5.1 Elementary Theory of Initial-Value Problems
Definition: A function f(t,y) is said to satisfy a Lipschitz condition in the variable y onaset D c R? if a constant L > 0
exists with

If (&, 1) — f(6y2)l < LIy, — 2l
whenever (t,y;) and (t,y,) are in D. The constant L is called a Lipschitz constant for f.

Example. Show that f(t,y) = %y + t2et satisfies a Lipschitz condition on the interval D = {(¢t,y)[1 <t <2and -2 <y <
5}.
Solution: For arbitrary points (¢, y,) and (t, y,) in D, we have
2 2 2
£y = Feydl = (3o +e%et) = (Fra + %) = 131 = vl < 21y = 3o
Thus f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L = 2.

Definition: A set D < R? is said to be convex if whenever (t;, y;) and (t,,y,) belongs to D and A € [0,1], the point

((1 -ty + At,, (1 —A)y; + Ay,) also belongs to D.

Remark: 1. Convex means that line segment connecting (t,, y,) and (t,, y,) is in D whenever (t,,y,) and (t,, y,) belongs to D.
2. ThesetD = {(x,y) a <t < band — o <y < oo} is cCOnvex.

Theorem 5.3 Suppose f(t, y) is defined on a convex set D c R2. If a constant L > 0 exists with

of
Ia(t,y)l =L

for all (¢,y) € D, then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

Existence and Unigueness

Theorem 5.4 Suppose that D = {(x,y) a <t < band — o < y < oo} and that f(t,y) is continuous on D. If f satisfies a
Lipschitz condition on D in the variable y, then the initial-value problem (IVVP)

y'=fty), a<t<b yla=5,
has a unique solution y(t) fora <t <b.




Example 2. Show that there is a unique solution to the I\VP
y' =1+tsin(ty), 0 <t<2, y(0)=0.
Solution: f(t,y) = 1+ tsin(ty)
Method 1. Use Mean Value Theorem in y, we have
FRB ) = (6,¢) = teos(§t)  for € in (3, 7,).
271
Thus, |f(t,y2) — f(t, y)| = ly2 — y1llt? cos(€t)| < 22|y, — y4l.
f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L = 4.

Additionally, f(t,y)iscontinuouson {0 <t < 2and — o <y < oo}. Thm 5.4 implies that a unique
Solution exists.

Method 2. Theset {0 <t < 2and — o <y < o} is convex. |Z—§ (¢, y)| = |t%cos(yt)| < 2%2(1) = 4. So f satisfies
a Lipschitz condition on D in the variable y with Lipschitz constant L = 4.

Additionally, f(t,y) iscontinuouson {0 <t < 2and — o <y < o}. Thm 5.4 implies that a unique
Solution exists.

Well-Posedness

Definition: The IVP % =f(t,y), a <t<b, y(a)=pissaidto be awell-posed problem if:

1. A unique solution y(t), to the problem exists, and
2. There exist constant ¢, > 0 and k > 0 such that for any € with £, > € > 0, whenever §(t) is continuous with |6(t)| <

g forall t in [a, b], and when |§,| < &, the IVP (a perturbed problem associated with original % = f(t,y))

d
d—i=f(t,z) +8@t), a<t<b z(a)=p+5,
has a unique solution z(t) that satisfies

|z(t) — y(t)| < ke forall t in [a, b].

Why well-posedness? Numerical methods always solve perturbed problem because of round-off errors.



Example. Consider the original problemy’ =y —t?2+1, 0 <t <2, y(0) = 0.5. The solution is
y(t) = (t + 1)? — 0.5¢e".

The associated perturbed problemisz' =z—t2+1+6, 0 <t <2, z(0)= 0.5+ &, with § and &, being constants.
Assume |§| < eand |§,| < e. The solution is
z(t) = (t+1)2+ (6 + 8, — 0.5)et — 6.

|z(t) — y(®)| = |(6 + 8p)et — 8| < |6 + Splet + 16| < (e + €)e? + & = (2e? + 1)e
Sok = 2e? + 1.

Theorem 5.6 Suppose D = {(x,y) a <t < band — o <y < oo} and that f (¢, y) is continuous on D and satisfies a Lipschitz
condition on D in the variable y, then VP

y =fty), a<t<b yla)=p
is well-posed.

t <2, y(0)= 0.5

Example. Showthe IVPy' =y —t2+1, 0
t<2and — o <y < oo}

iswell-posedon D = {(x,y) 0 <
Solution: %(y —e2+D|=n1=1
Function (y — t? + 1) satisfies Lipschitz condition with L =1. So Theorem 5.6 implies the IVP is well posed.

<
<




5.2 Euler’s Method

Algorithm description
Suppose a well-posed IVP is

y =f(ty), a<t<bhb yla)=p.
Distribute mesh points equally throughout [ ,b]:
t; =a+ih, foreachi=0,1,2,---,N.

b—a

The step size h = — = tiy1 — L.

We compute the approximate solution at time points t; by:
wo = B

Wiz = w; + hf (t;, w;), foreach i =0,1,2,---,N — 1.

Difference Eq.

Here w; = y(t;), namely, w; is the approximate solution at time t;.

Example. Solvey’ =y —t2+1, 0 <t <2, y(0)= 0.5 numerically with time step size h = 0.5.

Solution: wy, = y(0) = 0.5
y(0.5) = w; = wy + h(wy — (£)> +1) = 0.5+ 0.5(0.5 -0+ 1) = 1.25
y(1.0) = w, = wy + h(w; — (t)? + 1) = 1.25 + 0.5(1.25 — (0.5)2 + 1) = 2.25
y(1.5) ~ w3 = w, + h(w, — (t,)* + 1) = 2.25+ 0.5(2.25 — (1.0)2 + 1) = 3.375
y(2.0) = w, = w3 + h(w; — (t3)? + 1) = 3.375 + 0.5(3.375 — (1.5)% + 1) = 4.4375

Derivation of Euler’s Method
Use Taylor’s Theorem for y(t):

(tivs — t)*

Y(tise) =yt + (tieg — )y () + ————¥"(%)

for & € (ti tiv1). Since h =ty — t; and y'(t) = f(t;, (),
h2
y(tip1) = y(&) + hf (t, y(t)) + 73’”(51‘)

Neglecting the remainder term gives Euler’s method for w; = y(t;):
Wiyl = w; + hf(t;,wy), foreach i=0,1,2,--,N — 1.




Geometric interpretation of Euler’s Method
f(t;,w;) = y'(t;) = f(t;, y(t;)) implies f(t;, w;) is an approximation to slope of y(t) at t;.

Euler Approximation to dy;‘dt=y-t2+1 ,h=0.5
55 T T T T T T T

o]
sl | ———Approximate <
Exact //
45 / 3
P
4 ]
Fa

¥ (). vt
G 8
5

25 R
/,/ /@'
2t i -~
// o
15 P
AN
e
1 =
'_,,‘,-f’
s
0.5¢ L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 .

Error bound

Theorem 5.9 Suppose D = {(x,y) a <t < band — o <y < oo} and that f(t,y) is continuous on D and satisfies a
Lipschitz condition on D in the variable y with Lipschitz constant L and that a constant M exists with
ly""(t)] <M, forallt € [a,b].
Let y(t) denote the unique solution to the IVP
y =fty), a<st<b yla=4p
and wy, wy, -+, wy, as in Euler’s method. Then

hM
y(t) —wil < -t —1].

Example. The solutiontothe IVPy' =y —t2+1, 0 <t <2, y(0) = 0.5 was approximated by Euler’s method with
h = 0.2. Find the bound for approximation.



Solution: The exact solution is y(t) = (t + 1)? — 0.5¢".
y"'(t) = 2 — 0.5¢et.
So |y"(t)| <05e?—2=M forallt € [0,2].
9 (v _t2 CMl=1—
-t +1)|—|1|—1—L.

0.2)(0.5e%2-2 _
v (&) —wi < CR2ZB [0 1]

Hence |y(0.2) — w;| < 0.1(0.5e2 — 2)[e%2? — 1]
|y(0.4) — w,| < 0.1(0.5¢? — 2)[e®* — 1]and so on.



