4.3 Numerical Integration

Numerical quadrature: Numerical method to compute $\int_{a}^{b} f(x) d x$ approximately by a sum $\sum_{i=0}^{n} f\left(x_{i}\right) a_{i}$.
The interpolation nodes are given as:

$$
\begin{aligned}
& \left(x_{0}, f\left(x_{0}\right)\right) \\
& \left(x_{1}, f\left(x_{1}\right)\right) \\
& \left(x_{2}, f\left(x_{2}\right)\right) \\
& \left(x_{N}, f\left(x_{N}\right)\right)
\end{aligned}
$$

Here $a=x_{0} ; b=x_{N}$. By Lagrange Interpolation Theorem (Thm 3.3):

$$
\begin{align*}
& f(x)=\sum_{i=0}^{n} f\left(x_{i}\right) L_{N, i}(x)+\frac{\left(x-x_{0}\right) \cdots\left(x-x_{N}\right)}{(N+1)!} f^{(N+1)}(\xi(x)) \tag{1}\\
& \int_{a}^{b} f(x) d x=\int_{a}^{b} \sum_{i=0}^{n} f\left(x_{i}\right) L_{N, i}(x) d x+\frac{1}{(N+1)!} \int_{a}^{b}\left(x-x_{0}\right) \cdots\left(x-x_{N}\right) f^{(N+1)}(\xi(x)) d x
\end{align*}
$$

Quadrature formula: $\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} a_{i} f\left(x_{i}\right)$ with $a_{i}=\int_{a}^{b} L_{N, i}(x) d x$.
Error: $E(f)=\frac{1}{(N+1)!} \int_{a}^{b}\left(x-x_{0}\right) \cdots\left(x-x_{N}\right) f^{(N+1)}(\xi(x)) d x$

The Trapezoidal Rule (obtained by first Lagrange interpolating polynomial)

$$
\text { Let } x_{0}=a ; \quad x_{1}=b ; \text { and } h=b-a .(\text { see Figure } 1)
$$

Figure 1 Trapezoidal Rule

$$
\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{1}}\left[f\left(x_{0}\right) \frac{x-x_{1}}{\left(x_{0}-x_{1}\right)}+f\left(x_{1}\right) \frac{x-x_{0}}{\left(x_{1}-x_{0}\right)}\right] d x+\frac{1}{2} \int_{x_{0}}^{x_{1}}\left(x-x_{0}\right)\left(x-x_{1}\right) f^{(2)}(\xi(x)) d x
$$

Thus

$$
\int_{a}^{b} f(x) d x=\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]-\frac{h^{3}}{12} f^{(2)}(\xi)
$$

Note: $h=b-a$ for Trapezoidal rule.

The Simpson's (1/3) Rule (error obtained by third Taylor polynomial)

Figure 2 Simpson's Rule
Now approximate $f^{\prime \prime}\left(x_{1}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}\right)-2 f\left(x_{1}\right)+f\left(x_{2}\right)\right]-\frac{h^{2}}{12} f^{(4)}\left(\xi_{2}\right)$
Thus

$$
\int_{a}^{b} f(x) d x=\frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right)-\frac{h^{5}}{90} f^{(4)}(\xi)
$$

Error term

Note: $h=\frac{b-a}{2}$ for Simpson's rule.

Precision

Definition: The degree of accuracy or precision of a quadrature formula is the largest positive integer n such that the formula is exact for x^{k}, for each $k=0,1, \cdots, n$.

Trapezoidal rule has degree of accuracy one.

$\int_{a}^{b} x^{0} d x=b-a ; \quad \quad \int_{a}^{b} x^{0} d x=\frac{b-a}{2}[1+1]=b-a . \quad$ Trapezoidal rule is exact for 1 (or x^{0}).
$\int_{a}^{b} x d x=\left.\frac{x^{2}}{2}\right|_{a} ^{b}=\frac{b^{2}-a^{2}}{2} . \quad \int_{a}^{b} x d x=\frac{b-a}{2}[a+b]=\frac{b^{2}-a^{2}}{2} . \quad$ Trapezoidal rule is exact for x.
$\int_{a}^{b} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3} . \quad \int_{a}^{b} x^{2} d x=\frac{b-a}{2}\left[a^{2}+b^{2}\right] \neq \frac{b^{3}-a^{3}}{3} \quad$ Trapezoidal rule is NOT exact for x^{2}.

Simpson's rule has degree of accuracy three.

Remark: The degree of precision of a quadrature formula is n if and only if the error is zero for all polynomials of degree $k=0,1, \cdots, n$, but is NOT zero for some polynomial of degree $n+1$.

Closed Newton-Cotes Formulas

Let $a=x_{0} ; b=x_{N} ;$ and $h=\frac{b-a}{N} . \quad x_{i}=x_{0}+i h$, for $i=0,1, \cdots, N$.
$\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{N} a_{i} f\left(x_{i}\right)$ with $a_{i}=\int_{a}^{b} L_{N, i}(x) d x$.
Here $\boldsymbol{L}_{N, i}(\boldsymbol{x})$ is the ith Lagrange base polynomial of degree N .

Figure 3 Closed Newton-Cotes Formulas

Theorem 4.2 Suppose that $\sum_{i=0}^{N} a_{i} f\left(x_{i}\right)$ is the ($\mathrm{n}+1$)-point closed Newton-Cotes formula with $a=x_{0} ; b=x_{N}$; and $h=\frac{b-a}{N}$. There exists $\xi \in(a, b)$ for which $\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{N} a_{i} f\left(x_{i}\right)+\frac{h^{N+3} f^{(N+2)}(\xi)}{(N+2)!} \int_{0}^{N} t^{2}(t-1) \cdots(t-N) d t$, if N is even and $f \in C^{N+2}[a, b]$, and

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{N} a_{i} f\left(x_{i}\right)+\frac{h^{N+2} f^{(N+1)}(\xi)}{(N+1)!} \int_{0}^{N} t^{2}(t-1) \cdots(t-N) d t
$$

if N is odd and $f \in C^{N+1}[a, b]$.
Remark: N is even, degree of precision is $N+1 . N$ is odd, degree of precision is N.
Examples. N=1: Trapezoidal rule; $\mathrm{N}=2$: Simpson's rule.
$\mathrm{N}=3$: Simpson's Three-Eighths rule
$\int_{x_{0}}^{x_{3}} f(x) d x=\frac{3 h}{8}\left(f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right)-\frac{3 h^{5}}{80} f^{(4)}(\xi)$ where $x_{0}<\xi<x_{3} ; h=\frac{x_{3}-x_{0}}{3}$.

Figure 4 Open Newton-Cotes Formula

Open Newton-Cotes Formula

See Figure 4. Let $h=\frac{b-a}{n+2}$; and $x_{0}=a+h . x_{i}=x_{0}+i h$, for $i=0,1, \cdots, n$. This implies $x_{n}=b-h$.
Theorem 4.3 Suppose that $\sum_{i=0}^{n} a_{i} f\left(x_{i}\right)$ is the ($\mathrm{n}+1$)-point open Newton-Cotes formula with $a=x_{-1} ; b=x_{n+1}$; and $h=\frac{b-a}{n+2}$. There exists $\xi \in(a, b)$ for which $\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} a_{i} f\left(x_{i}\right)+\frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_{-1}^{n+1} t^{2}(t-1) \cdots(t-n) d t$, if n is even and $f \in C^{n+2}[a, b]$, and

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} a_{i} f\left(x_{i}\right)+\frac{h^{n+2} f^{(n+1)}(\xi)}{(n+1)!} \int_{-1}^{n+1} t^{2}(t-1) \cdots(t-n) d t
$$

if n is odd and $f \in C^{n+1}[a, b]$.

Examples of open Newton-Cotes formulas

$\mathbf{n}=\mathbf{0}$: Midpoint rule (Figure 5)
$\int_{x_{-1}}^{x_{1}} f(x) d x=2 h f\left(x_{0}\right)+\frac{h^{3}}{3} f^{(2)}(\xi)$
where $x_{-1}<\xi<x_{1} . h=\frac{b-a}{2}$

Figure 5 Midpoint rule
$\mathbf{n}=\mathbf{1}: \int_{x_{-1}}^{x_{2}} f(x) d x=\frac{3 h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\frac{3 h^{3}}{4} f^{(2)}(\xi) \quad$ where $x_{-1}<\xi<x_{2} . h=\frac{b-a}{3}$
$\mathbf{n}=2: \int_{x_{-1}}^{x_{3}} f(x) d x=\frac{4 h}{3}\left[2 f\left(x_{0}\right)-f\left(x_{1}\right)+2 f\left(x_{2}\right)\right]+\frac{14 h^{5}}{45} f^{(4)}(\xi) \quad$ where $x_{-1}<\xi<x_{3} . h=\frac{b-a}{4}$

