_{0}, \ldots, x_{n}, and hence in (a, b), exists with $f(x)=$
$P(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)$.
Where $P(x)$ is the Lagrange interpolating polynomial.

- Remark:

1. Applying the error term may be difficult. $\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)$ is oscillatory. $\xi(x)$ is generally unknown.
2. The error formula is important as they are used for numerical differentiation and integration.

Plot of $(x-0)(x-1)(x-2)(x-3)(x-4)$

Example. Suppose a table is to be prepared for $f(x)=e^{x}, x \in[0,1]$. Assume the number of decimal places to be given per entry is $d \geq 8$ and that the difference between adjacent x values, the step size is h. What step size h will ensure that linear interpolation gives an absolute error of at most 10^{-6} for all x in $[0,1]$.

