4.3 Numerical Integration

Numerical quadrature: Numerical method to compute $\int_{a}^{b} f(x) dx$ approximately by a sum $\sum_{i=0}^{n} f(x_i) a_i$.

The interpolation nodes are given as:

1

The Trapezoidal Rule (obtained by first Lagrange interpolating polynomial)

Let $x_0 = a$; $x_1 = b$; and h = b - a. (see Figure 1)

Figure 1 Trapezoidal Rule

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{1}} \left[f(x_{0}) \frac{x - x_{1}}{(x_{0} - x_{1})} + f(x_{1}) \frac{x - x_{0}}{(x_{1} - x_{0})} \right] dx + \frac{1}{2} \int_{x_{0}}^{x_{1}} (x - x_{0})(x - x_{1}) f^{(2)}(\xi(x)) dx$$
Thus
$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f(x_{0}) + f(x_{1}) \right] - \frac{h^{3}}{12} f^{(2)}(\xi)$$
Error term

Note: h = b - a for **Trapezoidal rule.**

The Simpson's (1/3) Rule (error obtained by third Taylor polynomial)

Figure 2 Simpson's Rule

Now approximate $f''(x_1) = \frac{1}{h^2} [f(x_0) - 2f(x_1) + f(x_2)] - \frac{h^2}{12} f^{(4)}(\xi_2)$

Thus

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left(f(x_{0}) + 4f(x_{1}) + f(x_{2}) \right) - \frac{h^{5}}{90} f^{(4)}(\xi)$$

Error term

Note: $h = \frac{b-a}{2}$ for Simpson's rule.

Precision

Definition: The **degree of accuracy** or **precision** of a quadrature formula is the largest positive integer *n* such that the formula is exact for x^k , for each $k = 0, 1, \dots, n$.

Trapezoidal rule has degree of accuracy one.

 $\int_{a}^{b} x^{0} dx = b - a;$ $\int_{a}^{b} x^{0} dx = \frac{b - a}{2} [1 + 1] = b - a.$ Trapezoidal rule is exact for 1 (or x^{0}). $\int_{a}^{b} x dx = \frac{x^{2}}{2} \Big|_{a}^{b} = \frac{b^{2} - a^{2}}{2}.$ $\int_{a}^{b} x dx = \frac{b - a}{2} [a + b] = \frac{b^{2} - a^{2}}{2}.$ Trapezoidal rule is exact for x. $\int_{a}^{b} x^{2} dx = \frac{x^{3}}{3} \Big|_{a}^{b} = \frac{b^{3} - a^{3}}{3}.$ $\int_{a}^{b} x^{2} dx = \frac{b - a}{2} [a^{2} + b^{2}] \neq \frac{b^{3} - a^{3}}{3}.$ Trapezoidal rule is **NOT** exact for x^{2} .
Simpson's rule has degree of accuracy three.

Remark: The degree of precision of a quadrature formula is n if and only if the error is zero for all polynomials of degree $k = 0, 1, \dots, n$, but is NOT zero for some polynomial of degree n + 1.

Closed Newton-Cotes Formulas

Let
$$a = x_0$$
; $b = x_N$; and $h = \frac{b-a}{N}$. $x_i = x_0 + ih$, for $i = 0, 1, \dots, N$.
 $\int_a^b f(x) dx \approx \sum_{i=0}^N a_i f(x_i)$ with $a_i = \int_a^b L_{N,i}(x) dx$.
Here $L_{N,i}(x)$ is the ith Lagrange base polynomial of degree N.

Figure 3 Closed Newton-Cotes Formulas

Theorem 4.2 Suppose that $\sum_{i=0}^{N} a_i f(x_i)$ is the (n+1)-point closed Newton-Cotes formula with $a = x_0$; $b = x_N$; and $h = \frac{b-a}{N}$. There exists $\xi \in (a, b)$ for which $\int_a^b f(x) dx \approx \sum_{i=0}^{N} a_i f(x_i) + \frac{h^{N+3} f^{(N+2)}(\xi)}{(N+2)!} \int_0^N t^2 (t-1) \cdots (t-N) dt$, if N is even and $f \in C^{N+2}[a, b]$, and

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{N} a_{i}f(x_{i}) + \frac{h^{N+2}f^{(N+1)}(\xi)}{(N+1)!} \int_{0}^{N} t^{2}(t-1)\cdots(t-N)dt$$

if N is odd and $f \in C^{N+1}[a, b]$.

Remark: N is even, degree of precision is N + 1. N is odd, degree of precision is N.

Examples. N=1: Trapezoidal rule; N=2: Simpson's rule.

N=3: Simpson's Three-Eighths rule

$$\int_{x_0}^{x_3} f(x) dx = \frac{3h}{8} \left(f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right) - \frac{3h^5}{80} f^{(4)}(\xi) \quad \text{where } x_0 < \xi < x_3; h = \frac{x_3 - x_0}{3}.$$

Figure 4 Open Newton-Cotes Formula

Open Newton-Cotes Formula

See Figure 4. Let $h = \frac{b-a}{n+2}$; and $x_0 = a + h$. $x_i = x_0 + ih$, for $i = 0, 1, \dots, n$. This implies $x_n = b - h$. **Theorem 4.3** Suppose that $\sum_{i=0}^{n} a_i f(x_i)$ is the (n+1)-point open Newton-Cotes formula with $a = x_{-1}$; $b = x_{n+1}$; and $h = \frac{b-a}{n+2}$. There exists $\xi \in (a, b)$ for which $\int_a^b f(x) dx \approx \sum_{i=0}^n a_i f(x_i) + \frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_{-1}^{n+1} t^2 (t-1) \cdots (t-n) dt$,

if *n* is even and $f \in C^{n+2}[a, b]$, and

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} a_{i}f(x_{i}) + \frac{h^{n+2}f^{(n+1)}(\xi)}{(n+1)!} \int_{-1}^{n+1} t^{2}(t-1)\cdots(t-n)dt$$

if *n* is odd and $f \in C^{n+1}[a, b]$.

Examples of open Newton-Cotes formulas

n=0: Midpoint rule (Figure 5)

$$\int_{x_{-1}}^{x_1} f(x) dx = 2hf(x_0) + \frac{h^3}{3}f^{(2)}(\xi)$$

where $x_{-1} < \xi < x_1$. $h = \frac{b-a}{2}$

$$\mathbf{n=1:} \int_{x_{-1}}^{x_2} f(x) dx = \frac{3h}{2} [f(x_0) + f(x_1)] + \frac{3h^3}{4} f^{(2)}(\xi) \text{ where } x_{-1} < \xi < x_2. \ h = \frac{b-a}{3}$$

$$\mathbf{n}=2: \int_{x_{-1}}^{x_3} f(x) dx = \frac{4h}{3} \left[2f(x_0) - f(x_1) + 2f(x_2) \right] + \frac{14h^5}{45} f^{(4)}(\xi) \quad \text{where } x_{-1} < \xi < x_3. \ h = \frac{b-a}{4}$$