5.1 Elementary Theory of Initial-Value Problems

Definition: A function f(t, y) is said to satisfy a Lipschitz condition in the variable y on a set $D \subset R^2$ if a constant L > 0 exists with

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|$$

whenever (t, y_1) and (t, y_2) are in *D*. The constant *L* is called a Lipschitz constant for *f*.

Example. Show that $f(t, y) = \frac{2}{t}y + t^2e^t$ satisfies a Lipschitz condition on the interval $D = \{(t, y) | 1 \le t \le 2 \text{ and } -2 \le y \le 5\}$.

Solution: For arbitrary points (t, y_1) and (t, y_2) in *D*, we have

$$|f(t, y_1) - f(t, y_2)| = \left| \left(\frac{2}{t} y_1 + t^2 e^t \right) - \left(\frac{2}{t} y_2 + t^2 e^t \right) \right| = \left| \frac{2}{t} ||y_1 - y_2| \le 2|y_1 - y_2|$$

Thus f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L = 2.

Definition: A set $D \subset R^2$ is said to be **convex** if whenever (t_1, y_1) and (t_2, y_2) belongs to D and $\lambda \in [0,1]$, the point $((1 - \lambda)t_1 + \lambda t_2, (1 - \lambda)y_1 + \lambda y_2)$ also belongs to D. *Remark*: 1. Convex means that line segment connecting (t_1, y_1) and (t_2, y_2) is in D whenever (t_1, y_1) and (t_2, y_2) belongs to D.

2. The set $D = \{(x, y) | a \le t \le b \text{ and } -\infty \le y \le \infty\}$ is convex.

Theorem 5.3 Suppose f(t, y) is defined on a convex set $D \subset R^2$. If a constant L > 0 exists with $|\frac{\partial f}{\partial y}(t, y)| \le L$ for all $(t, y) \in D$, then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

Existence and Uniqueness

Theorem 5.4 Suppose that $D = \{(x, y) | a \le t \le b \text{ and } -\infty < y < \infty\}$ and that f(t, y) is continuous on D. If f satisfies a Lipschitz condition on D in the variable y, then the initial-value problem (IVP) $y' = f(t, y), \quad a \le t \le b, \quad y(a) = \beta,$ has a unique solution y(t) for $a \le t \le b$. **Example 2**. Show that there is a unique solution to the IVP

$$y' = 1 + tsin(ty), \quad 0 \le t \le 2, \quad y(0) = 0.$$

Solution: f(t, y) = 1 + tsin(ty)

Method 1. Use Mean Value Theorem in y, we have

 $\frac{f(t,y_2)-f(t,y_1)}{y_2-y_1} = \frac{\partial f}{\partial y}(t,\xi) = t^2 \cos(\xi t) \quad \text{for } \xi \text{ in } (y_1,y_2).$ Thus, $|f(t,y_2) - f(t,y_1)| = |y_2 - y_1||t^2 \cos(\xi t)| \le 2^2|y_2 - y_1|.$ *f* satisfies a Lipschitz condition on *D* in the variable *y* with Lipschitz constant L = 4. Additionally, f(t,y) is continuous on $\{0 \le t \le 2 \text{ and } -\infty < y < \infty\}$. Thm 5.4 implies that a unique Solution exists.

Method 2. The set $\{0 \le t \le 2 \text{ and } -\infty < y < \infty\}$ is convex. $\left|\frac{\partial f}{\partial y}(t, y)\right| = |t^2 \cos(yt)| \le 2^2(1) = 4$. So f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L = 4. Additionally, f(t, y) is continuous on $\{0 \le t \le 2 \text{ and } -\infty < y < \infty\}$. Thm 5.4 implies that a unique Solution exists.

Well-Posedness

Definition: The IVP $\frac{dy}{dt} = f(t, y)$, $a \le t \le b$, $y(a) = \beta$ is said to be a well-posed problem if:

- 1. A unique solution y(t), to the problem exists, and
- 2. There exist constant $\varepsilon_0 > 0$ and k > 0 such that for any ε with $\varepsilon_0 > \varepsilon > 0$, whenever $\delta(t)$ is continuous with $|\delta(t)| < \varepsilon$ for all t in [a, b], and when $|\delta_0| < \varepsilon$, the IVP (*a perturbed problem associated with original* $\frac{dy}{dt} = f(t, y)$)

$$\frac{dz}{dt} = f(t,z) + \delta(t), \quad a \le t \le b, \quad z(a) = \beta + \delta_0$$

has a unique solution z(t) that satisfies

$$|z(t) - y(t)| < k\varepsilon$$
 for all t in $[a, b]$.

Why well-posedness? Numerical methods always solve perturbed problem because of round-off errors.

Example. Consider the original problem $y' = y - t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5. The solution is $y(t) = (t + 1)^2 - 0.5e^t$.

The associated perturbed problem is $z' = z - t^2 + 1 + \delta$, $0 \le t \le 2$, $z(0) = 0.5 + \delta_0$ with δ and δ_0 being constants. Assume $|\delta| < \varepsilon$ and $|\delta_0| < \varepsilon$. The solution is

$$z(t) = (t+1)^2 + (\delta + \delta_0 - 0.5)e^t - \delta.$$

$$|z(t) - y(t)| = |(\delta + \delta_0)e^t - \delta| \le |\delta + \delta_0|e^t + |\delta| \le (\varepsilon + \varepsilon)e^2 + \varepsilon = (2e^2 + 1)\varepsilon$$

So $k = 2e^2 + 1$.

Theorem 5.6 Suppose $D = \{(x, y) | a \le t \le b \text{ and } -\infty < y < \infty\}$ and that f(t, y) is continuous on D and satisfies a Lipschitz condition on D in the variable y, then IVP

$$y' = f(t, y), \quad a \le t \le b, \ y(a) = \beta$$

is well-posed.

Example. Show the IVP $y' = y - t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5is well-posed on $D = \{(x, y) \ 0 \le t \le 2 \text{ and } -\infty < y < \infty\}$ **Solution**: $\left|\frac{\partial}{\partial y}(y - t^2 + 1)\right| = |1| = 1$. Function $(y - t^2 + 1)$ satisfies Lipschitz condition with L =1. So **Theorem 5.6** implies the IVP is well posed.

5.2 Euler's Method

Algorithm description

Suppose a well-posed IVP is

$$y' = f(t, y), \quad a \le t \le b, \ y(a) = \beta$$

Distribute mesh points equally throughout [*a*, *b*]:

$$t_i = a + ih$$
, for each $i = 0, 1, 2, \dots, N$.

The step size $h = \frac{b-a}{N} = t_{i+1} - t_i$.

We compute the approximate solution at time points t_i by: $w_0 = \beta$

 $w_{i+1} = w_i + hf(t_i, w_i),$ for each $i = 0, 1, 2, \dots, N-1$. Here $w_i \approx y(t_i)$, namely, w_i is the approximate solution at time t_i .

Example. Solve $y' = y - t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5 numerically with time step size h = 0.5. Solution: $w_0 = y(0) = 0.5$ $y(0.5) \approx w_1 = w_0 + h(w_0 - (t_0)^2 + 1) = 0.5 + 0.5(0.5 - 0 + 1) = 1.25$ $y(1.0) \approx w_2 = w_1 + h(w_1 - (t_1)^2 + 1) = 1.25 + 0.5(1.25 - (0.5)^2 + 1) = 2.25$ $y(1.5) \approx w_3 = w_2 + h(w_2 - (t_2)^2 + 1) = 2.25 + 0.5(2.25 - (1.0)^2 + 1) = 3.375$ $y(2.0) \approx w_4 = w_3 + h(w_3 - (t_3)^2 + 1) = 3.375 + 0.5(3.375 - (1.5)^2 + 1) = 4.4375$

Derivation of Euler's Method

Use Taylor's Theorem for y(t):

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2}y''(\xi_i)$$

for $\xi_i \in (t_i, t_{i+1})$. Since $h = t_{i+1} - t_i$ and $y'(t_i) = f(t_i, y(t_i))$,

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{n^2}{2}y''(\xi_i)$$

12

Neglecting the remainder term gives Euler's method for $w_i \approx y(t_i)$:

 $w_{i+1} = w_i + hf(t_i, w_i),$ for each $i = 0, 1, 2, \dots, N-1.$

Geometric interpretation of Euler's Method

 $f(t_i, w_i) \approx y'(t_i) = f(t_i, y(t_i))$ implies $f(t_i, w_i)$ is an approximation to slope of y(t) at t_i .

Error bound

Theorem 5.9 Suppose $D = \{(x, y) | a \le t \le b \text{ and } -\infty < y < \infty\}$ and that f(t, y) is continuous on D and satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L and that a constant M exists with $|y''(t)| \le M$, for all $t \in [a, b]$. Let y(t) denote the unique solution to the IVP $y' = f(t, y), \quad a \le t \le b, \ y(a) = \beta,$ and w_0, w_1, \cdots, w_n as in Euler's method. Then $|y(t_i) - w_i| \le \frac{hM}{2L} [e^{L(t_i - a)} - 1].$

Example. The solution to the IVP $y' = y - t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5 was approximated by Euler's method with h = 0.2. Find the bound for approximation.

Solution: The exact solution is $y(t) = (t+1)^2 - 0.5e^t$. $y''(t) = 2 - 0.5e^t$. So $|y''(t)| \le 0.5e^2 - 2 = M$ for all $t \in [0,2]$. $\left|\frac{\partial}{\partial y}(y - t^2 + 1)\right| = |1| = 1 = L$. $|y(t_i) - w_i| \le \frac{(0.2)(0.5e^2 - 2)}{2(1)} \left[e^{(1)(t_i - 0)} - 1\right]$ Hence $|y(0.2) - w_1| \le 0.1(0.5e^2 - 2)[e^{0.2} - 1]$ $|y(0.4) - w_2| \le 0.1(0.5e^2 - 2)[e^{0.4} - 1]$ and so on.