4.4 Composite Numerical Integration

Motivation: 1) on large interval, use Newton-Cotes formulas are not accurate.
2) on large interval, interpolation using high degree polynomial is unsuitable because of oscillatory nature of high degree polynomials.
Main idea: divide integration interval $[a, b]$ into subintervals and use simple integration rule for each subinterval.

Example a) Use Simpson's rule to approximate $\int_{0}^{4} e^{x} d x=53.59819$. b) Divide $[0,4]$ into $[0,1]+[1,2]+[2,3]+[3,4]$. Use Simpson's rule to approximate $\int_{0}^{1} e^{x} d x, \int_{1}^{2} e^{x} d x, \int_{2}^{3} e^{x} d x$ and $\int_{3}^{4} e^{x} d x$. Then approximate $\int_{0}^{4} e^{x} d x$ by adding approximations for $\int_{0}^{1} e^{x} d x, \int_{1}^{2} e^{x} d x, \int_{2}^{3} e^{x} d x$ and $\int_{3}^{4} e^{x} d x$. Compare with accurate value.
Solution:
a) $\int_{0}^{4} e^{x} d x \approx \frac{2}{3}\left(e^{0}+4 e^{2}+e^{4}\right)=56.76958$.

$$
\text { Error }=|53.59819-56.76958|=3.17143
$$

b) $\int_{0}^{4} e^{x} d x=\int_{0}^{1} e^{x} d x+\int_{1}^{2} e^{x} d x+\int_{2}^{3} e^{x} d x+\int_{3}^{4} e^{x} d x \approx \frac{0.5}{3}\left(e^{0}+4 e^{0.5}+e^{1}\right)+\frac{0.5}{3}\left(e^{1}+4 e^{1.5}+e^{2}\right)+\frac{0.5}{3}\left(e^{2}+4 e^{2.5}+\right.$ $\left.e^{3}\right)+\frac{0.5}{3}\left(e^{3}+4 e^{3.5}+e^{4}\right)=53.61622$
Error=|53.59819-53.61622| $=0.01807$
b) is much more accurate than a).

Composite Trapezoidal rule

Figure 1 Composite Trapezoidal Rule

Let $f \in C^{2}[a, b], h=\frac{b-a}{n}$, and $x_{j}=a+j h$ for $j=0, \cdots, n$.
On each subinterval $\left[x_{j-1}, x_{j}\right]$, for for $j=1, \cdots, n$, apply Trapezoidal rule:

$$
\begin{aligned}
\int_{a}^{b} f(x) & d x \\
& =\left[\frac{h}{2}\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right)-\frac{h^{3}}{12} f^{\prime \prime}\left(\xi_{1}\right)\right]+\left[\frac{h}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)-\frac{h^{3}}{12} f^{\prime \prime}\left(\xi_{2}\right)\right]+\cdots \\
& +\left[\frac{h}{2}\left(f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)-\frac{h^{3}}{12} f^{\prime \prime}\left(\xi_{n}\right)\right]=\frac{h}{2}\left[f(a)+2 \sum_{j=1}^{n-1} f\left(x_{j}\right)+f(b)\right]-\frac{h^{3}}{12} \sum_{j=1}^{n} f^{\prime \prime}\left(\xi_{j}\right) \\
& =\frac{h}{2}\left[f(a)+2 \sum_{j=1}^{n-1} f\left(x_{j}\right)+f(b)\right]-\frac{b-a}{12} h^{2} f^{\prime \prime}(\mu)
\end{aligned}
$$

Theorem 4.5 Let $f \in C^{2}[a, b], h=\frac{b-a}{n}$, and $x_{j}=a+j h$ for each $j=0, \cdots, n$. There exists a $\mu \in(a, b)$ for which Composite Trapezoidal rule with its error term is

Error term

Composite Simpson's rule

Figure 2 Composite Simpson's rule
Let $f \in C^{2}[a, b]$, n be an even integer, $h=\frac{b-a}{n}$, and $x_{j}=a+j h$ for $j=0, \cdots, n$.
On each consecutive pair of subintervals, for instance $\left[x_{0}, x_{2}\right],\left[x_{2}, x_{4}\right]$, and $\left[x_{2 j-2}, x_{2 j}\right]$ for each $j=1, \cdots, n / 2$, apply Simpson's rule:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\sum_{j=1}^{n / 2} \int_{x_{2 j-2}}^{x_{2 j}} f(x) d x=\sum_{j=1}^{n / 2} \frac{h}{3}\left(f\left(x_{2 j-2}\right)+4 f\left(x_{2 j-1}\right)+f\left(x_{2 j}\right)-\frac{h^{5}}{90} f^{(4)}\left(\xi_{j}\right)\right) \\
& =\frac{h}{3}\left(f\left(x_{0}\right)+2 \sum_{j=1}^{\left(\frac{n}{2}\right)-1} f\left(x_{2 j}\right)+4 \sum_{j=1}^{\left(\frac{n}{2}\right)} f\left(x_{2 j-1}\right)+f\left(x_{n}\right)\right)-\frac{h^{5}}{90} \sum_{j=1}^{\left(\frac{n}{2}\right)} f^{(4)}\left(\xi_{j}\right)
\end{aligned}
$$

Error, which can be simplified

Theorem 4.4 Let $f \in C^{4}[a, b], n$ be even integer, $h=\frac{b-a}{n}$, and $x_{j}=a+j h$ for each $j=0, \cdots, n$. There exists a $\mu \in(a, b)$ for which Composite Simpson's rule with its error term is

$$
\int_{a}^{b} f(x) d x=\frac{h}{3}\left[f(a)+2 \sum_{j=1}^{\left(\frac{n}{2}\right)-1} f\left(x_{2 j}\right)+4 \sum_{j=1}^{\left(\frac{n}{2}\right)} f\left(x_{2 j-1}\right)+f(b)\right]-\frac{b-a}{180} h^{4} f^{(4)}(\mu)
$$

Error Term

Composite Midpoint rule

Figure 3 Composite Midpoint rule

Theorem 4.6 Let $f \in C^{2}[a, b], n$ be even , $h=\frac{b-a}{n+2}$, and $x_{j}=a+(j+1) h$ for each $j=-1,0, \cdots, n, n+1$. There exists a $\mu \in(a, b)$ for which Composite Midpoint rule with its error term is

Error Term

